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THE INVARIANT SUBSPACES OF A VOLTERRA OPERATOR

JOSE BARRIA

Let (ay, by), ..., (a,, b,) (m> 1)bedisjoint subintervals of X = [0, ¢] (¢> 0)
such thatb;<a,, ..., b,_1<a,. Let u be a measure on X such that yu is the Lebes-

m
gue measure on (a; b,) (I < i< m), and pu is purely atomic on X\ U (a, b)
i=1
with a finite number of atoms in (0, ¢)\|_J (a;, b)). Let ¥, be the bounded linear
i=1

operator on L,(X, u) defined by

Va0 = § SO d®  (fe LK, )
{0,x)

The purpose of this paper is to determine all the (closed) invariant subspaces
of ¥V,. For 0<axc, let L, (L, resp.) denote the closed subspace of all functions in
Ly(X, ) which vanish on [0, a) ([0, a], resp.) a.e. [u]. Since V,L, c L, < L,, it
follows that the subspaces L, and L are invariant under V. It is easily seen that
L, # L} if and only if u({a}) > C.

THEOREM A. The subspaces L, and L, (0 < a < ¢) are the only invariant
subspaces of V. '

If o is the Lebesgue measure on X, then the operator V, on L0, ¢] is the usual
Volterra operator and in this case the asserti on of the theorem is a well known result
([2], [4], [5]). In particular the lattice of invariant subspaces of ¥V, has the order
type of [0, 1].

In [1] the theorem was proven for a measure yu which is the Lebesgue measure
with a finite number of atoms in (0, ¢). In this case the lattice of invariant subspaces
of ¥, has the order type of the chain [0,1]U[2,3]U ... U[2n, 2n -+ 1], where n
is the number of atoms of pn. :

In [3] P. Rosenthal gave an example of an operator whose lattice of invariant
subspaces has the order type of the chain [0,1]U{2,3, ..., n} (n = 2). Theorem
A implies that the ordinal sum of a finite number of such chains can be realized as
the lattice of invariant subspaces of an operator V.
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Let y, denote the characteristic function of the set 4 in X. Let x,, x,, ..., x,
be the atoms of p (if it has atoms), so arranged that 0 << x, < x, < ... < x, < c.
By convention we take x, = 0.

LemmA 1. The adjoint of V, is given by

V) = | 0 du) (7 LoX, 1)
(x,¢]
Furthermore,
kerV, = {Juy : A € C, tty = Xibpcin (xa)}
and

kerV,f = {)"UO tle C, Vg = J[0,a,n («\'l}}'

Proof. The operator V . 18 the integral operator whose kernel is the characte
ristic function of the set {(x,y)e X X X :y < x}. Therefore V} is the integral
operator induced by the conjugate transpose kernel, that is, the characteristic func-
tion of {(x, y) € X X X : x < y}. Now the given expression for V¥ follows imme-
diately.

t
Assume that V,f = 0. Thengf(t) dt = 0 for all 1, and ¢, in (a;,b;). Therefore
4
= 0 a.e. [¢] on (a;, b;) (I < i < m). Since u has a finite number of atoms it follows
easily that f= 0 a.e. [y] on [0, b,,). Then kerV,, = {0} if it has no atoms in [b,,, c].
Otherwise, f= 0 a.e. [u] on [0, x,) and V, u, = 0. Similar reasoning can be used to
prove the assertion about kerV .
If f and g are vectors in a Hilbert space o, we denote by f ® g the rank one
.operator on H# defined by (f ® g)(z) = (z, g)f for all z in #. Write 4; = u({x;})

(L<ig<n), ;= tu,ep and yV = x4y (0 < j < ).
Let ¥; and T; be the operators on L,(X, u) defined by

«(1) Vi= Vo= 4m® 29 — oo — 1 @ 1™,
.:and
) TJ =Via— '11'+11Wj+1

for j=0,1,...,n— 1, where M, is the multiplication operator induced by ¥;
on Ly(X, u) (0 < i< m), and ¥, = V,. As an equivalent definition of V; we have

(3) (ViN)x) = Sf(t) dui(t)  (fe LyX, ),

[0, x)
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where y; (0 < j < n— 1) is the measure on X = [0, ¢] such that y; and u coincide
on X\ {xjy, -+, X}, and p;({x,1, - - -, x,}) = 0.

It is easy to check that V; and T; leave invariant the subspaces L, and L}
for0<a<e

For 0 i< j<nandj>1 we define
AG D) = Ty + 2Ty + A) o (Toog + 4 ) T Topy « v Ty,
with the convention that
AQ, ) =T, ... T;—y, (1 <j<n),

AGD) = Ty + W) (T +2) oo Ty + 4 Q<j<n)
and
AL, ) =L
By induction it follows easily that

l,-A(i,j) - (To + '{l)(Tl + /12) "o (Tj_l + j-_,')

Mu.

4)

i=0

forj=1,2,...,n (with 4, = 1).
LemMa 2. If 1 < j < nand if j < k, then

j o
©) VE= ¥, AMVSTAG))

Proof. First it will be proven that
(6) Vi=VioOT, + MV A<j<nk>]).

The proof of (6) will proceed by induction on k. For k = 1 the equality follows from
(2). From (1) we have that V; = V;_, + x; ® x". Therefore

Vit = (Vi + 2,®@ xO)WVf =
=V, Vf+ (® x V=

=V, T;,+S (by induction)
where

S =LV, MV + (2;® x9)VE
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To complete the proof of (6) we have to show that S = A,M;V}_,. Let fe L(X, p).
From (3) it follows that Sf(x) = O for all x in [0, x;]. Since the measures ; , and
p; coincide on [0, x;), from (3) it follows that (V) (xj) = (V}_1f)(x;), and therefore
for x in (x;, ¢] we have

S =45 § A0 diy a2, ) (P00 dy a0,

(xj, %) [0, x;)

Since it;_y({x;}) = 0, we conclude that Sf(x) = A;(V}%,f)(x). Therefore S = 2,M;V} ;.
Now we are ready to prove (5). Equalities (5) and (6) coincide for j=1.
If 2 < j < n, then by induction it follows that

Vit = Z)LMV""A(IJ—I)
If0 < i<j~—1,then M;M; = M; and A(i,j — 1)T;_, = A(i,); therefore
j=1 .
Myi-l = Y MMVETAGj— 1) =
i=0

= M;VETA(), )) (by (4)),

and

Jj—1 .
VAT, = Y, AMVETAG, ).
i=0

Therefore

J .
VERIT,, + AMVESE = ¥ LM VETAG, ).

i=0

From (6), the proof of (5) is complete. Z

The following discussion concerning the usual Volterra operator V, on
L,[0, ¢] is well known and is included here only for the sake of completeness.

By induction it follows easily that

1

————(k Y x — DA dt

(Vsf)x) =

oty oy
~_
s
d

for fe L,[0, ¢] and k& > 1. It eis the constant function one on [0, ¢], then V, f = exf
(the convolution of e and f) for all fin L,[0, ¢]. Therefore V*f = e, +f where ¢, is
the k-fold convolution of e with itself. Let f and g be in L,[0, ¢], and write i(x) =
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= g(c — x) for x in [0, ¢]. The following computation gives an expression for the
inner product (V%f, g) in the space L,[0, c].

vif 9 =\ (s e =0 dr =
b
= (VEf)*h)e) =
= (exx 2 I(E) =
= VE(f«h)c).
Therefore
er o e
) Vef9) = o N e - de

for fand gin L0, cjand k& > 1.

We write dy =0 and d; =(b, —a)+ ... +(b;—a) if 1 € i< m. For
fe Ly(X, u) we deﬁnef'in L,]0,d,) such thatf!(a’,-_l, d;) isthe translation of f|(a;, b,).
More precisely, j.'(t) = fla; + t)for t € (d;_y, d}) and 1 < i< m. Since y, is the Lebesgue
measure on (a;, b;) (1 < i € m) and has no atoms, it follows immediately from (3)
that (V,f)~ = V(,f,~ where V_ is the usual Volterra operator on L,[0, d,,]. Therefore

®) (VEf)~ = VI (fe LyfX, u), k > 1).

LemMA 3. Let f and g be in L(X, p). Then the inner product (VEf, g) in the
space L.(X, u) is given by

dm
] 2n
Vifig) = —oo———— S fk—n—1 bt (d, —tyde
wf8) k—n—1)! ;gof )
[

for all k > n -+ 1, where
i = LAl n)f (0 < i< n),

f;x»s-j = )‘JV(;'_JA(]-J)f (1 <.] < }’l),

h(t) = 3dd, — D&, —1t) for te[0,d,] (0<i<n,
and

th—j(t) - R;;)i[o, Xj](dm - t) for te [0’ dm] (1 < ] < n)'
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Proof. Denote by (u, v), the integral Su(t) ;(?jduo(t) for u and v in Ly(X, p).

X
Assume that n + 1 < k. For 0 € i < n, it follows from (7) and (8) that

(LM VETAG, Y, 8) = (VE,, 1:8)0 = (VETs 118) =

*k—n—1D! S gt (fixh)(dp — 1) dr.

-

Then, from Lemma 2 it follows that

dm
1, g)p = —————( ehi\ (d, — 1) d.
(Vﬂf;g)o (k—n'— 1)! S {Zfl }(dm t) t

i=0

Since the measures p;_, and p coincide on [0, x)), (VEN(x) = (V1 N)(x)
Now from Lemma 2 it follows that

VEN) = 4,VE14G, ) — Df ) =
i=0
— VEILAG, ) fx) = (by (4))
= S VEIAGj, ) (1) dpo(t) = (by (3))
10, x;]
= (VE=7A(j, D, 10, x)o-
Hence
LVEL))E0G) = A(VE"VE=IAG, )f, 806D 10, 20)0 =

== (Vg—"j;,+j’ g(xj)x[o' xj])O =

= (Vk fn+p g( )X[o le) =

dm

1 S k—n—1( f -
=\ (S e b ) — 1) d
—_n—1M
k—n—1n! .

forj=12,...,n
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From the definition of the inner product in L,(X, u) it follows that
(Vi 8) = (Vi &) + Y LVEN(x) g(x).
i=1

Now the lemma follows immediately from the preceding computations.

The next lemma is the crucial point in the proof of Theorem A. The idea is
to use the Titchmarsh Convolution Theorem, just as was done in [2]. The support
S.(f) of f with respect to the measure u is the complement of the largest open set on
which f= 0 a.e. [u].

THEOREM B [6]. Let f and g be functions in L,[0, c] such that fg =0 a.e.
o] on [0, c}. If 0 € S,(f), then g = 0 a.e. [o] on [0, c].

LEMMA 4. Let f be an element in L with a, < a < by and ae S,(f). Then the
closed subspace M spanned by f, V. f, Vif, ... is equal to L .

Proof. 1t is clear that M < L. Assume that ¢ = a,. Next it will be shown that
ifgel,®M and g =0 a.e. [u] on {b,,, c], then g = 0. The proof will proceed by
induction on the number of atoms of u in (ay, b,,).

If u has no atoms in (a,, b,,), then V¥f = V¥fae. [u]on [0, b,]. Thus, by (8),
it follows that (V}f, g) = (V&f, g) = (VEf, ). Now the conclusion follows from
Theorem A for the usual Volterra operator V.

Suppose now that y has at least one atom in (g, b,,). From Lemma 3 it follows
that

n .

(%) Y, fixh; =0 ae.[o] on [0,d,].

i=0

Let n’ be the largest integer such that x,» < a,,. Let m’ be the smallest integer such
that x, < a,. Let i<n and te(0,d, —d,_,). Since d, ,<d,—t<d,,
it follows that Yy, c(d, — 1) = 1 and %o, xy(d,, — t) = 0. Now from the definition of #;
we conclude that

ho(t) = h(t) = ... = h(1) = gd, — 1)
and

Boy(t) = hpo(t) = ... =Ry y(®) =0
ae. [o] on (0, d,, — d,_1).

Let n' <i < n. Then a, < x;, and therefore ¥, ; = 0 and g(x;) = 0. Hence
h; =0 and #,,; = 0. Now from () we have

(x%) (fot+fit oo +Ff)xhg=0 ae. [6] on (0,d, — d,_,).
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By (4) we have

o+t h+ oo Ffi=AO0n + LA, 0n) + ... + 2 AW, n))f =
= (To + }-1)(T1 T ) e (T’_1 =+ ;‘n‘).f'

From fe L, and a = a, it follows that (T;_; + 1)) = (V, + A)f a.e. [u] on [a,, b).
Therefore aeS,((T;_, + A)f). Since (T;_, + A)f € L, the equality above implies
that aeS,(fy+f1+ ... + /). Hence Oe S,(fa +j~'1 + .. —}—f;,r). Now (=) and
Theorem B imply that /(1) = g(d,, — t) = 0 a.e. [¢] on (0, d,, — d,,- _,). Thus from
the definition of & we conclude that g = 0 a.e. [6] on (a;, b;) for m’ < i < m. Now
it follows immediately from Lemma 1 that Vfg = 0 a.e. [y] on [x,, c]. Write v =
= J@aVFg. Then ve L, and v = 0 a.e. [g] on [x,, c]. Let v be the measure on X
such that v and p coincide on X\{x,}, and v({x,}) = 0. Let ¥, be the integral

operator induced by v on L,(X, v); then (Vif)(t) = (VEf)(1) for ¢ in [0, x,). Therefore

(VEf, v), = S (VEF)O)u() dv(E) =
la,xn)
- S (VEF) (PEe)D) dut) =

[a, xn7)

= (Vi Vig) =0

for all integers k > 0. Since the set of atoms of v is {x;, X, - .., X,} \ {x,}, by
induction it follows that v = 0 a.e. [v] on X. Now v(x,-) = O implies that Vg =0
a.e. [¢] on (a, c]. From this, as in the proof of Lemma 1, it follows that g = 0 a.e.
{1] on (a, c]. Hence g = 0.

To complete the proof of the lemma when a = a,, we take any element g
in L, © M. Since p is purely atomic on [b,,, ¢], from Lemma 1 it follows that V#g=0
a.e. [1] on [b,, c], where p is the number of atoms of pin[b,, cl. If g1, = x@ Vg,
then g;€ L, © M and g, = 0 a.e. [¢] on [b,, c]. Therefore g, = 0. Thus Vg =0
a.e. [#] on (a, c]. As in the proof of Lemma 1 we conclude that g = 0 a.e. [u] on
(a, c]. Hence g = 0.

The case when @, < a < b, can be reduced to the case just considered because
(VEf, &), = (Vif, ), where n is the measure on X defined by n(E) = p(En [a, c])
for every Borel set £ in X.Z

COROLLARY 1. Let f be an element of L, such that a € S,(f). Let M be the span
of all vectors f,V,f,V.f, ... . Then

W M=L, if fa=0,
and

(i) M=L, if fida #0.
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Proof. (i) If f g = 0, then fe L. If b,, < a, then L, is a finite dimensional
subspace and V,|L; is similar to a Jordan block, and the result follows easily. Assume
thata < b,,. Let v be the measure on X such that v and p coincide on {xy, x5, .. ., x,} U

U (a, ¢] and v((a;, b;)) = 0 for all the subintervals (q;, ;) which are contained in
[0, a]. Then L, = L, ((a, ], v) and a € S(f). Furthermore, V}f = V¥ for all k>0.
An application of Lemma 4 to the measure v implies that the span of the vectors
L Vo Vi, - .. is equal to Ly((a, ], v). Therefore M = L.

(i) If f+ x # O, then a is anatom of pand f(a) # 0.1f f; = V, fthen fie L,
and a € S (f}). Therefore from (i) it follows that L, < M. Now f(a) # 0 and fe M
imply that L, = M. Hence M = L.

Proof of Theorem A. For fin Ly(X, i) we denote by a(f) the infimum of the
pu-support of f.

Let M be aninvariant subspace for V. If a = inf{a(f): fe M}, then M < L,.
Let {f,}?2, be a sequence in M such that a(f,) = a (k — co). From Corollary 1 it
follows that Lyysyc M for all k > 1. Therefore L, = M < L,. Since the codimen-
sion of L, with respect to L, is either zero or one, it follows that M = L] or
M=L, 7
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