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OPERATOR SYSTEMS AND THEIR APPLICATION
TO THE TOMITA-TAKESAKI THEORY

S. L. WORONOWICZ

0. INTRODUCTION

Let M be a von Neumann algebra and M, be the predual of M.

Already in the elementary theory of von Neumann algebras one meets many
natural operations involving elements of M and M,. The best known example is
the multiplication of normal functionals by elements of the algebra: M X M, >
> (A4, a) - Aue M, (for details see [3]). Another example is provided by the polar
decomposition of normal functionals. Denoting by phase « the unitary appearing
in the polar decomposition of « € M, we introduce a natural mapping phase: M,— M.

We shall prove in this paper that the basic operations investigated in the
Tomita-Takesaki theory such as the action of the modular groups and the Radon-
Nikodym derivatives can be expressed by the elementary mappings mentioned
above. To this end we consider the similar problem in the purely algebraic setting
where the faithful states are replaced by selfadjoint positive nondegenerate operators.

Let {4,}zc4 be a family of selfadjoint, positive nondegenerate operators acting
on a Hilbert space H. We consider the following two families of mappings:

©.1) B(H)> A — A'AA;* e B(H),
where o, fe A; te€R and
0.2) B(H)> A — Phase{4(ad, + b4y} € B(H),

where a, b are complex numbers with positive real parts; Phase X denotes the unitary
factor appearing in the polar decomposition of X and the addition of operators
(denoted by ) is understood in the sense explained in ([4], Ch VI, 2.5). The mappings
(0, 1) are typical for the Tomita-Takesaki theory, where as (0, 2) are closely related
to the elementary operations involving elements of M and M, described in the be-
gining.
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The main result of this paper asserts that the families (0,1) and (0,2) are connect-
ed: each mapping belonging to the first family can be expressed by mappings of the
second family and vice versa.

To make this statement precise we consider systems of the form S=(M, {4,}se 1)
where M is a von Neumann algebra and {4,},e 4 is a family of selfadjoint, positive
nondegenerate operators. Various properties of systems are the subject of our interest.
For example S is called a modular system if M is invariant under the mappings
(0, 1). Two modular systems S = (M, {4,},e 1) and 'S = (M, {'4,},c ) are called
equivalent if the mappings (0, 1) restricted to M remain unchanged when one replaces
A by 'A. Similarly the family of mappings (0,2) gives rise to the notion of a phase
system.

It turns out that a system S is a modular system if and only if it is a phase
system and then S is called an operator system. Moreover two operator systems S
and S’ are equivalent as modular system if and only if they are equivalent as phase
systems (and then S and S’ are called equivalent operator systems).

These statements, although of a very technical nature seem to be very profound
{even more profound than the Tomita-Takesaki theory itself).

Applied to the Tomita-Takesaki theory they make the main results of this
theory almost evident. By the way we gain the better (deeper) understanding of the
foundations of the theory. For example we start to distinguish the properties of the
modular operator relevant for the theory from those which are accidental and related
to the particular definition of the modular operator.

Let us shortly describe the contents of the paper. In the first section we collect
some definitions and results, which are indispensable for our theory, partly for the
teader’s convenience, partly in order to fix the notation. Some statements are proved,
the others can be found in the book of Kato [4] (unless an explicite reference is
given).

In Section 2 we introduce the fundamental concepts of the theory of operator
systems and formulate the main results. Considering so called canonical phase
systems associated with von Neumann algebras we are able to include the large
part of Tomita-Takesaki theory into the operator system framework.

Section 3 is devoted to the theory of operator functions which constitutes
the main tool of our investigations. The special attention is paid to homogeneous
operator functions. We prove that any regular modular system is a phase system
{(and that equivalent modular systems are equivalent as phase systems).

In the next section we prove the converse, i.e. that any phase system is a modu-
lar system (and that equivalent phase systems are equivalent as modular systems).
‘We use the differential calculus ideas (Gateau derivative) in order to relate nonlinear
mappings of the form (0,2) to the linear maps (0,1).

In section 5 we show that for any von Neumann algebra a canonical phase
system exists. For semifinite algebras this fact is almost obvious; for purely infinite
algebras we give the explicite construction of a canonical phase system.Once the
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existence of a canonical phase system is proved, the fundamental concepts of the
Tomita-Takesaki theory such as modular automorphism groups and Radon-Niko-
dym derivatives can be easily introduced.

In the last section we introduce the notion of a crossed product algebra asso-
ciated with any modular system. For modular systems (M, A) with one operator 4
this algebra coincides with W*(M,{r,},cr) introduced by Takesaki [10]. We prove
that M coincides with the set of elements invariant under the action of the scaling
group and that equivalent modular systems give rise to the isomorphic crossed
product algebras.

Some technical details are collected in Appendices. Appendix I contains some
informations on the interpolation theory; in Appendix II we give examples of ope-
rator functions.

1. PRELIMINARIES

In this section we collect some definitions and statements which will be used
in this paper. By the way we fix the notation.

Let H be a Hilbert space. The set of all closed operators acting on H will
be denoted by ¥(H). For any A € ¥(H), D(A) denotes the domain of 4. An operator
A € ¥(H) is said to be nondegenerate if the kernel of A is trivial (i.e.: x € D(4) and
Ax = 0 imply x = 0) and the image of A is dense in H. The algebra of all bounded
operators acting on H will be denoted by B(H). An operator B B(H) is said to be
invertible if BC = CB = I (I denotes the unit of B(H)) for some Ce B(H). Let
A € ¥(H) be nondegenerate and B € B(H) be invertible. Then AB and B4 are closed
and nondegenerate.

Any nondegenerate A € €(H) admits the following polar decomposition

A4 =UK

where U is unitary and K is selfadjoint positive. The pair (U,K) is determined uni-

L
quely by A:K = (4*A)*; U = the closure of AK™1. In what follows, the unitary
factor in the polar decomposition of a nondegenerate operator 4 € ¢(H) will be
denoted by PhaseA:

1
Phase 4 = the closure of A(4*A4) Z.

Let C, denote the subset of the complex plane consisting of 0 and all numbers
with positive real part:

Ci={zeC:z=0 or Rez > 0}.
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Convex closed subsets of C invariant under the multiplication by positive numbers
and contained in C, will be called sectors. An operator A € ¥(H) is said to be sectorial
if there exists a sector S such that

(x|4x)e S

for all x € D(4). The smallest sector S satisfying the above relation will be denoted
by Sector4. A is called m-sectorial (maximal sectorial) if there is no proper sectorial
extension of A i.e. if any sectorial operator B > A coincides with 4. It turns out
that for any sectorial operator A the following three conditions are equivalent:

1° A is m-sectorial,

(L.1) 2° (SpectrumA) U (Sectord) # C,
3° (SpectrumA) < (SectorA).

Let ¢ be a sesquilinear form defined on a dense subset D(¢) of H. ¢ is called
sectorial if there exists a sector S such that

o(x,x)e S

for all x € D(p). If ¢ is sectorial then we consider a new norm ||x|l, = (|}x]J* +

1
+ Re ¢(x, x))* defined on D(¢). ¢ is called closed if D(¢) is complete with respect
to || |l,. @ is called closable if it can be extended to a closed sectorial form. The

smallest closed extension of ¢ is called the closure of . We say that a linear subset
D <« D(p) is a core of a closable sectorial form ¢ if ¢ and the restriction of ¢
to D have the same closure.

There exists an 1 — 1 correspondence between closed sectorial forms and
m-sectorial operators. This correspondence is established by the following formula:

(1.2) o(x, y) = (x|4y)

More precisely, for a given m-sectorial operator 4 we consider the sesquilinear form
defined on D(4) introduced by the right hand side of (1.2). It turns out that this form is
sectorial, closable and its closure ¢ is the closed sectorial form associated with A.
Conversely, for a given closed sectorial form ¢ we consider the set D(A4) of all vectors
y € D(¢) such that the left hand side of (1.2) is continuous functional of x. Then for any
vector y € D(A) there exists unique Ay € H such that (1.2) holds for all x € D(p).
It turns out that the operator A4 introduced in this way is closed, densely defined and
m-sectorial.

If 4 is a positive selfadjoint operator, then the domain of the sectorial form ¢

1 1
associated with A coincides with D(4%). Moreover a linear subset DcD (4%) is a

1
core of ¢ if and only if D is a core of 4*.
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Let A, and 4, be two m-sectorial operators acting on H. We denote by ¢,
and @, the corresponding closed sectorial forms. If D(p,) n D(¢,) is dense in H
then we may consider @, + @, as a sectorial form defined on D(¢, + ¢,) = D(@y) 0
N D(g,). It turns out that ¢, -+ @, is automaticaly closed and therefore it is asso-
ciated with some m-sectorial operator 4. We write

(1.3) A=A, I A

The addition of m-sectorial operators introduced in this way has many pathological
properties. For example if D(¢,) n D(@,) is not a core of @y, then for ¢ ~ 0, A, +- €4,
does not converge to 4, in any reasonable sense (of. [5]).

This unexpected and unpleasant feature of the operation (1.3) can be removed
if one assumes that D(¢p,) n D(¢p,) is a core for ¢, and ¢, and only in this case we
shall use the notation (1.3).

In particular we have

(1.4) slim (4, 4 edy)t = Al

&0

for any teR and any two selfadjoint positive nondegenerate operators 4, and 4,
1 1
such that 4¢ and A¢ have a common core.

To prove (1.4) we set 4, = Ay -+ e4,. Then according to ([4], Ch. VIII, §3,
Theorem 3.6):

s-lim (I + 4)7 = (I + 4,7

£-0
Now, using ([8], Ch. I, Proposition 2.3.2) one can prove

s-lim (log 4, — A = (log Ay — ALY

20

for any 4 € C such that Im A # 0 and (1.4) follows immediately from ([4], Ch. IX,
§ 2, Theorem 2.16).

Let A4 be a nondegenerate m-sectorial operator acting on H. In [12] we proved
that

(1.5) Spectrum (Phase 4) < Sector A.

We shall use this result to prove the following interesting proposition revealing diffe-
rential properties of the Phase mapping.

PRrOPOSITION 1.1. Let 4 and A, be positive selfadjoint operators acting on a
Hilbert space H. Assume that A, < NA (where N € R.) and that A is nondegenerate.
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Then
1° There exists the weak limit
{1.6) w-lim fl.4 {Phase (4 4 ied,) — I} = Q.
£-0 1€

€ real

The operator Q is selfadjoint and ||Q|] < N/2.
2° For any x, y € D(A) we have
.04
L7 (4y10x) + (¥|Q4x) = (47 yl45 x).

The operator Q € B(H) is determined uniquely by (1.7).

1
Proof. Tt follows directly from the estimate 4, < NA that T — AZ(4--I)~ ¥
is a bounded operator defined on the whole H. For any ¢ € R, £ # 0 we set

(1.8) W, =4 1 ied,,

(1.9) Q.= 21 [(Phase W) — I1.

1€

‘One can easily check that / + W, is invertible and

(.10 T+ Wo = A+ 72 Ty a + )7

1t is clear that ¥, is maximal sectorial and that
Sector W, < {zeC:0 < Im z £ NeRez}.
‘Therefore, according to (1.5)

[[(Phase W) — I|| £ Ne
and

(L1D) lg.ll = N2

We have to show that Q, is weakly convergent as ¢ — 0. We know that any

closed ball in B(H) is weakly compact. Therefore (cf. (1.11)) it is sufficient to show
that @, has at most one accumulation point as ¢ — 0.
In virtue of (1.9)

(1.12) Phase W, = I + 2ic0Q,.

Therefore (I + 2ieQ,)*W, is selfadjoint positive and for any x, € D(W,) we have

Im((7 + 2ieQ,)x.|W,x,) = 0
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and, after a simple computation

1.
(Qexel Wexc) -+ (Wexs| stc) = Im(xe’ Wr.xe)'
&
Now, using (1.8) we get

1 1
(113) (Qc x£| stc) + (We xles xc) = (AlzxslAizxs)

for any x, € D(W,). We put x, = (I + W)™ yand x = (I + 4)7y. Invirtue of (1.10)
1 1
X, > x, Af x, > Aix and W.x,=y —x, >y — x = Ax as ¢ — 0. Therefore,

denoting by Q an accumulation point of Q, (when ¢ — 0) and using (1.13) we obtain

(Ox]4x) + (4x|Qx) = (A%{xlA%lx)

for any x € D(4). To obtain (1.7) we use the polarisation formula and note that
O* = Q. This fact follows easily from (1.12) since Phase W, is unitary.
This way we proved that any accumulation point Q of Q, (when ¢ — 0) satisfies
(1.7). To conclude the proof we have to show that (1.7) determines Q uniquely.
Assume that we have two operators Q and Q' satisfying (1.7). Then denoting
by R their difference we have

(4yIRx) + (y|R4x) = 0

for all x, y € D(4). Since 4* = A, we get Rx € D(4) and ARx=—RAx for all x € D(4).
In other words —AR o> RA. Now, using the interpolation theory (see Appendix 1,
Cor A3) weget R=0and Q = Q'. Q.E.D.

REeEMARK. Using the Van Daele method [2] one can find the following explicite
expression for the operator Q satisfying (1.7):

0 =— dt

2

4

1 + oo Ait C’A —it
S_oo chnt

where Ce B(H) is introduced by

1 1 11 1
(47y|CA* x) = (47 y|4ix), x,yeD(>).

We shall not use this expression.
For any A € ¥(H) we set

1.14) Q, = A(4*A4 +1)""5.
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One can easily check that O, is a bounded operator and that A is uniquely determined

EY
by Q,: the domain D(4) coincides with the range of (I — Q%Q,)* and

(1.15) A= 0,0~ Q50)7%.
In other words, for any x, y € H:

(1.16) (xeD(4) and y = Ax) <> (there exists ze€ H such that x == (/— Q% QA)%Z
and y = Q,2).
Let M be a von Neumann algebra contained in B(H) and 4 € ¥(H). We say
that A is affiliated to M if Q, € M. Then we write AnM. This is the case if and only
if U*AU = A for any unitary Ue M.
Let M be a von Neumann algebra and ¢ be an automorphism of M. We extend
the action of ¢ onto elements affiliated to M denoting by a(A) the unique operator
such that

(1.17) Qo) = 0(Q,4)-

In Section 3 we shall use the direct integrals of measurable fields of closed
operators. We refer to ([3], Ch. II) for the theory of the direct integral decomposition
(see also [6]). Since only measurable fields of bounded operators are considered in
these references, we have to say what we understand by the direct integral of a mea-
surable field of closed operators.

Let (A, p) be a measure space and (H(%));c4 be a measurable field of Hilbert
spaces. We say that a field of closed operators

(1.18) A3 24— Ay e C(H(A)

is measurable if

(1.19) A3 - Qau e B(H(A))

is a measurable field of bounded operators. In this case there exists the unique closed

®
operator A €€ ( S H(l)dy().)) such that

A 7

®
(1.20) @:ngww.
A

The operator A is called the direct integral of the field (1.18) and denoted by

©]
S AN)du(d).

A
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®
Let x,yes H(2)dp(d). Using (1.16) one can easily show that x €
A

@ @
€ D(S A(A)du(/l)) and y :S A(M)du(D)x if and only if x(4) € D(A(4)) and
A A
Y(4) = A(LD)x(A) for p-almost all A.

In particular this fact shows that for bounded fields of bounded operators,
the direct integral introduced by (1.20) coincides with that considered in ([3], Ch. II).

2. BASIC DEFINITIONS AND RESULTS

The main objects investigated in this paper will be called systems. Each sysrem
S consists of a von Neumann algebra M of operators acting on a Hilbert space H
and a family {4,},c 4 of positive selfadjoint operators acting on the same Hilbert
space H:.
S = (M, {4.}ae ).

We shall always assume that the operators A4, are nondegenerate and that thef
index set A is not empty.

DEFINITION 2.1. We say that S == (M, {4,}.c 1) is a modular system if
@.1) A AAzte M

for any o, fe A, Ae M and teR.
Two modular systems S=(M, {4,},e4) and S’ = (M, {4;},e ) with the same
von Neumann algebra M and the same index set A are said to be eguivalent if

.2 ALAA; " = A4 AT
forany a,fe A, Aec M and t €R.

Assume that S=(M, {4,},c 4) is a modular system. Then for any e 4, te R
and 4 € M we have 4¥44;" € M. Therefore the formula

2.3) 0% (A) = At4ACH

introduces a family {67}, 4 of one parameter groups of automorphisms of M. These
groups are called modular groups of the modular system S.

Moreover, for any o, f € A and any € R we have Ai,'Aﬁ““ € M. Therefore to
every pair of indices (x, ) € A% we associated a one parameter family unitary elements
of M. This family will be denoted by {(«:f),}ier :

(2.9) (@:f), = ALA; ™.
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One can easily check by direct computation that for any modular system,
the quantities introduced above satisfy the following relations

2.5) oi(A) = (a: B), af(A)(: B)*
2.6 (o), =1

@7 (@:8) (B:y)e = (2:7):
(2.8) (@:B)e+e = (@:B), o ((:B)d)

for any a, f, ye A; t, 7€ Rand 4 € M. The relation (2.5) shows that any two modu-
lar groups are related by inner automorphisms. The relations (2.6) and (2.7) justify
the notation (2.4). (2.8) is the well known cochain relation (cf. [1]). Following A.
Connes we call {(«:8),}:cr the Radon-Nikodym derivatives of the system S.

The second basic notion considered in this paper is that of a phase system.

It plays an essential role in our approach to the Tomita-Takesaki theory. To introduce

this notion we have to restrict ourselves to regular systems: A system (M,{4,},c 1)
1 1

is said to be regulariff forany «, f € A the operators 4 and 45 have a common core.

DEFINITION 2.2. We say that a regular system S = (M, {4,},e ) is a phase
system if

(2.9) Phase [A(ad, + bdg)le M

for any o, fe A, a,beC,, a+ b # 0, and any invertible 4 € M.

Two phase systems S = (M, {4,},c 4) and S" = (M, {4.},e 4) With the same
von Neumann algebra M and the same index set A are said to be equivalent if
(2.10) Phase [4(ad, | b4,)] = Phase [A(ad; + bA'))]
for any o, fe A; a,be Cy, a+ b # 0, and any invertible operator 4 € M.

REMARK. We consider only invertible operators 4 and exclude the case
a = b =0 in order to have operators A(ad, -+ b4;) automaticly closed and non-
degenerate.

The main results of the paper are contained in the following two theorems.

THEOREM 2.3. Let S = (M, {4,},c ) be a regular system. Then the following
two conditions are equivalent :

Ia. S is @ modular system.
1is. S is a phase system.

This result shows that the notions of a modular system and a phase system
coincide. We say that S is an operator system if one of the above conditions is satis-
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fied. We shall also in the future use terms “modular’ and ““phase™ in order to stress
the particular properties of operator systems described in the Definitions 2.1 and 2.2.

THEOREM 2.4. Let S=(M,{4,},c 1) and S' = (M, {4’} 1) be regular operator
systems with the same von Neumann algebra and the same index set A. Then the follow-
ing two conditions are equivalent :

Ig. S and S’ are equivalent as modular systems.
Ig. S and S’ are equivalent as phase systems.

This theorem allows us to introduce the equivalence relation for operator
systems. Two operator systems S and S’ are called equivalent if one of the above
conditions is satisfied.

For the moment the main application of the theory of operator systems is
that to the Tomita-Takesaki theory. To present it we have to remind some natural
operations involving normal functionals and elements of the von Neumann algebras.
For simplicity we assume that the underlying Hilbert spaces of the von Neumann
algebras, we deal with, are separable.

Let M be a von Neumann algebra. We denote by M, the predual of M: M,
is the set of all normal (i.e. o-weakly continuous) linear functionals on M endowed
with the well known Banach space structure. The set of all normal positive functionals
will be denoted by M.

Let Ae M and o € M. For any Be M we put (cf. [3], Ch. 1, § 4)

(4%) (B) = w(BA) and (x4) (B) = a(AB).

Clearly Aa, a4 € M. The multiplication of normal functionals by elements of the
algebra introduced in this way plays an important role in our approach to the To-
mita-Takesaki theory.

Let o € M,.. The smallest projection FE € M such that Ex = « is called the left
support of o. Similarly one introduces the right support of a. a is called nondegene-
rate iff the left and the right supports of « are equal to J. For example a state is non-
degenerate iff it is faithful.

We shall use the following result ([3], Ch. I, § 4): for any nondegenerate
o€ M, there exists an unitary operator Ue€ M and a functional w € M such that

(2.11) o = Uw.

The pair (U, ) is determined uniquely by a. t

(2.11) is called the polar decomposition of the functional «; the unitary factor
of the polar decomposition (2.11) will be denoted by phase a.

The polar decomposition of normal functionals is in some sense isomorphic
to the same operation for operators. This sense is made precise in the following
definition.
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DEFINITION 2.5. Let M be a von Neumann algebra. A regular system
{M, {4,},¢ 4) is called a canonical phase system associated with M if:

1° The index set A is the set of all positive normal faithful functionals on M.
(2.12)

2° Phase{A(ad, - b4,)} = phase{A(ax + bp)}

foralla,beC,, a+ b # 0, a, f € A and all invertible elements 4 € M.

It is clear that any canonical phase system is a phase system in the sense of
Definition 2.2. Moreover any two canonical phase systems associated with the same
von Neumann algebra are equivalent as phase systems.

According to the results formulated above the canonical phase system is also
a modular system. Therefore one may use formula (2.3) and (2.4) in order to intro-
duce the modular group associated with a given faithful normal state and the Ra-
don-Nikodym derivative of two faithful states. Since all canonical phase systems
associated with a given von Neumann algebra are equivalent, the left hand sides
of (2.3) and (2.4) are independent of the particular canonical phase system used.

Clearly all what has been said above applies only to these von Neumann alge-
bras for which the canonical phase system exists. It turns out that this assumption
is in no case restrictive.

THEOREM 2.6. Let M be a von Neumann algebra, H be the underlying Hilbert
space and A be the set of all positive normal faithful functionals on M. We assume that
H is separable. Then there exists a family {4,},e 4 of selfadjoint positive nondegenerate
operators acting on H such that (M,{4,},e 1) is a canonical phase system.

The proofs of the theorems stated in this section will be given in the forth-
coming sections: Thm. 2.3 and 2.4 in Sec. 3 and Sec. 4; Thm. 2.6 in Sec. 5. In the
last section we remind the Takesaki notion of crossed product which seems to be
related to operator systems in a very natural way.

3. HOMOGENEOUS OPERATOR FUNCTIONS

In [11] we investigated an operator of the form

1

(3.1) F(4, 4) = ((4 o A%)* (Ao 4 3‘))'5‘ oA

where 4 is a positive selfadjoint, nondegenerate operator acting on a Hilbert space H,

1
A e B(H)is such that 442 is closable and XoY denotes the closure of XY. We proved
that

(3.2) F(4, 4) € W*({4" A4~ : 1 R}).
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It turns out that the essential property of the operator function F which implies (3.2)
is that of the homogeneity (of degree 0) with respect to the second variable: F(4, 14)=
= F(A, 4) for any positive number A. In this section we generalize this result for
operator functions of many operator variables, homogeneous with respect to a group
of the variables.

At first we have to explain what we understand by an operator function.
Intuitively an operator function F of N variables is a kind of instruction saying what
one has to do with any given sequence (4,, 4,, ..., Ay) of closed operators acting
on a Hilbert space in order to obtain another closed operator F(4;, 4,, ..., 4y)
acting on the same Hilbert space.

Such an instruction should not be related to any particular Hilbert space.
It should be applicable to N-element sequences of closed operators acting on any
other Hilbert space H giving as the result a closed operator acting on H.

On the other hand for a given Hilbert space H, the instruction need not be
applicable to all sequences (4,, A,, . .., Ay) € €¥(H)V. The set of all sequences belong-
ing to ¥(H)Y for which the instructionis meaningful will be denoted by Dg(H).
For example, if F is introduced by (3.1), then Dy(H) consists of all pairs (4, 4),

1
where 4 is a positive selfadjoint operator acting on H and 4 € ¥(H) such that A4*
is closable and densely defined.

To conclude our analysis of the concept of an operator function we have to
say what kind of instructions we are going to consider. For example we could set a
list of “elementary orders” and say that any instruction should be composed of
these orders. Instead we prefer another, more ‘‘axiomatic” approach. Briefly speak-
ing we accept only these instructions which do not destroy the Hilbert space sym-
metry and are compatible with direct integral decomposition.

DeriNITION 3.1. Assume that for any Hilbert space H we have a distinguished
subset Dp(H) « ¥(H)Y and a mapping
F: Dy(H) - ¢(H).

We say that F is an operator function of N variables if the following two conditions
are satisfied:

1° For any umitary map U : H— K and any (A4,, 4, ..., Ay) € De(H) we
have

(UA,U*, UAU*, ..., UAyU*) e Dy (K)

and

(3.3) FUAU*, UAU*, ..., UAyU*) = UF(4,, A,, ..., Ay) U*.
N
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2° For any measure space (A4, p), any measurable field of Hilbert spaées H(Y)
and any N measurable fields of closed operators 4,(A) e ¥(HA) n= 1,2, ..., N)
we have

( Se A(3) d(h), S® A(3) du(i), ..., S@ Ay(h) du(z)) e D, ( S@ H() du(/l))

A A A A

if and only if
(A4:(D), Ao(), . .., Ax(A)) € D(H(2))

for p-almost all A € A. Moreover in this case

F( S® A1) duh), S® As) du(A), +..., S® Ay(h) duu)) -

A A A
- S® F(ALR), A3D), . ... Ax() du(d).
A

REMARK 1. It follows immediately from (3.3) that F(A4,, 4,, ..., Ay) commutes
with any unitary operator commuting with all 4, (n = 1,2, ..., N). Therefore
F(Ay, A,, ..., Ay) is affiliated to the von Neumann algebra generated by A4,, 4,, ...

. ey AN:
39 F(Ay, Az, «.., Ay) 1 WH(Ay, Ay, ..., 4y).

ReMARK 2. Look at the Section 1 for the meaning of the direct integral of a
measurable field of closed (unbounded) operators.

REMARK 3. One has to realize that Definition 3.1, although very natural, is very
restrictive. For example an operator function of one selfadjoint variable is comple-
tely determined by the values it takes on the real multiples of the identity I, € B(K),
where K is a one dimensional Hilbert space. This fact follows from the spectral
theory of selfadjoint operators (6], Ch. IX). The similar result holds for operator
functions of several strongly commuting normal variables.

REMARK 4. Examples of operator functions are given in Appendix B. Here
we only note that for any fixed ¢, b C, and N > 1
(3.5) Fn(A, Ay, 4,) = Phase [4(ad, + bA,)]
defined on the domain D (H) consisting of all (4, 4;, 4,) € ¥(H)® such that 4 is
bounded invertible, |[4]] £ N, |[4A7Y = N, 4, and 4, are positive selfadjoint,

1 1
D(4}) n D(43) is dense in H, and ad, + b4, is nondegenerate, is an operator func-
tion of three variables. ‘
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In this section we are particularly interested in operator functions of two groups
of variables homogeneous with respect to the second group of variables.

DerFINITION 3.2, Let F be an operator function of NP variables: 4,,..., Ay,
4,, ..., Ap. We say that F is homogeneous with respect to the last P variables if for

any Hilbert space H, any (4,, ..., Ay, 4y, . . ., 4p) € Dg(H) and any positive number
A > 0 we have

(Ay, - .., An, Ay, .. ., Adp) € De(H)
and

(3.6) F(Ayy + oy Any Adyy s Adp) = F(Ay, ..., A, 4y, ..., Ap).

The main result of this section is contained in the following theorem:

THEOREM 3.3. Let F be an operator function of N+ P variables, homogeneous
with respect to the group of the last P variables, H be a Hilbert space and (A,, . .., Ay,

Ay, ..., Ap)e D(H). We assume that all A (p = 1,2, ..., P) are positive selfadjoint
and nondegenerate. Then

(3'7) F(Ab "-aAN! Al: "'9A‘P)"1M9

where M is the von Neumann algebra generated by all A¥A, A7 and 45 47" (n=1, 2,

.o N;p=1,2,..., P;teR). Moreover, if As, ..., 4p is another sequence of posi-
tive selfadjoint nondegenerate operators acting on H such that

(3.9) A5 A, 47 = AF 4, A7
and
(39) A;,i’ Ai—it — Ag Al—it

foralln=1,2,...,N;p=1,2,...,P and te R, then

(3.10) (Ay, - .., Ay, 41, ..., Ap) € De(H)
and ‘
(3.11) F(Ay -y Ax, 43, .., Ap) = F(Ay, .., Ax, 44, .. ., 4p).

Before the proof let us notice that the operator function Fy(4, 4,, 4,) intro-
duced by (3.5) is homogeneous with respect to the last two variables. Applying
Theorem 3.3 to this particular function we get immediately the following

COROLLARY 3.4. Let (M, {4,} ¢ ) be a regular modular system. Then (M, {4}, ,)
is a phase system. If (M, {4}ze,) and (M, {4’} ,e ) are equivalent modular systems
then they are equivalent as phase systems.

In other words, condition I implies II in Theorem 2.3 and Theorem 2.4.
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Proof of Theorem 3.3. At first we note that (3.7) follows from the second part
of the theorem. Indeed if W is a unitary operator commuting with 4¥4,47" and
ACAT (n=1,2,...,N; p=1,2,...,P, te€R) then 4, = W*A,W and setting
A, = W#A,W (n and p as above) we get (3.8) and (3.9). Now, according to (3.11)
and (3.3) we have:

’

F(Ay, ..., Ay, Ay, ooy Ap) = F(Ayy ..., Ay, Ahy oy A) =
= W F(Ay, ..., Ay, Ay - ., Ap)W.

It shows that F(4,, ..., Ay, 44, ..., 4p) commutes with W and (3.7) follows.

To prove (3.10) and (3.11) we consider an auxiliary separable Hilbert space K
and a selfadjoint positive operator L acting on K. We assume that L has simple
(i.e. multiplicity free) spectrum and that the spectral measure of L is equivalent to
the Lebesque measure on R, . It is known that these requirements define the operator
L uniquely (up to uritary equivalence). In practice we set

(3.12) K = LX(R, dE)

and L equal to the multiplication operator:

(3.13) (LF)E) = e*f(E)

for fe L3R, d£). We shall also use another realization:
{(3.19) K = LR, ds)

and

(.15 L =¢e?,

where D is the generator of the translation group:
(3.16) (€"Pf)s) =fls — 1)

for fe L*R, ds) and ¢t € R. dF and ds denote the usual (translation invariant) Lebes-
gue measure on R. Clearly these two realisations are related by the Fourier trans-

formation.
We shall use the following two Lemmas:

LEMMA 3.5. Assume that the operators A,, ..., Ay, 44, ..., dp, 41, ..., dp
acting on H satisfy the relations (3.8) and (3.9). Then there exists a unitary operator U
acting on K ® H such that

(3.17) 1° Ul @ 4,)U* =1 ® 4,
(3.18) 2° UL ® 4,)U* =L ® 4,
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where n=1,2,...,N, p=1,2, ..., P, and
3° If UI ® B)U* =1 ® C, where B, C < 6(H), then B= C.

LEMMA 3.6. Let F be an operator function of N 4+ P variables homogeneous
with respect to the last P variables and A,, ..., Ay, A4, .., Ap € €(H). Then

(3.19) (A -y Aps 4y, ..., Ap) € Dp(H)
if and only if
(3.20) T®A, .., IRAy, L® A4y, ...,L ® 4p)c Di(K ® H).

Moreover in this case

3.2 FU@ Ay, ..., T @Ay, L ® 4y, ...,L ® 4p) =
=1Q® F(Ay, ..., Ay, 41, ..., 4p)
The proof of Theorem 3.3 is now almost trivial. Assume that 4,, ..., Ay, 44,

..., Ap, 41, ..., Ap satisfy the assumptions of the theorem. Then using Lemma
3.6 we get

@Ay, I@ A, L® 4y ..., L ® Ap) e Dy(K ® H).
Now, using Lemma 3.5 and the condition 1° of Definition 3.1 we see that
T® Ay, ..., TR AN, L@ A1, ..., L ® Ap)e DK ® H)

and applying again Lemma 3.6 we obtain (3.10). Moreover, using the basic pro-
perties of operator functions and taking into account formulae (3.17), (3.18) and
(3.21) we have

Ul ® F(Ay, ..., Ay, 44, ..., 4p))U* =
= UF(I®A1, I ® AL ® Ay, ..., L ® Ap)U* =
=FI® Ay, .. . I@ Ay, L® 44, ..., L ® A4p) =
=1® F(Ay, ..., Ay, 41, ..., 4dp).
Now, applying the statement 3° of Lemma 3.5 we get (3.11). Q.E.D.

We finish this section with the proofs of Lemma 3.5 and 3.6.

Proof of Lemma 3.5 We use the second realization of K and L (formulae (3.14),
(3.15) and (3.16)). In this case K ® H can be identified with the space LR, H) of
all square integrable functions of one real variable s with valuesin H. Let 4 € €(H),
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4 be a selfadjoint positive nondegenerate operator acting on H and ¢ € R. Then for
every fe LXR, H) we have

(3.22) (I @ Df)s) = Afs),
(3.23) (L @ 4)'f)(s) = 4" fis — 0).

The first formula is obvious, the second follows easily from (3.15) and (3.16).
Let U be the unitary operator acting on K @ H = LR, H) according to the
formula

(3.24) (UfX(s) = A7°A7* f(s)-
Now, using (3.22), for any operator A, satisfying (3.8) we obtain:
(UI @ A,)U¥)(s) = 41°47" (I ® A)UY)(s) =
= 41 47" A (UH)(5) = A7°AT™ 4,454775 f(s) = (I ® A))(s)
and 3.17) follows. Similarly, using (3.23) we calculate:
(UL ® 4)" U¥) (s5) = 447 (L ® 4,)* U*)(s) =
= AP ATE AF (UH) (s — 1) =
= 44T AY AFA]TIED fis — 1),

If 4, and 4, satisfy (3.9) then we may replace 4, and 4] by 4, and 4, respectively
and after trivial computation we get

(UL ® 4)' U)(s) =4, fs — 1) =

= (L ® 4% f)(s)
and (3.18) follows.
If Ul® BYU*=1® Cthen Ul ® B)= (I ® C)U and, using (3.22) and
(3.24) we get

45 477 Bfis) = CAPAT* f9)
for any fe LR, H). Therefore
A;isAI—isB — CA;isAl-is

for almost all s € R. Since both sides of the last formula are weakly continuous
with respect to s, the equality holds for all s € R. Setting s =0 we get B=C. Q.E.D.
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Proof of Lemma 3.6. Now it is convenient to assume that X and L are intro-
duced by (3.12) and (3.13). It is well known that the tensor product

Ko H=L1*R,dE)®@ H

®
can be identified with the direct integrals HAE of the constant field of Hilbert
R

spaces (at each point £< R we have the same Hilbert space H(E)= H). After this
identification

@
I®A,,:S A, dE,
R

®
L®A,,=S eF 4,dE.
R

Assume that (3.19) holds. Then according to Definition 3.2, (4, ..., Ay, €£4,,
..., efAp) e D(H) for all E<R and using the second condition of Definition 3.1
we get (3.20). Moreover in this case (cf. (3.6))

F(I®A1!"-,[®AN5L®A1)-"9L®AP)=

®
= S F(Ay, ..., Ay, €E4y, ..., eE4p) dE =
R

®
=S F(Ay, -+, Ay, Agy -+ vy Ap) dE =
R

=1® F(Ay, ..., Ay, 4, ..., 4p).

If conversely (3.20) holds, then according to the] second condition of
Definition 3.1, (4, ..., Ay, €4y, ..., e¥4,) € Dy(H) for almost all £ < R and using
again Definition 3.2 we get (3.19). Q.E.D.

4. PHASE SYSTEMS

This section is devoted to phase systems. We shall prove that any phase system
is a modular system and two equivalent phase systems are equivalent as modular
systems. In this context it is sufficient to consider systems containing at most two
operators 4. Indeed, modular systems are characterized by the set of relations (2.12),
each involving only two operators 4. It means that a system (M, {4,},¢ ) is modular iff
for all a, B € A, the systems (M, {4,, 4,}) are modular. Similarly, the equivalence of
two modular systems can be expressed in terms of their “subsystems’ containing
only two operators 4.



188 S. L. WORONOWICZ

This section can be divided into two parts. In the first part we investigate phase
systems containing only one operator 4. We prove that the operations A4 — A*A447%
characteristic to the modular systems can be expressed in terms of mapping 4 —
— Phase (44). In the second part we deal with systems containing two operators
4 and complete the proof of Theorems 2.3 and 2.4 of Section 2.

We shall start with the following two lemmas:

LemMMA 4.1. Let (M, A) be a phase system and M, be the linear span of
{Ae M: A-invertible and Phase(A4) =1}. Then
1° For any A e M, there exists one and only one operator Q € B(H) such that

(4.1) 40 5 (4 — Q) 4.

In what follows, this operator Q will be denoted by K ,A.
2° KqAe M, for any Ae M, and

Ky :My-> M,
is a linear map.
3° If (M, A) is a phase system equivalent to (M, A), then M, = M, and
K,=K,.
Proof. The uniqueness of Q follows immediately from the interpolation theory
(cf. Appendix A, Corollary A.3).

To show that Q exists, we may assume without loss of generality that A is
invertible and that Phase (44) = I. Then 4, = 44 is positive selfadjoint. According
to the interpolation theory (see Appendix A) there exists a bounded operator 4,

2

1 1
such that 4, = 44, 4® and we have the estimate 4, < N4, where N = |4, ||.
A moment of reflection shows that

(I + ied)d = A - ied,.

Now, using Proposition 1.1, we see that there exists the weak limit

@2) 0= lim ZL {Phase [([ + ied)d] — I}
=0 18
£ real

We shall prove that Q satisfies (4.1). To this end we note that D(4,) = D(4),

1 1
so Afx e D(4}) for any x € D(4). Therefore the equation (1.6) determining Q takes
the following form:

(4y10x) + (|1Q4x) = (y|4,x), x,y € D(4).
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Inserting here 4, = A4 we get
4yl0x) = (Yl(4 — OQ)4x), x,y e D(4).

It shows that Qxe D(4) and AQ0x = (4 — Q)Ax for every xe D(4), ie.(4.1)
follows.

If (M, 4) is a phase system and A € M, then in virtue of (4.2) Q0 € M. We know
that A4 = AA*. Using (4.1), we get 420 — A%) 5 (4 — 20Q)A. It means that
1(4—2Q)4 is symmetric. Therefore (cf. [4], Ch. V, Thm. 4.3, p.287) [r] 4 i(4 — 2Q)]4
is positive selfadjoint for r > ||4 — 2Q|] and Phase [//+ i(4d —2Q)}4d =1. 1t
shows that I 4+ i(4 — 2Q) e M, and consequently Q € M,. This ends the proof
of the first two statements of the lemma. On the way we showed that

K44 = w-lim —L {Phase[(] + icA)4] — I}
e-0 2ig
¢ real
for any invertible 4 € M such that Phase 44 = I. To conclude the proof we note
that the last statement follows directly from the definition of M, and the above
formula. Q.E.D.

LemMA 4.2. Let (M, A) be a phase system. Then for any A € M 4 the series

“3) Fup, A) = 3 (1—" K4+1 4

n=g

is convergent in {u:|1 — p| < 1} and the function F,(u, A) introduced in this way
has analytical continuation onto the region {u € C: uis not real negative}. Moreover,

(4.4) A A4 = wolim 22TE S 17 F 4(u, A) dp.
Z— —it TT 0
Rez>0

Proof. We may assume that A4 is invertible and that Phase 44 = I. Then 44
is selfadjoint, i.e. 44 = AA4*. Let ¥ be the strip {ze C:0 < Rez < 1}. According
to the interpolation theory (see Appendix A) there exists a weakly continuous
function

2>z A, B(H)
holomorphic inside % such that

4.5) AA* = A%A,
for all ze 2. We set

4.6) F(n) = _l S _A_Z pildz,
2i J; sin 1z
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where / is a contour inside ¥ going from —ioco to +ico (all contours involved in this
proof are shown on the attached figure), u € C \ R_, R_ is the set of all real non-posi-
tive numbers, p*= e*t°¢» and Log denotes the principal value of the logarithm

(.e. [Im Log u| < 7).

A
RS

c

\ 'l

. ,
M ,

MI
Figure 1.— Contours involved in the

proof of Lemma 4.2.

One can easily check that the above integral is convergent and that F is an
operator valued function holomorphic on C \\ R_. We shall prove that

4.7) (Ax|F(wy) = (x|(4 — p F(w)4y)
for all x, y € D(4). To this end we note that for such vectors
(4x[A143y) = (x|4; 4Y)-

This fact follows easily from (4.5). Therefore there exists a function G(z) continuous
on the strip ' = {ze C: —1 < Re z £ 1) and holomorphic inside 3’ such that
(x|A4.4y) for 0<Rezgl
(4x|4;:.y) for— 1 < Rez 0.

Then (4x|A.y) = G(z — 1) for ze€ X and using (4.6) we get

(4.8) G(z) = {

1 ¢G(z—1
1Ry = - G =1 gz =
2t ), sinnz

b

— 1 _ S _.g(z__l)__ Mz_ldz — _l-. S _g_(_ﬁ_ ”zdz
2i Jysinn(z — 1) 21 Jp sinmz
where [’ = I"1 is the shifted contour. Since the subintegral function is holomorphic

inside the region X’ excluding the point z =0 and tends to O when |Imz[ — oo,
we may deform the contour as it is shown on the figure. Therefore
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1 ¢ G
@xF@y = — L { -9 -
2i Jp sinmz

— I_S G(Z) ,u“’dz+ "IJ_S g__(j) Mde,
21 J; sinmz 21 Jc sin ©iz

where C is a small closed contour surrounding the point z = 0 in the right direction.
According to (4.6) and (4.8) the first term on the right hand side of the above
equation coincides with —(x]uF(u)4y). The second term can be computed with the
aid of the residuum theory. As the result we get

1_—8 Bz — G0) = (x]4dy)
21 Jesin nz

and (4.7) follows.
Let

“.9) Foy = 3, (L —i" 0,

be the Taylor series expansion of (4.6). Remembering that F is holomorphic on
C \R_ we see that the radius of convergence of this equals to 1. Rewriting (4.7)
in the following form:

(AxF(y) = («[{(1 — WFu) + 4 — F(u)}4y)
and using (4.9) we get

(4x1Q0y) = (xI(4 — Qo)4y)
(Aleny) = (xl(Qn—l - Qn)Ay)’ n = 17 2’ L

for all x, y € D(4). These equalities mean that

4Q, > (4 — Qy)4
AQn > (Qn—l - Qn)Ay n= 1, 2, . e

Now, using Lemma 4.1 repeatedly we see that Q, = K%*! A. Therefore, the
function F(u) introduced by (4.6) coincides with (4.3):
1 A,
Fi )= - ==

1z,
2i #

; sin ©z

By using the Fourier integral techniques one can solve this equation with res-
pect to A4, :



192 S.L. WORONOWICZ

4. =" S KEF ((u, A)dp
T 0

for z inside Z. According to (4.5) 4;, =444~ and (4.4) follows. This ends the
proof of the lemma. Q.E.D.

Now we can prove that “phase’ = “modular” for systems with one operator 4.

PROPOSITION 4.3 Let (M, A) be a phase system. Then (M, 4) is a modular
system. If (M, A) and (M, A") are eguivalent phase systems, then they are equivalent
as modular systems.

Proof. 1t follows immediately from Lemmas 4.1 and 4.2 that A¥AA " e M
for any 4 € M, and t € R. If (M, 4) and (M,4") are equivalent phase systems, then
for the same reasons A"AA47* = A" AA’~* for any A € M, and t € R. Therefore we
have only to show that M is generated by M ,. To this end we notice that any ele-
ment of M is a linear combination of invertible positive X' € M and that any such

X = A*%A4, where A= Phace (X 4" X~ A belongs to M, because Phase (44) =

=: Phase (X A) Pnase(X A) Q.E.D.

This proof ends the first part of this section. Now, we shall consider systems
with two operators 4. To complete the proof of Theorem 2.3 and Theorem 2.4 we
have to demonstrate the following:

PrOPOSITION 4.4. Let S = (M, {4,, 4.}) be a phase system. Then S is a modular
system. If S’ = (M, {43, 43}) is a phase system equivalent to S, then S and S’ are
equivalent as modular systems.

Proof. To prove the first statement, it is sufficient to show that
(4.10) At Azt e M
for all £ € R. Indeed (M, 4,) is a phase system and on this basis of Proposition 4.3,
we already know that
4.1 AY AAT e M
for all # € R and 4 € M. Now, combining (4.10) and (4.11) we see that 4 445" e M
forall teR, Ae M, and o, § = 1, 2, i.e. that S is 2 modular system.

For any Hilbert space H and any positive number N, we denote by D (H)

the set of all pairs (Q, A), where 4 is a selfadjoint positive operator acting on H and
Q € B(H), ||Q|| < N/2 is such that the sesquilinear form

B(x, y) = (4x|Qy) + (x|Q4y)

defined on D(4) is positive and closeable. The positive selfadjoint operator associated
with the closure of @ will be denoted by G,(Q, 4).
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It turns out that Gy is an operator function (cf. Appendix B). We also set
Dg, (H)={(Q, 4) € D; (H): 4 and G, (Q, 4) are non-degenerate}
and
Gy AQ, 4) = 4"Gy (Q, 7"

It follows immediately from the definition of Gy that (Q, 14) € D¢ (H) and
G (0, Ad) = AGx(Q, 4) for any A > 0 and (Q, 4) € Dg (H). It shows that Gy (Q, 4)
is homogeneous with respect to 4.

Let 4 = exp(—ri/4) and ¢ > 0. Then A and ied belong to C, and according
to Definition 2.2, we have

4.12) Phase (4, § ied,) = -—ll-l— Phase (A4, | igld,) € M.

Let us assume for the moment that for some positive constant & we have
(4.13) A, < N4,

Then, according to Proposition 1.1 there exists the weak limit

£—0
& real

Q = w-lim 21 {Phase(4, + ied,) — I},
ie

L 3
Qe M and ||Q|| < N/2. Remembering that 4, and 4, have a common core (cf.
1

Definition 2.2) and using (4.13) one can easily show that D(4,) is a core of Az
Comparing (1.7) with the definition of Gy we see that

Az = GN(.Q’ Al)
and

Y A7 = Gy (@, 4).

According to Theorem 3.3, Gy (Q, 4,) belongs to the von Neumann algebra
generated by {4¥Q47": ¢ e R} and using (4.11), we get (4.10).

If 4, and 4, do not satisfy (4.13), then we replace 4, by 4, = 4, + &4, (where
¢ > 0). Evidently (M,{4,,, 4,}) is a phase system satisfying the estimate of the form
(4.13). Therefore, Aj. A5 € M for all teR and setting ¢ - 0 we obtain (4.10) in
full generality (cf. (1.4)).

Now, let S = (M, {4;,4,}) and S’ = (M, {4}, 4';}) be equivalent phase
systems. We have to show that S and S’ are equivalent as modular systems. To this
end it is sufficient to show that

(4.14) ALATH = Ay Ay
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for all ze R. Indeed, S; = (M, 4,) and S] = (M, 4;) are equivalent phase systems
and on the basis of Proposition 4.3 we already know that

(4.15) A AATH = A A4

for all e R and 4 € M. Now, combining (4.14) and (4.15), we see that 4¥ 445" —
= A AA; " forallteR,Ae Manda, f = 1,2,ie. Sand S are equivalent as mo-
dular systems.

As it is shown above, we may assume without loss of generality that the opera-
tors 4 satisfy the estimates

A, < NA,,
Ay < N4,
Then
47 47" = Gy (0, 4,)
A7 457 = Gy (@, 4Y),
where

Q = w-lim —L {Phase(4, + ied,) — I}

£-0 2ig

Using (4.12) and (2.9) we get O = Q' Now (4.14) follows directly from (4.15) and
Theorem 3.3. Q.E.D.

5. TOMITA-TAKESAKI THEORY

In this section, for any von Neumann algebra M we give an explicit construction
of a canonical phase system associated with M proving in the same way Theorem 2.6.

Since any von Neumann algebra can be decomposed into the direct sum of"
the semifinite and purely-infinite parts, it is sufficient to consider two cases:

A) M is semifinite. Then any normal functional can be represented by a density
operator. More precisely, for any « € M, there exists an operator 4,7M such that
a(A) == Tr(44,) for all 4 € M. One can easily check that the family {4,},¢ 4 intro-
duced in this way satisfies (2.12).

B) M is purely infinite. Then M is standard and possesses a cyclic and separat-

ing vector (we have assumed that the carrier Hilbert space is separable). In this case
the construction of a canonical phase system is described in the following theorem:.
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THEOREM 5.1. Let M be a von Neumann algebra possessing cyclic and separat-
ing vector y. The set of all normal positive functionals on M will be denoted by M}
and A = {o.€ M} : a is faithful}.

1. For any o€ M}, there exists a closed positive sesquilinear form @, such that

5.1 1°. D= {Ay:Ae M} is a core of @,
) 2°. @ (Ay, By) = o BA*)

for all A, Be M. Clearly ¢, is determined uniquely by these conditions. Moreover,
denoting by A, the positive selfadjoint operator associated with ®, we have
Il. S = (M, {4,}¢ 4) is a canonical phase system associated with M.

Proof. Ad I. 1t is sufficient to show that the positive sesquilinear form <10>a

defined on D with the values given by (5.1) is closeable, i.e. for any sequence 4,€ M
such that

(5.2) Ay -0
as n, m — 00, we have
(5.4 (4,45 - 0

when n — oo. For standard von Neumann algebras, any positive normal functional
can be represented by a vector. Therefore there exists x € H such that

(5.5 «(Q) = (x|Qx)

for any Q € M. Now, taking into account (5.3), we see that the sequence (4¥x),_,, .
is convergent. Let

(5.6) z = lim A¥x.

n—soo

For any A’ € M’ we have (cf. (5.2)):
(A'y|z) = lim(A4'y|A¥z) = lim(4'A4,y|z) = 0.

Therefore z = 0 and (5.4) follows directly from (5.5) and (5.6). This ends the proof

of the first part of Theorem 5.1. To prove the second part we need the following
Lemmas:

LemMA 5.2. Let a(Q) = (x|Qx) be a faithful functional on M and u < D(®,).
Then there exists a unique closed AnM such that D' = {A'y:A' € M} is a core of A
and Ay = u. Moreover x € D(A*) and

(5.7 D,(By, u) = (A4*x|B*x)
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Sor any Be M.

Proof of Lemma 5.2, If AqM and Ay = u, then AA'y = A'u for any A’ e M'.
Therefore 4 (whenever it exists) must coincide with the closure of the operator

A:d'y > Au AeM

defined on the domain D(,Z) = D’. This proves the uniqueness of 4.
Since u € D(®,), there exists a sequence 4, € M such that

Ay —u
as n, m — co. Remembering that « is related to the vector x by (5.5), we see that the
sequence (A¥x),=; . ... is convergent. We put
(5.8) z = lim A¥x.

H—CO

Let us note that
(AA'y|B'x) = (A'u|B'x) = lim(4'4,|B'x) =

= lim(4'y|B'4;;x) = (4'y|B'z)

for all 4’, B"e M’'. It means that B’xeD(/(i)*) and A*B'x = B'z for all B' e M.
Since « is faithful, x is separating for M and cyclic for M’. Therefore D(AO*) is dense
in H and A is closeable. One can easily check that the closure of fi) denoted by A4
possesses the properties stated in Lemma 5.2.

Setting in the previous relations B’ = I and remembering that A* = A*
‘we get x € D(4*¥) and A*x = z. Now, using (5.5) and (5.8) we have

Qa(By’ u) == lim Qa(Bya Any) = lim “(AnB*) =
= lim(4%x|B*x) = (z] B*x) = (4*x]|B*x)
for any B e M, so the formula (5.7) holds.

LEMMA 5.3. Let a,Be A, a,beC,,a+ b # 0 and Ce M. Assume that C is
invertible and that y = C(aw -+ bB) is a positive functional on M. Then G = C(ad, -
+ bAp) is a nondegenerate positive selfadjoint operator.

Proof of Lemma 5.3. We may assume without loss of generality that a # 0 # b.
Indeed, if for instance b = 0, then we reduce the problem to the previous one by
replacing o, B, @, b by «, a, a/2, a/2 respectively.
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At first we shall prove that G is positive. Let u € D(G). Then u € D(ad, -} bdp)
and therefore ue D(®,) n D(Py). Assume that

Q) = (x|Qx),
(5.9)

B(Q) = (x"1@x").

According to Lemma 5.2 there exists an operator An M such that u = Ay,
x, x' € D(4*) and
®,(By, u) = (A*x|B*x),
(5.10)
D 4(By, u) = (A*x'|B*x'),
for any Be M. Let
(5.11) Ay = Ay, ny(A*4),

where yjo, 5y denotes the characteristic function of the interval [0, N]: xpo, nyi(4)
equals 1 for Ae[0, N] and O otherwise. Then Ay € M and lim Ayz = Az for any

N->00

z € D(A). In particular lim Ayy = u and using (5.10) and (5.9) we have:
N-oco

u|Gu) = lim(Ayy|Gu) = im(C*Ayy|(ad, + bAgu) =

= lim{a®, + bP)C*Ayy, u) =
= lim{a(4*x|A%Cx) + b(A*x'|AFCx")}.

It follows immediately from (5.11) that A¥ze D(A) and AA¥z = AyA%z for
any z € H. Therefore

WlGu) = lim{a(x|AyA5Cx) + b(x'|AyA{Cx)} =
= lim{aw(4yA%C) + bY(ANANC)} =

¢-12) = lim(C(ax + BN ANAN) =

= lim y(4yAR)

and G is positive since y is positive.

To prove selfadjointness of G, it is sufficient to show that G* is symmetric.
We shall prove that G* is positive.

To this end we note that y = C(ao 4 bf) = (a0 + bB)C* and that CYax +
+ bB) = C1yC~'* is positive because 7 is positive (see Section 2 or [3], Ch. 1, §4
for the meaning of the multiplication above). Therefore on the basis of the results
obtained so far we know that C%a4, -+ b4 g) is positive. Multiplying this operator
by C from the left and by C* from the right hand side we prove that (ad, + b4 8)C*
is positive. The last operator coincides with G*.
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If Gu = 0, then according to (5.12) lim y(Ay4%) = 0. It follows immediately
N-~o0

from (5.11) that AyAj is an increasing function of N, so y(4yA%) = O for all N.
Since y is faithful, 4y = 0 for all N and consequently 4 =0 and u = Ay = 0.
It shows that G is nondegenerate. Q.E.D.

We continue the proof of Theorem 5.1.
Setting in Lemma 5.3: C=1, a=1,b=0, we see that 4, is nondegenerate.
Moreover, it follows immediately from the definition of 4, that for all aeA the domains
1

of 42 contain common dense subset D — {Ay:A € M}. Therefore S = (M, {4,}zc4)
is a regular system.

Now assume that a, fe A, a, b€ C,, a+ b # 0and A4 is an invertible element
of M. Let

(5.13) A(ax + bB) = Uy

be the polar decomposition of the functional A(ax -+ 58). Then y = U*A(ax + bf)
is positive and using Lemma 5.3 we see that G = U*4(ad, + b4,) is positive self-
adjoint. Therefore

(5.14) A(ad, + b4g) = UG

is the polar decomposition of the operator A(ad, -+ b4,) and comparing the last two
formulas ((5.13) and (5.14)) we get

phase 4(ax + bf) = Phase A(ad, -+ bdy).
This ends the proof of Theorem 5.1. Q.E.D.

REMARK. The reader familiar with the Tomita-Takesaki theory certainly
noticed that the operators 4, constructed in Theorem 5.1 coincide with S%.S,,
where x is a vector representing the functional x € M¥ (i.e. a(4) = (x|4x) for all
A e M)and S, is the closure of the mapping

Ay — A*x, (AdeM).

6. CROSSED PRODUCT ALGEBRA

In this section we show how the Takesaki notion of crossed product [10] works
in the framework of the theory of operator systems.

We shall use the auxiliary Hilbert space K and the positive selfadjoint operator
L introduced in Section 3. The operator L acting on K is defined uniquely (up to
unitary equivalence) by saying that it has simple (i.e. multiplicity free) spectrum and
that the spectral measure of L is equivalent to the Lebesque measure on R,.

Let S = (M, {4,}«c4) be a modular system and H be the carrier Hilbert space
of S. We denote by W*(S) the von Neumann algebra of operators acting on K ® H
generated by I® 4 and L ® 4, (A€ M,ac A). W*(S) will be called the crossed
product algebra associated with S. Let us notice that W*(S) contains the distinguished
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ubalgebra M = {I ® 4 : A € M} isomorphic to M. We often identify M with M.
We shall prove the following theorems:

THEOREM 6.1. Let S = (M, {4,}sc4) be a modular system. Then there exists
niq ue one parameter group {pg}eer of automorphisms of W*(S) such that

(6.1) P @ A)=1® A4
(6.2) p(l ® 4,) = "L ® 4,
forany Ae M,xc A and E € R. This group is pointwise weakly continuous and

M = {Xe WXS) : p(X) = X for all EcR}.

The group {pz}eerwill be called the scaling group.
It turns out that equivalent modular systems give rise to isomorphic crossed
product algebras. More precisely we have

THEOREM 6.2. Let S = (M, {A}acs) and S = (M, {A,}sca) be equivalent
modular systems. Then there exists unique isomorphism

o 1 WH(S) > W*(S")

such that
6.3) c(I®A=I® A
(6.4 oL ®4,)=L® 4,

Jor all Ae M and o€ A. This isomorphism intertwines the scaling groups: for any
EecR

6.5) Gopy = pioc

where pg and pg denote the scalling automorphisms of W*(S) and W*(S’) respectively.

To prove these theorems we have to use concrete realization of K and L.
We shall assume that K = L2(R) and L=e” where D is generator of the translation
group: (e"PA(s) = f(s — t) for all fe L2(R) (cf. formulae (3.14), (3.15) and (3.16)).
Then K ® H can be identified with L2(R, H) and

(6.6) (I ® A)f) (s) = Af(s)
(6.7) (L ® 4,)'f)(s) = 4if(s — 1)
(6.8) (L @ 4)f)(s) = AZf(s — 1)

for all fe LAR, H), A M and a < A. Let us pick out an element y € A. For any
operator X acting on L*R, H) we set

6.9) o(X) = UX U*,
where U is the unitary operator introduced by the formula

(6.10) (Uf)s) = 4,457 f(s)
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for all fe L3R, H).
If (M, {4,}ac 1) and (M, A }ec ) are equivalent modular systems then

A;isAy—isAA;}sAI;is:A;isA;~isAA;isA;—is = A4
and

Tis A—iS Ait QIS —0) A7 ~I(s—t) __ A’IS A —IS IS g —i(s—1) fils—1) g7 —i(s—t) __
Ay Ay AE A0 4, = A}SA;EASA; 04l 4 =
=A’;sd;“isA;isAa:_i(s_‘)A;i(x_')A,',_i(s_t)=A;it

for all A€ M, a € A, ¢, s € R. Therefore, taking into account (6.6), (6.7) and (6.8), for
any fe LR, H) we get:

(UU @ AU*)(s) = 4;°4, *A454,75(s) = Af(s) = (I @ A)f) (5)
and
(UL ® 4" UHf)(s) = 4145 4440410 -0f(s — 1) =

= 4 — 1) = (L ® 4)/)s)-

It shows that ¢ introduced by (6.9) satisfies (6.3) and (6.4). Since {I ® 4,
L®4,:AesM,0eA} and {I® A, L ® 4s: A€ M,ac A} generate W*(S) and
W*(S’) respectively, o is an isomorphism of W*(S) onto W*(S’). This ends the proof
of the first part of Theorem 6.2.

To prove Theorem 6.1 we note that for any modular system S = (M, {4,}sc4)
and any E€R, S; = (M, {€F4,}uec4) is @ modular system equivalent to S and that
W4(Sg) = W#(S). Therefore using the result obtained so far we see that there exists
an isomorphism pgp of W*(S) satisfying (6.1) and (6.2). Clearly for any X € W*(S):

6.11) pe(X) = UgXU§

where Uy is the unitary operator acting on L%(R, H) introduced by the following
formula obtained from (6.10) by setting A, = efA,:

(6.12) (Uef)(s) = eEf(s).

Since operators (6.12) form a strongly continuous one parameter unitary
group, {pz}eecr is a one parameter automorphism group having the desired conti-
nuity property.

Now assume that an element X ¢ W*(S) is invariant under the action of pg
for all EcR. Then X commute with all Ug. Therefore X is decomposable: there
exists a measurable field of operators

(6.13) R3s — X(s)e B(H)
such that
6.14) (Xf)(s) = X(s)f(s)
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for all fe L3R, H).

One can easily check that the translation operator L¥ ® I acting on LAR, H)
commutes with the generators of W*(S). Therefore L'® I€ W*(S)Y and (L* ® I)
X(L7* ® I) = X. Now, using (6.14) we obtain X(s — t) = X(s) for any t€ R and
almost all s € R and (6.13) must be a constant field of operators: there exists B € B(H)
such that X(s) = B for almost all s € R. In other words (cf. (6.6) and (6.14))

X=I® B.
Let Q € M’'. We consider the operator ~Q acting on L¥R, H) such that

(6.15) (Qf)(s) = 45047 *f(s)

Remembering that (M, {4,}xc4) is 2 modular system and using (6.6) and (6.7) one
can easily check that Q commutes with /® A4 and (L ® 4,)* forall Ae M, xe A
and ¢t € R. Therefore Q € W*(S)' and [Q, X]= 0. It means that

[47045%, B]=0

for almost all s € R. Since the left hand side of the above formula is a weakly conti-
nuous function of s, this equality holds for all s € R and setting s=0 we get [Q, B] = 0.
This fact holds for any Qe M’,s0 Be M"' = M and X =1 ® Be M. We proved
that M contains {X € W*(S) : pp(X) = X for all E e R}. Since the converse inclusion
is obvious (cf. (6.1)), this result ends the proof of Theorem 6.1.

To end the proof of Theorem 6.2 we note that (6.5) follows directly from (6.1),
(6.2), (6.3) and (6.4): both sides of (6.5) acting on any generator of W*(S) give the
same result. Q.E.D.

APPENDIX A.

INTERPOLATION THEORY
In this section 4 is a nondegenerate positive selfadjoint operator acting on a
Hilbert space H. X denotes the strip

Y=1{zeC:0 £ Rez £ 1}.

ProrosITION A. 1. Let A,Be B(H) and AA < AB. Then for any zeX
there exists unique A, € B(H) such that

(A.1) AA* < A°4,.

The mapping z — A, is weakly continuous on X and holomorphic inside Z.

Proof. For any x, y € D(4) n D(4™) the function

f(z) = (47y|A47x)
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is continuous and bounded on ¥ and holomorphic inside X. Moreover on the
boundaries of Z:

A0 = |47 yldd= )| < |4 ] <]
AL+ i) = [(A="+ip| A1+ iox)| = |(4=1* | ABATx)| =
— [(4iyBd %) < (1B]l |y [ix]),

for all 7 € R. Let C = max{J|4]}, ||B||}. In virtue of the maximum principle for holo-
morphic functions we get

(4214 47 x)| < C|y] IIx]

for all ze X and x,ye D(4) n D(47"). Remembering that D(4) n D(4™) is a
«core for A7° and 4* one can easily deduce that 4 4°x € D(47%) and |[|[A7244°x|| £
£ C|lx|| for any x € D(4%). It means that D(4™%4 A%) = D(4*) and that the closure
-of 4774 A% belongs to B(H). Denoting this closure by 4, we have: 47744° c A4,
and (A.1) follows immediately.

Let us note that for any x, y € D(4d) n D(A™), (x]4.y) = (4 “’_xIAAZy). There-
fore the function z — (x]4,y) is continous on X and holomorphic inside X. Since
D(4) n D(47%) is dense in A and A_ are uniformly bounded (||4.[] £ C forall ze ),
this fact holds for all x, y € H and the last statement of Proposition A.l is proved.

Q.E.D.

COROLLARY A.2. Let A e B(H). Assume that AA is selfadjoint. Then AA =
1 1
=A2A>1_A2and A4 £ ||4)l4.

1
Proof. Inthiscase A4d=A4A4* and Progposition A.1 can te applied. We have 442 <

1 1 3 . . .\
.« A” A, and A4 = A% A4 4 ?. One can easily check that A | is hermitian. Therefore
F ]

—

1 1
.AaA] A*® is a symmetric extension of A4 and since 44 is maximal symmetric we

w,

11
get A4 = 4% A, A*. Moreover for any x € D(4):
2
1 3 1
(x]d4x) = (4°x|4,4°x) < ||4, || 4% x|z =<

< 4] (x4%). Q.E.D.

COROLLARY A.3. Let A B(H). Assume that AA < A(—A). Then 4 = 0.

Proof. In this case 4;,,, = —A;, and setting

Ay, = (—1)'4, n-integer, z€ X
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we define 4, for all s € C. Clearly 4, is bounded entire function and using the Liouville
theorem we get 4, = const. In particular 4 == 4y = 4, = —4and 4 = 0. Q.E.D.

APPENDIX B.

EXAMPLES OF OPERATOR FUNCTIONS

In this appendix we shall show that many operator expressions are in fact
operator functions in the sense of Definition 3.1 provided one fixes the domains in
a suitable way. We start with the following obvious statement.

ProposiTion B.1. 1° A* defined on € (H) is an eperator function of A.

2° A defined on {A € €(H) : A is nondegenerate} is an operator function of A.

3° Phase A defined on {A € G(H) : A is nondegenerate} is an operator function
of A.

4° A*A defined on €(H) is an operator function of A.

5° Let f be a continuous complex function defined on a closed subset K= C.
Then, using the operator calculus notation, f(A) defined on {A € 4(H) : A is normal
and Spectrum A = K} is an operator function of A.

Unfortunately the usual algebraic operations such as the addition and the multi-
plication of bounded operators are not operator functions in the sense of Definition 3.1,
because the direct integral of bounded operators need not be bounded. On the other

]
hand for any fixed N, S A(R)dp(d)
A
Therefore restricting the algebraic operations to the operators of the norm less than
N we obtain further examples of operator functions.

PROPOSITION B.2. Let N > 0. Then A + Bdefineson{(4, Bye B(H)?: |A|| = N

and ||Bl| £ N} is an operator function of (A, B). The same statement holds for AB.

< N if and only if ||4(1)]| £ N for u-almost all 4.

The restrictions assumed in Proposition B.2 are in many cases going too far. For
example it is known that 4 + B is a well defined closed operator if 4 € ¥(H) and
B e B(H). Similarly A B is closed for any B e ¢(H) and any invertible 4 € B(H).
Therefore we have

ProPOSITION B.3. Let N > 1. Then

1° A + B defined on {(A, Bye ¥(H) X B(H) : ||B||< N} is an operator func-
tion of (A, B).

2° AB defined on {(A4, B)€ B(H) X €(H) : A-invertible and ||A||, |47}|| £ N}
is an operator function of (A, B).

It is rather clear that starting from a given family of operator functions one
can build new operator functions by suitable compositions. We already used this
method in Section 4. New operator functions can also be obtained by the strong
limit procedure. More precisely we have
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PROPOSITION B.4. Let F, F,, ... be a sequence of operator functions of N va-
riables. We assume that:
1° Dr, (H) = D(H) is independent of n.
2° Values of all F, are bounded operators and there exists a constant K such
that
|Fu(As, . AW = K

for all n and (A, ..., Ay) € D(H).
3° For any (A, ..., Ay) € D(H) there exists the strong limit

Fo(Ayy « .., Ay) = s-lim Fy(4y, .. ., Ay).

n—>oQ

Then F(4,, ..., Ay) defined on D(H) is an operator function of (A, ..., Ay).
Proof. This fact follows directly from ([3], Prop. 4, Ch. II, § 2, p. 160). Q.E.D.

Throughout the paper we used expressions of the form ad, 4 b4, where

1 1
a,beCy and A,, A, were positive selfadjoint operators such that D(4%) n D(4%)
was dense in the Hilbert space. We would like to show that a4, -+ b4, is an operator
function of (4,, 4,). This is not quite obvious because the definition of ad; 4 b4,
is based on the notion of sectorial sesquilinear form and we have no results on direct
integral decomposition of such forms. To pass over this difficulty we have to find
some other definitions of ad, -+ b4, making no use of sectorial forms. To this end
we introduce the following notation:
For any positive selfadjoint operator 4 and any ¢ > 0 we put

4, = A + ed)™.

Clearly 4, is bounded positive and
1 1
(B.1) limd}z = 4%z
£-0
1
for any z € D(4%). We shall prove

Lemma B.5. Let a,becC,, a+ 0+ b. Then for any positive selfadjoint
4., 4, € G(H) there exists the strong limit:

(B.2) R = s-lim(ady, + b4y, + D)L

e—0

1 1
Moreover R is nondegenerate if and only if D(4%) n D(44) is dense in H and in this
case
(B.3) ad, +bAy,=R1—1
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Proof. Let ye H and
(B'4) Xe == a(aAls + bAZe + [)_ly

Then y = (ad,, + bA,, + I)x, and

(B.5) (ely) = allab xJ  bllA% x P + .

Remembering that the real parts of @ and b are positive we get |x.|| ||yl =
1
2z Re(x,]y) = x| and |jx.|| £ |ly|l. Using (B.5) once more we see that x,, 45X,
1

and 43.x, remain bounded as ¢ — 0.

At first we shall prove that x, is weakly convergent as ¢ — 0. Since the bounded
closed sets in H are weakly compact, it is sufficient to show that x, has at most one
weak accumulation point for ¢ — 0.

Let x be such a point. Then there exists a sequence e(n) — 0 such that

(B.6) x = w-lim X,(.

n—->o0

1 1
It turns out that x € D(47) n D(4%) and that

1 1
(B.7) w-lim AZ ) Xomy = Aix
n->00
1 L
(88) w-lim AQE(,,)XS(”) == AZZX.
n—0o0

1
Indeed, for any z € D(47) we have

1 1 py
]im(zlA{i(,,)xe (n)) = lim (Ali(n)zlxe("}) = (Afz]x)
n—oo

n—oo

L
(cf. (B.1) and (B.5)). Remembering that Af;) X.(, i uniformly bounded and that

1 1
D(4%) is dense in H we see that (47, X)) is weakly convergent and that

1 1
(z|lw-lim A1y Xemy) =(41z]x).
n—oo

1
It shows that x € D(4{) and that (B.7) holds. For the proof of (B.8) we procede in.
the same way.
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1 1
Assume now that z e D(47) n D(43). Then, using (B.1), (B.6), (B.7) and (B.8)
we have

11 L1
a(Aiz|dix) + b(43z|43x) + (z]x) =

L 1 1 1
= lim{a(4mz|ATemXem) + B(A3mzlAdeimXem) + (21 Xemy) =

n—oo

= lim(zl(aAlE(,,) -+ bAZg(n) + I)XE(n))

n-co

and taking into account (B.4) we get

11 11
(B.9) a(47 2|47 x) + b(43 2|43 x) + (zlx) = (z]y)

1 1
for any ze D(47) n D(4?%).
1 L
If besides x, some other x’ € D(47) n D(43%) satisfies (B.9), then

a(A}l"ziA;}(x' — X)) + b(A;%'zmé"‘(x' — X))+ @G —x)=0

and setting z = x’ — x we get x’ = x. It means that x is uniquely determined by
{B.9) i.e. that x is the only weak accumulation point of x, for ¢ — 0. Therefore

(B.10) x = w-lim x,

£-0

and consequently (cf. derivation of (B.7) and (B.8))

1 1
(B.11) Aix = w-limdfx,,
£—>00
(B.12) 43 = w-lim 4%x,.
£—Q

Setting z = x in (B.9) and using (B.5) we get

allA¥ x| + bllAExIE + x| = (xly) = lim(xy) —

e=0

= Iim(alldi%éxellz + l)lléfé%exail2 + {Ix:1%)-

£=~0
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Now, using (B.10), (B.11), (B.12) and the above relation one can easily check
that

1 1 1 1
lim(a{ldizx, — ASx |2+ b [|d5x, — d2x| + |Ix, — x[®) =0

£—-0

and remembering that real parts of @ and b are positive we see that the limits (B.10),
{B.11) and (B.12) are in fact the strong limits. This proves the first of the Lemma.

1 1
It follows immediately from (B.9) that y is orthogonal to D(4{)n D(4%) if
and only if x = 0. Therefore

3 1.1
(D(4% n D(45)) = Ker R
and
D(4r) n D(4z)

is dense if R is nondegenerate.
Conversely if

1 1
D(4%) n D(43)

is dense then according to (B.9)
x € D(ad, + b4,) and
y = (ad; + b4, + DNx.

Therefore
R = (ad, + bd, + )™

and (B.3) follows.
Now we are able to show

PRrROPOSITION B.6. Let a, b C,. Then aA1—|—bA defined on {(4,, 4;) € €(H)*:4,

and 4, are positive selfadjoint and D(A} ) n D(Az) is dense in H} is an operator fun-
ction of (4;, 45).

Proof. Using Proposition B.1.5°; Proposition B.2; Proposition B.1.2°;
Lemma B.5 and Proposition B.4; Proposition B.1.2° and Proposition B.3.1° one
proves step by step that: A,,, Ay, ad,, + bd,, -+ I, (ad,, + b4, + 7, s-lim(ad,, +

-0

-+ b4y, + N7 and ad, 4 b4, are operator functions of (44, 4,). Q.E.D.

Combining Proposition B.1.3°, Proposition B.3.2° and B.6 we see that

Fy(A, 4,, 4;) = Phase [4(ad, + b4,)]
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defined on the domain described in Section 3 is an operator function of (4, 4, 4,).
In Section 4 we considered selfadjoint operators Q, 4, where Q was bounded
[|@l] £ N/2 and 4 was positive, such that the form

Y(x, y) = (Qx | 4y) + (4x| Qy)

defined on D(4) was positive and closeable. The positive selfadjoint operator asso-
ciated with the closure of iy was denoted by G(Q, 4). We shall prove

PROPOSITION B.7. Gy(Q, 4) is an operator function of (Q, 4).

Proof. For any ¢ > 0 we consider the form i, associated with the positive
selfadjoint operator

G0, 4) = (eA +L Q)2 . (—1~ Q)2~
&

€
Obviously D(,) = D(4) and

Yolx, ¥) = ¥(x, y) + &(dx|4y)

for any x, y € D(4). Take ¢ — 0. Then ¥, is converging to ¥ from above. Therefore,
using ([4], Ch. VIII, Thm. 3.11, p. 457) we get

GuQG, &) + D7 = S'-I{ng (Gne(Q, 4) + D7

It is obvious that Gy, (@, 4) is an operator function of (Q, 4) and our statement
follows from Proposition B.4.
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