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CLOSURE OF SIMILARITY ORBITS OF
NILPOTENT OPERATORS I. FINITE RANK OPERATORS

JOSE BARR{A and DOMINGO A. HERRERO

1. INTRODUCTION

Let #(Z) be the algebra of all (continuous linear) operators acting on a (real
or complex) Banach space Z. The similarity orbit of T e (%) is the set

F(T)= {(WTW™: W is invertible in Z(X)}.

Let #(T)~ denote the norm closure of &#(T). The main result of this article is the
following one (This result completes the answer given in ref. [3]).

THEOREM 1.1. Let Te #(X) be a (necessarily algebraic) finite rank operator

with minimal monic polynomial p(z) = [J (z — )i (For ¥ a real Banach space,
j=1

it will be assumed that all the A;’s are real); then

P(T)y = {Ac LX) rank ¢(4) §rank ¢q(T) and dim Kerg (4)>dim Ker
g(T) for all q|p},
where q | p denotes a monic polynomial q dividing p.

Let Le 2(X), then $(LY = #(T) if and only if rank g(L) = rank q(T) for
all q|p if and only if L is similar to T.

The real and complex case follow by the same proof, so we shall only consider
the complex case. The second statement of the theorem is a trivial consequence of
the first one and suggests the following

DEFINITION 1.1. If A, Be Z(¥) and & (A)” = ¥(B)", A and B will be called
asymptotically similar operators.

By A ~B (4 # B) it will be meant that 4 is similar (asymptotically similar,
resp.) to B. Clearly, # is an equivalence relation in Z(%). As in ref. [3], the equi-
valence class of 4 will be denoted by [A4]. (L(Z)/#,<) is a partially ordered set (p.o.s.),
where < is the partial order induced by inclusion among the closures of similarity
orbits.

Let #(Z) denote the set of all nilpotent operators in. £ (%). Theorem 1.1 shows,
in particular, that the section of the p.o.s. (£(%)/#, <) corresponding tofinite rank
nilpotents is actually a lattice and, moreover, the structure of this lattice is inde-
pendent of Z provided 2 is an infinite dimensional space.
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Theorem 1.1 has the foliowing analog (In what follows »# will always de-
note a complex Hilbert space).

THEOREM 1.2. Let T be a compact nilpotent operator in Hilbert space # ; then
L (TY = {Ae A (H#); dim(4/#) <dim (TH#) for all j},

where A~ denotes the ideal of compact operators.

Further results for the case of a Hilbert space will be given in an oncoming
paper [1]. The authors are deeply indebted to Professors Mischa Cotlar, Alain
Etcheberry, Marta B. Pecuch and Lazaro Recht for several stimulating conver-
sations, and to the referee for correcting several errors of the original version and
providing an argument to simplify the proof of the main result.

2. SOME TECHNICAL RESULTS

This section contains the auxiliary mathematical tools to be used throughout
the paper.

Let {e,, e,, ..., ¢;} be the canonical orthonormal basis of the Hilbert space
C/, let g; be the operator defined by g;e; = 0, g;¢,=¢,-; for 1= 2,3, ...,j, and let

7:1(0) @ gote) @ ... D gi(et) = (0rs Uy ovs 0)

be the orthogonal direct sum of a, copies of g, (= the zero operator acting on C),
oy copies of gy, ..., a, copies of g, acting in the usual fashion on the Hilbert space

H = k@ CaC@..0C (v; summands)). If TeA nF(Z) (where F(Z)
j=1

denotes the ideal of finite rank operators), then % can be written as the algebraic
direct sum of a finite dimensional subspace %, and a subspace (= closed linear
manifold) %', both invariant under T, in such a way that T|%, (the restriction of
T to %,) is similar to (0, 1y, 13, ..., 7,) for a suitable finite sequence T,, 73, ..., T, of
nonnegative integers with 7, #0, and T|%; = 0. The set of all nilpotents of order
at most k& will be denoted by /', (k=1,2,...).

LeMMA 2.1. If 1 £ 12 k—1, then ¢4, D 9,-1€ L(q, @ q.)"-

Proof. Let {e, e, ..., ¢} and {fy, /s, .... i} be the orthonormal basis of C’

and C* related to g, and g, resp., as above indicated (g6, = q,f1 = 0, g, ¢; = €;_4,
gfj=fi—1 for i,j>1) and let W,eZ(C'@C) (0 <e<1) be the operator

defined by W.e, = e—(1/e)f;4; for i=1,2,..,1, W, fi=¢fi, W f;=F; for j=
=2, 3, ..., k. Then straightforward computations show that W is invertible, W; e, =
=e;+ (1/e)fisy for i=1,2,., LW fi=(/e)fs, Wo'f;=f for j=2,3,..,k
and Q,= W,(q ® g)W." isdefined by Q.e, = fi, Q.e; =e;_yfor i=2,3,..,1,
Q.i=0, O.f,=¢f, Q.fj=fj-1 for j=3,4,.. k.
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It readily follows that @ = (norm)- lim @, is unitarily equivalent to

-0

Gis1 ® -y Indeed, Of; =0, Qe = f;, Q &, = e,y fori = 2,3, .., Jand Qf, =0,
Of;=fi1 for j=3,4,...k.7

LemMA 2.2. (i) Let Ae L(Z) be the weak limit of a net {A.},cr with rank
A, <n<co for all ver; then rank A < n.

(ii) Let lim ||, — A)| = 0, A, A, € L(%); then

dim (A%Z)" £ liminf dim (4,2)".
(iii) If A, belongs to a proper (closed bilateral) ideal §# of L(X)
forall n,then Ac #.

Proof. (i) Assume that A% contains a subspace of dimension n -+ 1. Then
there exist Y1, yp, .., You1 € & such that {A4y;};2 is a linearly independent set.
Clearly, % = linear span {y, ys, ..., ¥,+1; has dimension # + 1 and therefore
% nKerAd,# {0} for all veTI. It is easily seen that there exist ye %, pe Z*
and a cofinal set Z< I' such that ¢(4y) = 1, but lim ¢(4,y) = 0, a contradiction.

we X

Therefore rank A £a.
(ii) Passing if necessary to a subsequence, we can assume that
o = lim inf dim (4,%)” = lim dim(4,%)". If & < oo, then the result follows from (i).

n—00 n—oo
Otherwise, it is easily seen that (A%)” < Vv {4,417, (where v denotes “the
closed linear span of”) for all m>1, therefore

(topological) dim (AZ) < lim Y, dim (4,2)" £

m—oo T,
< N, lim dim(4, 2)" = lim dim(4, Z)~.
n—oo n—-oo

The last statement is trivial. g

The following result is contained in ref. [4] for the Hilbert space case. The
general case follows by the same proof.

LeEmMMA 2.3. (i) Let A, Bc L (%) and let Be F(A)". Then p(B)e L (p(4))”
for every polynomial p.
(if) The analogous result holds for f(B), for every function f analytic
in a neighborhood of the spectrum A(B) of B.
As an immediate consequence of the last two lemmas, we have

" COROLLARY 2.4. Let Te N (X) and let Le FP(T); then
(i) STy = NZ)
i) dim (LZ)" < dim (7)Y for j=1,2,... k
@iy If TV belongs to an ideal #, for some j, then Lie f.
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The following two results (see ref. [3]) will allow to extend every result about
nilpotent operators to algebraic operators.

LeMMa 2.5. Let Ae £(H) and assume that A(A) (the spectrum of A) is the
disjoint union of finitely many clopen subsets Ay, A, ..., A,,. Let M; be the invariant
subspace of A associated with A; via Riesz functional calculus (8] so that A(A|M;) = A
(=1,2,...,m) and # = ¥/, i Mo R A (algebraic direct sum). Then

F(A)=(B ~ B, ® B, ® ... ® B,: B;e LA, j=1,2,...,m}.

Furthermore, if A(B;}) = A; for all B;e S(Al.#;)" and for all j = 1,2, ..., m, then
FA ={B~B @B, D... ®B,; Bje F(AlL)", j=12,..,m}.

COROLLARY 2.6. Let A e ZL(H) be an algebraic operator with minimal monic
polynomial p(z) = [Q(z—A)i(4; # A, forj #i)and let H# = ., + Mo + ot Mo
j=1
be the decomposition of H# associated with the spectrum A(A) = {4y, 22, ..., 2} of
A via Riesz functional calculus. Then

y(A) = {B ~ Bl @Bg @ “ee ®Bm: BJ ~ A[/ZJ, j: I, 2,...,m}
and
PA) ={B~B @B, ®... B, Bje FULLY, j=1,2,....,m}.

3. FINITE RANK OPERATORS

Let 4 ¢ #(Z) for some Banach space Z. Then via Hahn-Banach’s theorem 4

can be written as 4 = Y, x; ® ¢;, where x;€ 7, ¢;€ Z*, and x; ® ¢; is defined
i=1

I11

by x; ® @(y)=@(y)x; forj=1,2, ..., m. We can obviously assume that {x; ®¢;}/_
is a linearly independent subset of ,9’(3( ); then there exist linearly independent vec-
tors zy, 2y, ..., Z,,€ & such that ¢; (z;) # 0 for all j=1,2,..,m, and & can be
written as the algebraic direct sum of the finite dimensional subspace %', generated
by {xy, X, .., X3 Z1, 29 ..., Zu} and a subspace &, < ﬁ Ker ¢;, so that 4|%, is
a finite dimensional operator and A|%,; = 0. Let & = % + 25 be a second de-
composition of & with dim &, = dim Z,; then there exists an invertible operator

We Z(X) of the form I + Y, w; ® ¥, such that W(%,) = &, and W {Z,n %5 is
=1

the identity on this subspace. Thus, by using Lemma 2.2 (i), it is easily seen than
in order to prove Theorem 1.1 it will be enough to consider the case of a Hilbert
space C? for some d < oo. Furthermore, by Corollary 2.5 we can restrict ourselves
to nilpotent operators in #(C¢). This is the content of the following
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PRrOPOSITION 3.1. Let T e A (C¥) be a nilpotent operator of order k; then
F(T)~ = {de L(C9): rank A/<rank TV for j=1,2,...,k}.

If T and L are nilpotents, then T # L if and only if rank TV = rank L’ for all j
if and only if T ~ L.

Proof. The second statement follows immediately from the first one.

Let A€ %(T)~; then, by Corollary 2.4, A7¢ #(T%)" and rank A/<rank 7’
for j=1,2,..., k.

Conversely, assume that rank 4/ <rank 77 for j=1,2,... k.

Clearly, we can directly assume that both T and A are Jordan forms; i.e.,

T= q,,l(fl) @ 4,,2('52) ®D... GB‘],,,((TI()
and
A=gq, ()Dg

5y g

(aZ) @ oo @ th (ah)’ (Tj’ a; > ])

Put m(T, A) =d+ Y, (rank T-rank 4) and proceed by induction on
j=1
m(T, A). The case m(T, A) = 1 is trivial. Suppose ‘that A, e £(T)~ if m(Ty, A})<n
and let 4, Te #/(C*) such that

rank A/ <rank 7 for j=1,2,3, ...
and
m(T, A)=n-+ 1.

If T and A have a common Jordan block g¢,, then T=¢, ® T}, A =q, ® Ay,
m(Ty, 4,) £ n, and by induction 4 e#(T)". If T and A have no common Jordan
block and if / =2 1 is minimal such that m, < n, then T is of the form

T=gq @an@)T'

”1_1
where n, = 0 and g, acts on a {0}-space, if / = 1. Note now that we have
rank 4" < rank 7" when n;_; +1 2 r = m,— 1.

Indeed, if rank A" = rank 77 and if a, (resp. ¢,) denote the number of Jordan blocks
of A (resp. T) with order of nilpotence greater than or equal to r, then obviously
a, > t, and this- yields the contradiction

rank A"~ = a, + rank A" > t, + rank 7" = rank 771,

Finally, setting T, = ¢

w_y 1 @qnl_‘ @ T, we can check that

rank A/ < rank Ty for j=1,2,3, ...
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and

m(T,, A) < n;

consequently 4e€¥(T)". To conclude the proof we observe that T, € F(T)~ by
(31if /=1 or by Lemma 2.1 if /> 1.

COROLLARY 3.2. (N n F(X) ] #, <) is a lattice.

Proof. Consider first the case when & = C% for some d < co. Let 4 =
= (%y, %o, -.., %) and B = (B, Ba, ..., B (o > 0, B, > 0) be two Jordan forms in
Z(C%). Define r; = max {rank 4/, rank B/} forj =0, 1, ..., m with m = max {k, I}.
Lety; =rj_y—2r;+ rjoy forj=1,2,...,m. Theny; > rank A/~1—2 rank 4/ +
+ rank A7*!or v; > rank B/~ —2 rank B/ 4 rank B/*1. But rank 4/ = i1
4+ 2045+ ... + (k —j)o, implies that rankA4/~!—2 rank 4’ + rank 47+ = g
for j=1,2,.., k. Therefore, y; = 0 for j=1,2,...,m. Let S= (Y, Yo -o» Yu)-

Then rank §/ = v;.1+ 2Yj4p + ... + (m — j)y,,=r; for j = 0,1, ..., m. Therefore,
rank S/ = max {rank 4/, rank B/} for j=0,1,..,m. In particular, SeZL(C%.
From Proposition 3.1 it follows that [4] v [B] = [S).

The set of elements [R] such that [R] < [4] and [R] < [B] is a finite set [R],
[R,], ..., [R,]. From the proof about the supremum, there exists R in.#(C“) such that
rank R/= max {rank Rl: i=1,2,..,p}. From Proposition 3.1 it follows that
{4] A [B]=[R].

This completes the proof of the corollary when & is finite dimensional. Now
the general case follows from the observations at the beginning of this section.

4. COMPACT NILPOTENT OPERATORS
IN HILBERT SPACES

Let T be a compact nilpotent of order k and let A€ (7). By Corollary 2.4,
A is a compact nilpotent such that

(4.1) dim (47#)" < dim (TV#)"

forall j=1,2,.., k.

Now assume that 4 is a compact nilpotent satisfying (4.1). Since dim (T5£)™ <
< Npand dim (45#)” £ N,, there exists an infinite dimensional separable subspace
H# , reducing both T and A such that T |#5 = A [ = 0, so that we can directly
assume that # itself is separable.

Either dim (7%~ #)~ = N, or there exists an 5,1 < s < k, such that dim
(T'#)y =, forj=0,1, ..., s—I and rank 77 < oo!for j=s, s+1, ..., k—1 (T*"1#£0
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by hypothesis). It is a standard fact that 7T can be written as an upper triangular
matrix with zero diagonal entries

0 1ty --v - Lo i - 1
0 log ++v oo ton ts,
0 ... .. tsn-1 t3m
4.2) T=
0 tn—l.n
0
A

with respect to some suitably chosen orthonormal basis {e,}3*, of #.

Let P, be the orthogonal projection of # onto %, = v {e}, e;,...,,} (n =
=1,2,..) and let Q, be similarly defined with T replaced by A.

Since T, Ae A, it readily follows that |P,77P,— T/|| - 0 (n — oo) and
10, 47Q,— A/|| = 0(n — co) for every j. Since .#, is invariant under 7, we have
(P, TP,))) = P,T/P, and rank (P,TP,) = dim (TV )™ for all j (and similarly for
0,A0,). 1tis clear that P,7P, and Q,40Q, are finite rank nilpotent operators
for every n and, moreover, that rank (P,7P,) = rank 7/ and rank (Q,40,)/ =
=rank A4’ for j=s, s+1, ..., k, for all n = ny. Furthermore, rank (P,TP,)’ - co(n— co)
for j=1,2,..,s— 1.

Hence, for a given m, there exists n, = n, such that rank(Q, 4 0,) =<
Srank (P,7P) for j=1,2,..,k and for » 2 n,. Thus, by Proposition 3.1,
0,40, € S(P,TP) for all n = n,.

Let
( 2)
0 T

be the matrix of T with respect to the decomposition # = #, @ 4+ It follows by
standard arguments (see, e.g., refs. [2; 3; 7)) that P,TP, = T, @ 0c #(T)". Hence
0,40, L(T) for all m=1,2,..., and, a fortiori, 4 € #(T)".

The proof of Theorem 1.2 is complete now.

Let T be an arbitrary nilpotent of order k£ with upper triangular matrix (4.2).
Then {P,T7P,}32, is a sequence of finite rank nilpotents converging strongly to
TV, j=1,2,.., k. Minor modifications of the above proof yield the following

COROLLARY 4.1, Let Te N\ AN _y and assume that dim (T'#)" is finite for
J=s85+1,..,k butnot forj=0,1,..,5s —1. Then #(T)" contains every compact
nilpotent operator A satisfying the conditions (4.1).

3 - ¢c. 1056
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By reducing the algebraic case to the nilpotent case, we obtain

COROLLARY 4.2. Let T be an algebraic operator in a Hilbert space 3# of infinite
dimension h, with minimal monic polynomial p and assume that py(T)e A for some
polynomial py with simple roots; then (T) is the set of all A € L(H) such that A(A)=
=A(T), pe(A) € A, dim (g(A)#)” < dim (g(T)H#)" for all q/p} and the spectral sub-
spaces corresponding to T and A associated with every point of the spectrum have
the same dimension.

If po(T) ¢ & then there exists an operator L # T such that L is not similar to T.

Proof. The characterization of #(T)” follows from Theorem 1.2 and Corollary
2.5. The details are left to the reader.

It follows, in particular, that L # T if and only if A(L) = A(T), po(L)e X
and dim (g(L)»#)" = dim (¢(T)5#)~ for all g|p.

Assume that po(T) ¢ #; then it is not difficult to construct, by using the
results of ref. [9], an operator L satisfying all our requirements such that py(L)
and po(T) do not belong to the same not closed bilateral subideals of #". Since 4 ~ T
implies po(4) ~ po(T), it readily follows that L and T cannot be similar.

REMaRK. The complete description of &(T)~ for an arbitrary T e A (#) will
be given in ref. [1]. The analogous problem for an arbitrary Banach space is
much more difficult, as the following example shows:’

EXaMPLE 5.1. Let Z =11 I @ I3, leth(O 0)®0and A:O(-B(O 0},
: F 0 G 0

where Fe, = f, and Gf, = g, ({e.}, {f.}, {g.} the canonical bases of /', I2, I3,
resp.). Then AX = XT an YA = TY, where Xe, = f,, Xf, = g, and Xg, = (1/n)e,,
and Ye, = g,, Yf,= (1/n)e, and Yg, = (1/n)f,. whence it readily follows that A4 and
T are quasi-similar operators in the sense of B. Sz.-Nagy and C. Foias [10]; fur-
thermore, 4 and T are algebraic operators with minimal monic polynomial p(z) = z2.
However, A ¢ #(T)" and T ¢%(4)".

Proof. Let W be an invertible element of £(Z). Since every continuous linear
map K:1” » [2with 1 £ g < p £ ocois necessarily compact [6], the matrices of
W and W™ must have the form

Wll Wl2 Wl3 Sll SIZ Sl3
W= Wy W Wu|s W' =[Sy Su Sul|’
Wa Wi Wy Su S;p S
where Wy, Spp: 12 > 1Y, Wiy, Syt 12 — 1t and Wi, Sps: I* — [2 are compact. Then
0 0 0 * * * ‘
fl4—WTW1=|lo o o]—|* * * “l_ >
0 G o \* w,Fs, *

2 ||G— Wy FSif 21,
because W,, FSy, is compact. Hence, dist [4, ¥(T)] =1 and, similarly, dist
[T, #(A)] = 1.
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