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ESTIMATES OF FUNCTIONS OF POWER BOUNDED
OPERATORS ON HILBERT SPACES

VLADIMIR V. PELLER

1. INTRODUCTION

One of the basic methods in the spectral theory of operators is the construc-
tion of a rich functional calculus for the class of operators under investigation. The
main difficulty to construct such a calculus is to obtain sharp estimates of norms of
functions of operators. The most famous and important inequality of this type is
J. von Neumann’s inequality [14]:

lo)Il < sup{ ()] : e D} =g .,

for any contraction T (i.e. [[T{ < 1) on a Hilbert space and for any complex
polynomial ¢.

The main problem treated in this paper is the investigation of the class of
power bounded operators on a Hilbert space, 1.e. such operators T that ||T"|| < const,
n = 0. In other words the problem is to calculate explicitly the norm

ol = sup{lle@)1| : |77 < ¢, n > 0}, ¢ > 1,

on the set of polynomials.

If T is an invertible operator with [|T”] < const, ne Z, it follows from
B.Sz.-Nagy’s theorem [18] that 7" is similar to a unitary operator and thus for any
trigonometric polynomial ¢ the following inequality holds

le(D)] < const i@l -

However S. R. Foguel [8] constructed an operator T on a Hilbert space such
that || T"]] < const, n > 0, but T is not similar to a contraction. This operator is
defined on £2@7? by the operator matrix

T = (S* Q)s
0 S

11 ~ 1789
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where S is the shift operator on £2(S(x,, x;, ...) = (0, x,, x,, ...)) and Q is the
orthogonal projection onto the subspace of £2 spanned by {e,:k = 3", neZ,}.
A. Lebow [11] showed that this operator is not polynomially bounded, i.e. for any
k>0 there exists a polynomial ¢ such that

lo(T) ! > ko) o

Besides the power bounded operators we consider the operators with the growth
of powers of order a, o > 0, i.e. operators T satisfying || 7|l <const(l + #*), ne Z,.
It is evident that for any operator T on a Banach space such that
i7" < const(l + n)%, ne Z,, the following inequality holds

(1 lo(T)]| < const Y1gMm)| (1 +n)®, ¢eP,,

(2, stands for the set of complex polynomials). It is impossible to improve this
inequality on the class of all Banach spaces because if y is multiplication by z
in the algebra

Fllo={f=FJ07 U1, =TI+ < + oo}

then (|77} < const(l + n)* and ||@(T)|[>const ¥, | @(n) | (n + 1)*. We are inte-

Rz
rested in the following question. Is it possible to improve the inequality
(1) for operators on Hilbert spaces? This is equivalent to the question of whether
ZF¢l, is an operator algebra. (Recall that a Banach algebra is called an operator
algebra if it is isomorphic to a subalgebra of the algebra of bounded operators on a
Hilbert space.)
Indeed if F¢{,, 1s an operator algebra, there exists an operator T on a Hilbert

space such that [|e(T)|| < ||¢ ”ml and so the estimate (1) cannot be strengthened.
(@)
Conversely if (1) cannot be improved, there exists § > 0 such that for any polynomial

¢ there exists an operator @, such that |Qg| < const(l + n)%n > 0, and
i h> 6lg
10(Q,) 2 5..(/).,,,,%1). Put

Rz@Q(ps
@

the orthogonal sum being taken over a countable dense subset of the unit ball of
F{Y,,. It is evident that the mapping ¢ — @(R) is an embedding of #¢},, into the
algebra of operators on a Hilbert space.

It was N. Th. Varopoulos {20] who firstly obtained non-trivial estimates of
1@(T)] for operators satisfying | 7" < const(l 4 n)% x>0. Namely he showed that

lo(T)ii < k, sup} Y, @(n) n?+e ("]

18« nz0
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for any ¢ > 0. Moreover he proved that

lo(D)ll < kil 35 ¢(n) n>* (log(2 + m)'+ 27| . & > 0,

nzo

oMl < &l szp(n) (1 + n)**log(2 + n) (log log(n + 3))'** 2"|| ., ¢ >0,

etc. He deduced from these estimates that for a < 1/2 the algebra %7, is not an
operator algebra.

It turned out (N. Th. Varopoulos [20]) that for a>1/2 #¢7,, is a Q-algebra.
Recall that a Banach algebra B is called an isometric Q-algebra if there exists a
compact K, a subalgebra A of the algebra C(K) of continuous functions on K and
an ideal I of A such that B is isometric to the algebra A/I. An algebra isomorphic
to an isometric Q-algebra is called a Q-algebra. By B. Cole’s theorem (see [23])
each Q-algebra is an operator algebra. The converse is false as N. Th. Varopoulos
showed [22].

Therefore for a > 1/2, #/}, is an operator algebra and thus the inequality
(1) cannot be improved. In N. Th. Varopoulos’s papers [20], [21] it is shown that
F (e is not a Q-algebra. Applying a result of Ph. Charpentier [4] it follows that
F¢l2 Is not an operator algebra.

In §3 we obtain estimates of operator polynomials for operators satisfying
|T"|I< const (1 +mn)*, neZ,, 0 <a < 1/2. These estimates are more precise than
those of N. Th. Varopoulos [20]. If « = 0, the estimate is given in terms of the Hankel

matrices of the class [“é £% and in terms of multipliers of the Hardy class H'.
The main tool for obtaining these estimates is the Grothendieck inequality [9].

In [7] A. M. Davie constructed an example of a power bounded element in
a Q-algebra which is not polynomially bounded. The calculation of norms of its
functions yields estimates from bellow for |||~ ill,. In §4 we compare these esti-
mates from bellow with those from above obtained in § 3. We also show that
A. M. Davie’s example is extremal on the class of all Q-a]gebras. We give in §4a
sufficient condition for a Hankel matrix to belong to /“@) £*. In conclusion of
the section we present an analogue of A. M. Davie’s example for the case of the
growth of powers of order o.

In § 5 we describe the Hankel matrices of the class /* éﬂ (the bounded
Hankel operators from ¢, to £'). As a consequence of this we prove that the natural
projection (averaging projection) onto the set of Hankel matrices is unbounded on
L1 @0 and £° @ £

In § 6 we present new examples of power bounded non-polynomially bounded
operators. These operators are constructed using the Hankel opzrators. The functions

of these operators can be calculated explicitly. This permits us to obtain explicit
estimates from bellow for {I'- 'l and to construct examples of operator algebras.
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Moreover applying estimates from above obtained in § 3 to these operators we
obtain some embedding theorems. In conclusion we consider the case of the growth
of powers of order a.

In § 7 we state some open problems.

Acknowledgement. 1 would like to express my deep gratitude to S. V. Hru§cev
S. V. Kisliakov, N. K. Nikol’skii and S. A. Vinogradov for numerous helpful,
discussions.

2. PRELIMINARIES

A ~ A
TENSOR ALGEBRAS OVER DISCRETE SPACES. We denote by /* @/ ® ... ®F™

n

the set of tensors {y(k,, ..., ku)}i,»0 Which admit a representation

ke, .. k) =Y, V) [Pks) - (K,

jz0

where ;" €/, j >0, 1<r<n, and Y, 15}’}“}}[& o WM e < 4 00
iz0

The space /£ é £ (';9 e (:9 £ is supplied with the following norm

n

~vi=inf{ goiif,-“’ffloo e B SV L K = ks K
J

5o
Denote by ¥ the set of tensors y = {y(k;, ..., k,)}¢,>0 such that supii Pyyl' < oo,
N

where

LK), Ky <N, ...k, <N

'Y(kl’ ..
Py, ... k,) =
(Pwy)(ky ) { 0 otherwise.

Denote by Vi =/ é[l (;) éfl the completion of the tensor product

n

T R®MA® ... ®Lrin the norm

n

1| {y(kl: cee k")}"'i?“)lv']yn =
=

== SUP{]kgo?(kn cees kn)f(l)(kl) o f(")(k") :“f(j).l?gco <L 1 <j< n}-
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Then (VL)* = V" with respect to the duality

(y, B) = Z y(kl" . 'skn) ﬁ(kl’ :e ‘skn);

k‘.>0

here y is a tensor in ¥} whose entries vanish except a finite number and f € V.

For n = 2 the space £* é)t’l can be naturally identified with the space of all
bounded operators from ¢, to /*. Note that each bounded operator from ¢, to £

is compact. The espace /* 69 £% is identified with the space of nuclear operators
from (' to £%°. For the properties of V", V% see [19].

We need the following apparently known assertion.

Lemma 2.1, Let S;, 1 <i< M, be sets in Z". whose projections to the coordinate
axes are disjoint. Let y,€(® ® ... @ (™ and suppy,c S, Then

n

= sup |[y;]l

[ ?i”loogloog-“{oo T icienm (o oo

1gisM

Proof. To simplify notations we suppose n = 2. Clearly we can suppose
M=:2. Let S, XJy, Ssal, X J,, where InL =0, J;nJ,=O. Let

))I(ka m) = Z 5jfjgl)(‘k)g,§])(’n)r 72<k3 HI) = Z 5j 1'(2)(k)g_1(2)(n1)’

j=0 jzo

where

suppfiV = I,, suppg’ = J;, suppfi? < I,, suppg? < J,
”fj(l)”(w £l Hg}”i"[oo <1, fff}z)”loo <1, Hgf)H[oo <L

Let us show that {| 7, 4 7ell eon 0 < ):,Oé)'j. Define functions (", 0@, ¥, y by
Ed

J

’
127000, kel 12fP®), kel
o0 =12 10K, kel, ;i eP@={-127200, kel ;
0 , kel ul, 0 , kelLiul
gVm), meld, gl(m), mel;
WO = gPlm), med 5 YPm) =] —gPm), mel,

0 , meJuJ, 0 , meJul..
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It is easy to check that
(1 + po)kam) = Y 3,00(k) ¥iV(m) + Y, 8,07 (k) Y (m)
jz0 jz0
and

HV1+'Y2I°°"OO<Z(SJ" Z

el IEY)

SCHUR MULTIPLIERS. A matrix 4 = {a@,}, x>, 1S called a Schur multiplier of
the space (/%) of bounded operators on /2 if for any bounded operator
B = {b,},. k5o on<?the matrix

AxB= {ankbnk}lr.l\'>0

generates a bounded operator on £2. 1t is easy to see that if 4 € V? then A4 is a Schur
multiplier. Indeed, it is sufficient to verify this for the case A = {a,}, 150
Qui; = fuSk» Where {f}uso, {i}rs0€¢™. Butin thiscase 4 x B = 9,BJ, where 7 ,
and &, are diagonal operators on ¢2 generated by {/,}s»0 and {g,}us0. It turns out
that the converse is also true: each Schur multiplier of the space of bounded opera-
tors on £2 belongs to V2 {2].

GROTHENDIECK INEQUALITY. Let y = {y}n 120€? R L. Suppose that {x,},>,.
{Va}u=o are sequences of elements of the unit ball of a Hilbert space. Then

N . 1 (ot
Z /nk(’\myk) S kGll 7 3 é 71
mk>0

for a constant kg > 0. This inequality is called the Grothendieck inequality ([9],
[12]). In other words Grothendieck inequality means that the matrix {(x,, 2)}u. x50
belongs to V2,

FUNCTION cLASSES. Denote by H”, ! <p< +o00, the Hardy class of functions

analytic in the unit disc D = {{ :;{, < 1} and such that

1/p
“fNHp ZOquI(Sif(rC)'P dnz({)) < 4+ o0, p< -+ oo,

T
T = supif Q) < + oo,
;eD

where m is the normalized Lebesgue measure on T. We do not distinguish notatio-
nally between the H” functions and their boundary values on T. Thus the following

equality holds
HP = {fe L? ;f‘(n) =0ifn <0}, l1<p<oo,
where ‘?'(‘n) is the n-th Fourier coefficient of f, fe L? = L(T, m).
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If felLtthen P, Y f(n)z", P_f= f—P.f. Denote by BMO,(VMO,)

n>o

the space of functions ¢ analytic in D and such that ¢ = P,g for a function g
in L= (in C(T)),

19 llawo, = inf{lgll _, - P.g = ¢}.

By the Hahn-Banach theorem (VMO )* = H', (H)* = BMO,, with respect to the
natural duality

(f.8)= lim] Sf (r0) g(rD) dm({)

T

or (f, g) = ZO}'(”) g(n) if one of the functions is a polynomial.

The kernels Wy, N>0, are defined as follows. If N > 0 then WN(2N) =1,
WN = 0 outside (2V~!, 2V¥+1) and WN is a linear function on the intervals
[2V-1 2N and 2V, 2N+, W, <y + z. Itis easy to see that || Wy||,1 <3/2, N >0.

The Besov classes of analytic functions B;,, 1<p<+4 oo, 1 <g<+ 00, se R
are defined as follows

fe B e (Y, QX[ W, [f]] )OI < + 00, ¢ < 00,

nzo

€ Biey = sUp | W, % f |, < + oo

nz0
These classes have also the following description.
1

feBy, @S(l —rya=sa=y fm)?,dr < 4+ 00, g < + oo,

[

€ Bieg > sup (L — ry=| f]] , < + oo,
0<r<l

where n is an integer such that n > s and £/™({) gf‘")(rC), {eT.
If s > 0 then the classes Bj, can be defined by

T

n a
fer,q@S lli]'_f_llLﬁdt < 400, ¢ < + o0,
|t +sa
f€ By <> sup HA?fHLf < 4 oo,

PR
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where n is an integer such that n > 0, A7 = 4,47~ and (4, f)(E") =
= f(E1) — f ).

We shall use the following notation: B,, = B,, Bie,=4A;. f 0 <s< 1,
the class A, consists of analytic in D functions satisfying the Hélder condition
of order s, the class A, coincides with the Zygmund class. The closure of the set
of polynomials in A; is denoted by A;.

The dual spaces can be described as follows.

(Bi)* = Byt if g < + oo, where p' = -2 — ¢ =. L,
p—1 qg—1
()% = Br*
with respect to the natural duality.
If I,f=7Y f(n)(1+n)*z" then I,BS, = B}*, acR. For the detailed

nz0

information on the Besov classes see [1], [17].

HANKEL OPERATORS. If fis an analytic function in D, the Hankel matrix I',
is defined by

Iy= {f(“ + K)o rz0-

Z. Nehari’s theorem [13] yields a criterion for [, to be bounded on¢?%: I is a matrix
of a bounded operator on £2 if and only if fe BMO ; |T;|| = iif’.iBMoA-

3. ESTIMATES FROM ABOVE

In this section using the Grothendieck inequality we obtain some estimates
from above of polynomials of powers bounded operators. The obtained estimates
permit us to construct a functional calculus for such operators. Further we consider
the case of the growth of powers of orders a.

Denote by % the class of functions f analytic in D for which there exists
(Vb Sm, k50 €41 ® ¢* such that f(n) = Y, Ve, 7 =0 Put

m-k =n

1 " : * . A
llfffl-?: lnf{l.t{'\}mk}m,k>0‘:![1§;1 . Z Vi = (P(”)}'

my-k=n

THEOREM 3.1. Let T be an operator on a Hilbert space satisfying 'T"!| < ¢,
neZ,.. Then

(M)} < Clzksii‘!’“:z

SJor any polynomial ¢.
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Proof. Let x,ye, ||x||=|lp|=1 and {y,i}m x>0 be @ complex matrix
whose entries vanish except a finite number. Suppose that Y}, 7, = o(n). We have
mik=n

(P(Mx, ) =Y, o) Tx. y) = Y, 7u(T"T*x, p) =

n>0 m, k>0

= Skj> OVInk(Tkx! (T*)my)'

Since || T*x|| < ¢, [|(T*)™y{|< ¢, it follows from the Grothendieck inequality (see § 2)
that

|((P(T) X, y)l < kGC2”{ymk}m,k>0”(1551 .
Therefore ||o(T)|| < ksclle|l,. %

Recall that a matrix {f,,},.x>, is called a Hankel matrix if there exists a
sequence {x,},>, satisfying B, = x4z, m, ke Z,. If ¢ is an analytic function
in the unit disc, we denote by I', the Hankel matrix

F(p == {(/b(m + k)}m,k>0 .

Using the duality between ¢! (;9 ¢and V2, Theorem 3.1 can be stated as follows.

COROLLARY 3.2. Let T be an operator on a Hilbert space satisfying ||T"| < ¢,
neZ, . Then for any polynomial ¢

o)l < kg sup{l(p, ¥)| : [Ty ll,» < 1}. %

Recall that (¢, %) = ¥ d(n)i(n).

nz0
The obtained results permit us to find more explicit estimates of polynomials
of power bounded operators.

DEFINITION. An analytic function ¥ in D is called a multiplier of H* if
feH'= f+xy =Y, f'(n)xz(n)z" e H.
nzo

We denote by .#H* the space of all multipliers of H*, the norm of ¥ in .#ZH!
being defined as the norm of the operator f +— f  on H*.

The following assertion seems to be well-known (see for example [2]).
Lemma 33. If 'y € V? then o e JLH*.

Proof. Since I'y, € V2, I, is a Schur multiplier of the space of bounded operators
on £* (see §2). Therefore for any bounded operator I'; on £ the Schur product
I'yxTI, is also a bounded operator. Obviously I'y, Iy = I'y,,. By Z. Nehari’s
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theorem I is bounded if and only if fe BMO, (see § 2). It follows that ¥ is a multi-
plier of BMO,, i.e.

e BMO, =y =fe BMO,.
Since (HY)* == BMO,, we have y e /H". N

CORCLLARY 3.4. Ler T be a power bounded operator on a Hilbert space.
T hen

lo(T) || < const-sup{|(p, ¥)! : "l,l/lﬂ,,x <1}
for any polvnomial ¢. Y

Consider the following function space.

def .
VMO, H' S (o= 3, fr52, /e VMO, g HY, BN, o 8al <00}

ﬂ1> m2
Define the norm in VMO, @ H, by

1t o G _i“f{,,é fnlvao 18n" lgoﬁ,,+g,n—¢}

It is easy to see that (VMO @ HY* = 4 H" with respect to the natural duality.
Indced, let ¢ = Z fon % &m» W e A/ H". Then

mz0

l((p’ lp)' = | 2 (f;n * Lo l//)I = | Z (fm’ &m * l//)I <
< D lifulvwo, [18nx ¥ i< const 3 ifulyazo i8m' -

Hence y e (VMO, @ HY*,
Conversely, let Y e (VMO , ® H')* and g be a polynomial. We have

{:g::: l//I?;ﬂ = SUP{;(f, g* !//) : j,ftvy,woA < 1} =
= sup{|(f=g ¥ : [If! MO, <1} <yl

So Y e HH.
Thus the following assertion is valid.

wato & e 18l

THEOREM 3.5. Let T be a power bounded operator on a Hilbert space. Then

Lo(T)!" < constljg| vmo, ®H1

for any polynomial ¢. 2
Now we are going to show that VMO, A@ H!'is a Banach algebra with respect
to the pointwise multiplication and so Theorem 3.5 enables us to construct a function-

al calculus on the class VMO, ée H* for the power bounded operatots.

Lemma 3.6. VMO, @ H' is a Banach algebra with respect to the pointwise
multiplication.
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Proof. It is sufficient to prove the following assertion. Let fi,/;,8:, 8.
be polynomials, then

(A *g) (fexgo)ll

VMOA®HL< H fl HVMOA”f2 HVMOA“gl HHngg “H1 .

Choose trigonometric polynomials fl,f~2 such that P, f, =1, Hfi”L°° <
< (1 + 8)||f.'HVMoA, i=1,2. Obviously fixg, = fi#g;, i=12.

For se T put §,0) = f1(0)fas8), 0e T, o, = P, o, Y1) = g.(1)gu(s5),
e T. Let us show that

(i %80 (farge) = S% v, dm(s)

T
and

SH (Ps”VMoAHl//sHHIdm(S) < Hfl”[}’o Hﬁ.&”LOO Hgli!HngzHHl-
T

~

After that, the proof will be finished because the integral S @, * Y dm(s) can be

T
approximated by Riemann sums. We have H(ps||VMOA< H‘T’sHLoo sl]f'lllLooHﬁ_,I[Lm.

Therefore

S 105 Tlyaro [1Wslpdm(s) < 11 1l Fall o SS 1£:0)] - lga(e5)| de ds =
T TT

= 11£sll ool F1l o 11 &1 Lzl 2 -

It remains to show that (f,* &) (fa*gs) = S @, * Y dm(s) or equivalently

T
(Forg) Favgs) = S B, % U, dm(s). We have
T

( S Bor v, dm(s))(c) — SS 3,000 (L8) dm(68) dm(s) =
T

TT

- nglw) 7i(59) £x(B) go(£05) dm(B) dm(s) =

TT
— Sﬁw) £:(L8) dm(6) gfz(S) 2((5) dm(s) =
T T

= ((f; * 2) ON(fz * £ (©)). 7
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COROLLARY 3.7. Let T be a power bounded operator on a Hilbert space.
Then the mapping ¢ — @(T) defined on the set of polynomials can be extended to a

bounded linear homomorphism from VMO , é HYinto the algebra of bounded operators.

The obtained results enable us to construct the functional calculus on the
class BY,. Recall (see §2) that

1

peBl = Y 03 Wyl,m< + ooangnﬁdr < + oo

Nz0
0

It is evident that B%, < H* and that BY, is a Banach algebra with respect
to the pointwise multiplication because

1

Sll(fg)illLoo dr < nfanSng: oo dr + uguLwS TAR

0

THEOREM 3.8. Let T be a power bounded operator on a Hilbert space.
Then

(D) < constilfpllggﬂ, pePy,

and the mapping @ — @(T') can be extended to a representation of the algebra BY,
into the algebra of bounded operators.

Proof. Let us show that BY,; «c VMO, é H? and that this embedding is conti-
nuous. Put Qy = Wy_; 4+ Wy + Wy,,, N>0. Clearly | Oxli,x <9/2 and

Oy Wy =W,
Let ¢ € BY,. We have

¢ = Z(P*WNZ(P*W()'*‘X(‘P*WN)*QN-
N>0 N>1

Therefore

100,00 @ < DO+ BN + 5 110 % Willyago 10013 <

N>

A A 9
< leO) + ()] + X o= Wyll o < constijg|lg - %

N>1

Note that the estimate of [!¢(T)| given in Theorem 3.8 is better than that
of N.Th. Varopoulos [20].
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CoROLLARY 3.9. Let T be a power bounded operator on a Hilbert space.
Then there exists a positive M such that for any polynomial ¢ of degree n the follow-
ing inequality holds

1o(T)l| < M logln + 2) |9l o 7

Note that the trivial estimate || @(T)| < const ¥, |¢(n)| yields the inequality
nz0

l@(T)|| < const |/deg o.
We have obtained the following inequalities

l@lll. <constjjelle < const llq’HVMOAéHl < const[[@|lgo -

Naturally arises the question of whether these estimates are precise. In other
words, does there exist ¢ > 1 such that the norm ||| - |||, is equivalent to one of the
ey 1l - A . ? int i i i
norms || - |lz, || ”VMOA®H1’ | Hﬂgol' As we pointed out in §1 this question
is equivalent to the following one:

Is it true that &, VMO, @ H', BS,, are operator algebras (with respect to

the pointwise multiplication)? For the classes ., VMO, ® H* the answer is un-
known. Moreover, I do not know whether % is a Banach algebra. Let us show
that the answer is negative for the class BY,;.

THEOREM 3.10. The Banach algebra BY,, is not an operator algebra.

Proof. Suppose BS, is an operator algebra. Then there exists an operator T’
on a Hilbert space such that

leMl=llolipe » @€Py-

Since [|z"]|50 ) < const, we have ||T| <const, n>0. It follows that
(=]

e lle <) '“mo/é@ylx I+ g0, - Hence BS,y=VMO,& H". Since (VMo ,® HY)*=

= 4 H"'and (B%,)* = B{,, (see § 2), it follows that B} = .# H". Recall that

t
0 € Bloy <> supll@ * Wy < + 00 < [of]l,x < fO"S , O<r<l.
N

But it is known (see [10], [16]) that there exists an analytic function ¢ such that
onst

and ¢ ¢ #H. %

, C
”(pr HLI € 1

Now we proceed to the operators satisfying |T"]| < ¢(1 +n)®*, neZ,. The
following assertion can be proved just as in Theorem 3.1.
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THEOREM 3.11. Let T be an operator on a Hilbert space such that |T"|| <
<cl4+n*neZ,, « > 0. Then

”(P(T)” < kG(:2 lnf{” {Ymk(l + m)a (l + k)u}m.kD()Hglégl :m+;="‘ymk = (’5(’7)}

Jor any polynomial ¢. %

Given an analytic in D function ¢, B € R, we denote by I the matrix

8= {iom + k) (1 + mP (1 + K}msso-

Using the duality arguments Theorem 3.11 can be stated as follows.

(D)1l < kge*sup{l(e, ¥)I - IT7=1l,2 < 2}, 0 e Py

It is well-known that I'i, o > 0, determines a bounded operator on £2
if and only if ¢ € 4,,. We need only the following implication which can be easily
proved.

@ € Aoy, = I' € B(L2).

Indeed let x = {x,}p>0, ¥ = {Vn}n>o €% Then
(T's x, y) = (¢, FG),

where F= Y (1 +nx2", G=Y (1 +nPyz". It is evident that

n>0 nzo

SS |FI*(1 — jz)*¢~1dxdy < + oo and SS |GI3(1 — ]z])**~}dxdy < +- co. There-

fore FG e B2 (see § 2). The result follows from the fact that (B 3®)* = A,,
(see § 2).
If I';*e V2 then I';® is a Schur multiplier of the space of bounded operators

and since I'y®x I't=T, ,, it follows that ¢ is a multiplier from A,, to
BMO,, i.e.

fed,,=f=yeBMO,.
Therefore

lo(D)l < COHStH(PHH,éAM SEinf{ Y, 1| fullgligalla,, :"§oﬁ * gy = .

nzo

As in the case o = 0 it is easy to show that

o)1l < constl|@ ||z
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where BZ) = {9 : Y llo* W,| B 2N < + co}. This estimate strengthens the
nz0

results of N. Th. Varopoulos {20]. In particular it follows that

Fly = {0 : Y, 1M1 + n)* < + oo}

nzo

is not an operator algebra.

It is possible to obtain one more sufficient condition for I';®e V2. Namely
if e BMO then I';?, is a bounded operator on ¢2. It follows that

lo(T) | < const-inf{ %, [flvumo, Tl&n.tllug Mmallvg 0 = % fox T £ s

where Wi = {g : ¥, |g2(n)>n** < + oo}.

n>0

4. A.M. DAVIE’S EXAMPLE

In [7] A. M. Davie constructed an example of a power bounded element
in a Q-algebra which is not polynomially bounded. In this section we show that
this example is extremal on the class of all Q-algebras. A. M. Davie’s example
yields an estimate from below of the norm || - }j|,. Here we discuss the relations between
this estimate and those from above obtained in § 3. Roughly speaking the distinction
between these estimates is that in the case of A. M. Davie’s example besides the Hankel

M
matrices in V2 it is necessary to consider the Hankel tensors I, in VM, where

M A
ry={yk, + ...+ kM)}k1 ..... K

0"

M
We obtain a sufficient condition on y for Iy, € V™. In conclusion we give an analogue
of A. M. Davie’s example for the case of the growth of powers of order a.

A. M. DAVIE’'S EXAMPLE. Let D, ={(:[{| < ¢}, ¢> 1, K=D% be the
space of sequences ({;, {s,. . .), {, €D, endowed with the product topology. Denote
by B, the closed subalgebra of C(K) generated by the coordinate functions
Zk(Cla CQ,- . ) = Ck . Put

i:D X, i) =@, ..).

If fe C(K), set pf &l £o i. The algebra 2, consists of those functions g analytic in D
for which there exists f'e B, such that pf = g. Define

def . 3

ligllg, = inf{|iflla, : pf = g}.
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Then &, is an isometric Q-algebra and its element z is power bounded. Indeed
z" = pz, and 50 ||z"|l_ < c. A. M. Davie [7] showed that for ¢ > 4¢ this element
is not polynomially bounded or more precisely

l@llg, > const Eolc’ﬁ(zn)[.

n>

The following assertion says that A. M. Davie’s example is extremal on the
class of all Q-algebras.

LEMMA 4.1. Let A be an isometric Q-algebra, xec A, ¢ > 1, |ix"l4 < ¢,
n = 0. Then || p(x)|| < ll¢llg, for any polynomial ¢.

Proof. Let f be a polynomial in B, such that pf = ¢ and Hfugc <o [3@6 + &,
e > 0. We have

(D(.X) =f(x7 X% .. 2

Since . is an isometric Q-algebra, {[@(x)|[ < [[flls, < ll@ll, + &

The following assertions permit us to estimate || - [|p_ in terms of the Hankel

tensors. Recall that VM =1 é)ﬂ é ®vf1.

~

M

ProrosITION 4.2. 1) Let ¢ be a polynomial. Then there exists a sequence
{@.}2>0 Of polynomials such that ¢ =Y, ¢,,

n>0

M)
(/bM(k) Z al(cl""’kM’
kyterdky =k

M) - M M) 2e\M
where a™ eV and |a []V¥< =] llela,-
c
2) Let L>1, a™MeVi, [a®™[ v < L™ Let ¢ =Y ¢y, where
# M>0

POyl = Y a . . Then ¢ €g, for ¢ < L.
k1+...+'b‘M=k M
Proof. 1) Suppose that i](p]!g,c = 1. Let f be a polynomial in B, such that
pf= ¢ and |[<pl[3c <1+e¢ e€>0 We have f= Y, P, where P, is a homo-

M20
geneous polynomial of degree M. Since |if[s <1+¢itfollows that HPlegcsl + ¢

(to prove this well-known assertion (see for example [6]) it is sufficient to
consider the function F({) = f({z,,{z,,...) and to estimate ﬁ(M)). Therefore

sup 1Py (L1, Cay- - ) < (1 + &)™,
18,1 <1
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Put
PM((D 523 .. ) :,\ Z }a;cM)Ckl L CkMa

= (ko Ky

where g™ is a tensor symmetric with respect to permutations of the coordinates.
Then by A. M. Davie’s Lemma ([6), Lemma 2.1) we have

1%l g0 < Qe sup 1Pu(Gr, G- )< QUL+ 0).

Put @, = pP,. Obviously @, (k) = y a
ki Fhpyp=k "V

2) It iseasy toseethat ¢, = p Y a2, .. 2z,
ks (ko k)

Therefore
c\M
< YY) ez ...z <Y Mgy < —) <+ o0 W
leliz. M>0“ Ok ey, 1\; I ”Vﬁ” ; (L)

Using the duality arguments we can obtain the following version of Propo-
sition 4.2.

PRrOPOSITION 4.3. Let Y be an analytic function in D.

) If ‘I?"IW{IVM < LM then € (D )* for ¢ > 2Le.

2) If 9e(@)* and L > c then |I',||,» < const LM, S
Thus the problem of description of 2, is related to that of description of the

M
Hankel tensors I', of the class V™. For M = 2 this is equivalent to the question of
characterizing the Hankel-Schur multipliers of the space of bounded operators
on /2. The latter problem was posed by G. Bennett [2]. In § 3 we mentioned that if
Iy, € V2 then ¢ is a multiplier of A#*. N. Th. Varopoulos’s theorem [19] gives a suffi-
cient condition for I'y, € V2: if @(n) = ji(n), n€ Z,, for a complex measure g on T
then I'ye V2 and ||I',]l,- < Varu. This assertion can be proved as follows.
If p=29, is the d-measure at {eT then f(n+ k) =e~"e~* and so
1H{A@ + K)}ksoll,2 < 1. Now the result follows from the fact that the convex com-
binations of the measures Ad,, |A| <1, { € T, are weakly dense in the unit ball of the
M
space of borelian measures. Clearly the same arguments show that ||, ||, »<1
if Y(n) = i(n), ne Z,, and Varu < 1.
M
We give another sufficient condition for || I, ||,» < LM
THEOREM 4.4. Let {s;};>, be a sequence of positive numbers such that

S; A
I > 6 > 1and {F}};», be a sequence of polynomials such that suppF; < [s;, s;41)

Sj
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and F =Y, F;. Suppose that
i>1
\supiFi@) dm@) < + o
J

T

M M
Then I'pe VM and || I'g||,m < const - 2™,
Proof. For the sake of simplicity we give the proof for the case M = 2. More-

over we suppose §; = 2/,
We have F = FW 4 F®, where FO) = )] Fyj, F® = Z Fyj4+;. Let usshow

izl
that I ) € V2 The fact that I' () € ¥ can be proved by the same arguments.
F

Put
S, = EUZ {m, k): 29 < m+ k < 2041 » 281}
J€Z,
S, eé) {m k): 229 < m+ k < 2241, | > 291},
J€Z+
S;=5;NS.
Clearly
Foo =T o)s, + T s, — T s,
By Lemma 2.1
W s,y < UL gxs, b pe
Obviously

“F,_.u)xs1 HV'-* = ”FFu)XSg“Vz'

It remains to estimate |[I' x5 ', Suppose that F;=O except a finite number

of /’s. We are going to obtain an estimate depending only onSsup}Fj(C){dm(Z).
J
T

Put
22j-1 <m< 22j+1’

Solm) = sz(cio) e~ im0,
glk) = e~ 0,

It is easy to check that I'F(l);(s1 = ;1— Sfo ® g,d0. Indeed if (m, k)e S, then

T

F u)(m + k) = P S Jo(m)g,(k) d0. If (m, k) ¢ S, then —1— S Tom)g (k) d0=l?2j(m+k),
n

-
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where j satisfies the relation 22/-1 < m < 22/+1, But in this case ﬁzj(m + k)=
k4
Therefore I ks, = 51; S fo®g, d0. Approximating this integral by Riemann

-n

sums we obtain that

1 [ 1 C . ]
1T, s, le < = \ /ol o180l 0 df < — \ suplFy(e?)| db. %
27 ¢ ¢ 2n J

4

COROLLARY 4.5. If

Ssgm(h W) dmQ) < + oo
T

then
M
1Ty ]l,m < const.2M, N

This implies that HF¢ <const-2M if Y=Y c¢,22° and {c,},>0 €L

nz0

Thus we obtain A. M. Davie’s Theorem: if ¢ > 4e then llellg, = const 2 |P(27).

22

COROLLARY 4.6. If F satisfies the hypothesis of Theorem 4.4 or Corollary 4.5
then Fe #H. %

The latter assertion can be proved by another way using the following des-
cription of H* (see [5]):

re @S( Y (7% WO dm() <+oo .
Nz0

T

The following question seems to be of interest. Suppose that I', € V%, does

it follow that I’,, e VM and ||F,,,||V < const - LM? The affirmative answer to this
question would imply that the estimate obtained in Theorem 3.1 is exact, i.e. for
some ¢ > 1

H(p HQC ;\/ H(P ”c : lnf{H {Ymk}m,kZO ”;1@551 : +§ Vmk = (/»\D(n)}a b e QA'
mik=n

If we consider the compact D, XD, ,¢ X ... XD, e X ... instead of D
we can construct analogously the Q-algebra 2{ for which ||z"|[,@ <c(r + 1)~
Just as in Lemma 4.1 it can be proved that this example is extremal on the class of
all elements x in Q-algebras satisfying ||x"|| < c¢(n + 1)% It is not difficult to obtain

analogues of Propositions 4.2 and 4.3. The analogue of Theorem 4.4 can be stated
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. . M
as follows. If suppF; < [2/,2/*!) and Ssup - dm({) <+ oo then I';e VM
N

T

L@l
2N (1

M
and |||, m < const-2M, where

M A
ootk k) =Wl + ..+ k) A+ k)™ ... (1 + kl\l)-—a}k‘%o-

It follows that for ¢ > 4e, |||l > const ¥} 2"g(2"), ¢ € 2. Since Ftly
¢ n>0

is a Q-algebra for o« > 1/2, it follows from the extremal property of z e 2% that for
a > 1/2

101o0 X X, 191 +

for some ¢ > 1.

5. HANKEL MATRICES IN £! ® £

In § 3 we showed that for a power bounded operator 7 on a Hilbert space
the following inequality holds

“(P(T)” < const - lnf{” {ymk}m,!s'?o”glggl : ‘*§ n Vmx = (lb(n)}’ ¢c g)A'
mke=

The question of minimizing the norm | {y,.},x>0lln8n arises in a natural way.
In particular, which norm on the set of polynomials will be induced if we choose
o(m + k)
m-+k
valent to that of description of the Hankel matrices in ¢! éﬂ. In this section we
obtain such a description from which it follows that this choice of the matrix
{Vmsx}mr»o0 18 not optimal. We deduce from this fact that the natural projection
(averaging projection) on the set of Hankel matrices is unbounded on £* (;)ﬂ,
£ 69 /° and V2. We also describe the space of analytic functions generated by the

{ Vet ene>0 PULtING Y. = ? The latter question is obviously equi-

products FG where F and G are analytic functions in D such that lim FA‘(n) sz

N n—>+4c0
= lim G() = 0.

n—» 400

Let &/ and & be operators from the set of matrices to the space of analytic
functions in D defined by

N
(dx) (n) = T T Z Xoiks X = {xmk}m,k)()’ n oz 0:
14
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THEOREM 5.1. o/ V2= BY , BV?= Bl
Recall that
B, = {filsvupllf* Wyllp < + oo}; Bid = {f:[I[f+Wyl|x < const-2V}.
>0
Proof. Clearly it is sufficient to show that #¥V?% = Bl To prove that #V?= B}
it suffices to establish that for f, g e/®

1B ® )1 < const 1] g
Put
F=Y fz5, G=Y gz~
k>0 k>0
Then B(f ® g) = F-G. We have
Wy« (F-G)=Wy=* Z f g, 2"k,

0<mk<2
Let
LN+ N1
Fy=% fat", Gy= Z &z~
m=0
Then
3] |
Wys(F-G)|l 1< | - g2k =
IWan (P Glps - %, o]
=3 F\G <3 F, G £3.2Y .
= S UEGH < 1 Fallz 1 Glle <3-271 o gl o
Thus

[ FGllp-1 < const |[f] o llg]l co-
Let us show that #V? o BiZl. For this it is sufficient to prove that for any se-
quence of functions {fy}y>, satisfying sup||f* Wyl|. < 4 oo there exists x & ¥'2
N

such that
.@x: Z 2NfN* WN‘
N>0

Define kernels L, and R, by

0 , kg2t
A Ik — 2V _
Ly(k) = | 1—"§'N—1 , V-l g2V 2N
0 s k2N 42N
0 , ks 2V
- _ lk— 2N _2N= 11 N N1
0 , ko> N4
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Then WN = LN + “]’A RN‘

We are going to find x € ¥* such that #x = ¥, 2*N fon,; % Loy, By the same

N21

way it can be proved that Y, 22Nfoy ., * Royyy € BV Y, 22Mf,0 x Loy € BV* and
Nz1 N>1

V. 22Nf,y s Ruy € BV

NB1

Let

Sy = [22N=1 2:N-1 1 22N __ 1] 3 [22N-1 ] 22N-1. )2N]

be the sets on the plane. Note that their projections to the coordinate axes are pair-
wise disjoint. Define x = {X,1}mi>0 DY

foxesm = K),  (m,k)e Sy
0

Xk

, (mk)¢ A'BJ] S

Then x = Z Iy Xsy BY N. Th. Varopoulos’s theorem [14] (see also § 4)
|

Wr Fansa [te const and by Lemma 2.1

Hxll,z = ;igilffgmxb-,vllye < Isvt;gllffmﬂllyz

It remains to note that Bx = Y, 22V foy ) # Loy.y. %
NT1
The following assertion which describes the Hankel matrices of theclass
£1 @ £* (the bounded Hankel operators from ¢, to £*) is a dual version of Theorem 5.1
THEOREM 5.2. Let ¢ be an analytic function in D. Then I',ef* ® S £1 if
and only if ¢ € Bl,;.

%
Recall that

ool = {(P 21\1‘([7 * WNH oo <+00} { SSH([);,HLOOdr < 4 oo}
D

It follows that if ¢ is a polynomial and we choose the matrix {y,4}u1>0 Such
that v, = Mtben

m-+k

H lymh}m k>0, '[13(1/\ 'I(p”Bgol.
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As we pointed out in § 3 this estimate is worse than that in Theorem 3.1. On the set
of matrices the averaging projection & onto the set of Hankel matrices is defined by

1
Py, =—— Ly O = {0 .
)st s + { _{__ 1 m+kZ_—s+t mk { mk}m,k>0

COROLLARY 5.3. 2 is unbounded on £* ® £, £{® @ £ and V.

Proof. Clearly it is sufficient to consider the case of V2. By Theorem 5.1
we have

PV:={l,:0e B}
If 2 would be bounded it would follow that
peBly=>T,eVi=qpedH
by Lemma 3.3. But as we pointed out in Theorem 3.10 B, \ ./ H! # (. @

Define the space F¢, of analytic functions in D by

. A def A
Fo={p: lim 50)=0}, [0l = sup |p0).
+ n

n~» - 00
COROLLARY 5.4. Let B be the space of functions F analytic in D and such that

F=Y 0,05 % [Wllsel¥lles, < + oo.
ji>0 i»0
Then

B = {F:lim 2% F » Wyl = 0} = {F:lim | ol (I —r) =0}
N r-i

This assertion easily follows from Theorem 5.1. 2

6. NON-POLYNOMIALLY BOUNDED POWER BOUNDED OPERATORS
ORIGINATED FROM THE HANKEL OPERATORS AND RELATED
OPERATOR ALGEBRAS

In this section we find one more example of non-polynomially bounded power
bounded operators. This operator is constructed using the Hankel operators and we
explicitly calculate norms of its functions. This permits us to obtain estimates from
below of ||| - |ll,. Using estimates from above given in § 3 we obtain some embed-
ding theorems. Moreover this example permits us to construct new operator alge-

bras. In conclusion we give an analogous example for the operators with the growth
of powers of order a.
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We show that for some g € L* the operator T on L? defined by
TF=zF — F(—1)+ P_gP,F, Fel?

1s power bounded but not polynomially bounded.
Instead of this operator we shall consider the following unitary equivalent
operator R, on ¢ @ /? defined by the operator matrix

b= (S,
7\o s

where S is the shift operator on /2.
It is easy to see that

n—-1
N CUBES G e N (G e
5= = =
0] S» 0] s”
because (S*)kIS"-k-1 = I goyn-1, for 0 <k<m — 1. Therefore
o(S*y I (S%f

R,) = ¢ , €P,.

o ( ) ( o o(S) 4 A

It follows that
leR X e ll,00 + 10" (S*) llamo,,-

By Z. Nehari’s theorem [13], |R}] < const if and only if H(S*)"f”,,MoA <

LeEMMA 6.1. Let fe BMO,, o > 0. Then fe A, if and only if H(S"“')"fI{BMOAé
const

S +ny

sn = 0.
Proof. Suppose first fe A,. Then obviously

H(S*)QN_lf”BMOA sk;}\r”f"‘ Wk”LOO < const - 27N

(see §2). Therefore

const

1(S*YS llsmo,, < A :



FUNCTIONS OF POWER BOUNDED OPERATORS 365

Let now
165%™ £1l swo, < comst.27Me,
We have
If * Will oo < 11652 fllgwo, < const-2eN.
Therefore fe A,. %

This lemma implies that | R} || <const if and only if fe 4,.

Consider an operator R defined by

R=®R’
)i S

the orthogonal sum being taken over a countable dense subset of the unit ball of
the space 4,. Clearly || R"||<const.
Recall that a positive measure p in D is called a Carleson measure if

geH = Slgldy < + oo.
D

We denote by (¥) the the set of all Carleson measures.

By L. Carleson’s Theorem ([3], see also [15] where another proof due to
S. A. Vinogradov is given) u e (%) if and only

w(C) < const-r, (€T, r>0,
where
CO={eD:|{—¢| <r}.

Define a class X of analytic functions in D by

peX <« ¢e H® and |¢'(2)| dxdy e (¥),
ol & liol,e+ sup SS 9'el dxdy.
lgl st
]

THEOREM 6.2. X is a Banach algebra with respect to the pointwise multiplica-
tion. The mapping

@ = o(R)

can be extended from P 4 to a representation of X such that ||e(R)|| =X ||@]|x-
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Proof. If @ € X, fe 2, we define ¢(R,) by

o(Ry) = (q)(S*) ro’(S')f) ,

0 o)
where the function ¢'(S*)f € BMO,, is defined by
(0’ (S*)f, 8) =(f,9'8), geH

(Note that since ¢ € X, it follows that

p'gelf =Bl = {II:SS Al dxdy < + oo}.)

Let us check that for ¢, ¥ € X, (o) (R;) = @(R)Y(R,). Indeed

P(RIW(R,) = ( (@U)S*) @(SHTorsor + F«o'(s*)f‘P(S)) |

o (p¥)(S)

It is easy to see that

O(SH ysnr = Lpsoywsas,

Ty seyr(S) = T'pr(snyuseys-
Thus

P(S*I yrisoyr + Torsol(S) = I puyisyss

Put now ¢(R) = @ @(R,). It remains to prove that || (R} || = { ¢ ||x. We have
f
le® Il X liell0 + sup (9 (S*)fllswo, =
l'ﬁl/1 <1

= ol 0+ o Sop L' (S, 8)i = ll@ligee + sup I(f; '8l

A, sLiglgi<l vfl, <bLlglgn <1
1 1

Since (1,)* = By it follows that

le(® Xliel 0 + sup SSI(p’gI dxdy = [[¢||x Z
lgi st
D
COROLLARY 6.3. [[@(R)[|>const || @]l >const 1@2")].

n>0
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Proof. Indeed,
lo@®)] > sup SS '8l dx dy > SS ¢ dx dy.
glig1 <1

Therefore

@)l Zconst l@llo X ¥, [loxWyl 2 > Y e, 7
N>0 nz0

Thus R is not a polynomially bounded operator.
From Theorem 6.2 and the estimates from above obtained in § 3 the following
embedding theorems easily follow.

COROLLARY 6.4. If (Y} miso €77 ® £ and an analytic function in D ¢ is defined
by oy =Y, Y thenpeX.
mik=n R

The following assertion seems to be of independent interest.

COROLLARY 6.5. If fe H, ge BMO,, ¢ = f= g then |¢'(z)|dxdy is a Carleson
measure.

Proof. 1t follows immediately from Theorem 6.2 and Theorem 3.5 that
lo'(2)l dx dy € (¥) if fe H'andg e VMO ,. Letnow g € BMO ,. Put ¢, =f* g,, where
20 gg(r{), r < 1. We have ¢, € X and | ¢, ||y <const. It follows that ¢ € X.

COROLLARY 6.6. X is an operator algebra.
This follows from Theorem 6.2.

Note that Theorem 6.2 gives an explicit embedding of X into the algebra of
bounded operators on a Hilbert space.

S. A. Vinogradov called my attention to the fact that the algebra X admits
the following description.

PROPOSITION 6.7. Let @ be an analytic function in D. Then @ € X if and only if
fe B! = ¢feB.

In other words X coincides with the set of multipliers (with respect to the point-
wise multiplication) of the class BY.

Proof. Let ¢ € X, f€ B). We have

Sgl(qof)'z dxdy < SSIf’qol dxdy + SSWI drdy <
D D D

< 10 e ) 716 < consif s Lol < const gl

because obviously BY « H.
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Conversely, suppose that ¢ is a multiplier of X. Then ¢ € H®. Let us show
that |¢'(z) | dx dy € (¥). To do this we use the following characterization’of the Car-
leson measures due to S. A. Vinogradov (see [15], Lecture VII):

A
2 €) < sup(l — - - —— '
@ e (®) ngg( 'CD“(I — 2P it e

g 1

It is not difficult to check that ll L - —,leD. Put f =
G — L2 B 1—|{]

1

T (= L

. In view of (2) it is sufficient to check that
SS /i (2)] 19'@) dx dy < constiiflpg, L eD.
|V

We have

SS 'l dxdy < SS (fio)] dxdy + SS fiol dx dy.

D D D

Since ¢ is a multiplier of BY, it follows from the closed graph theorem that

/e llpo < const |1 o
and so

SS ](f§¢)’| dxdy < const l|f;f!B(1, , (eD.
Since ¢ € H*, we have

SS il dxdy < const ;e - Z

The following characterization of X is also due to S. A. Vinogradov.

ProrositioN 6.8. Let ¢ be an analytic function in D. Then ¢ € X if and only if
¢ € B} and
supllg* |y < + oo,

the supremum being taken over all conformal mappings of D onto itself.

%

This assertion can be proved using (2).
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Consider now the case of the growth of powers of order «. It follows from
Lemma 6.1 that || R}|| € const (1 -+ n)® if and only if fe 4,_,. Put

R(e) — ® Rf,
i

the orthogonal sum being taken over a countable dense subset of the unit ball of 4,_,.

Clearly || (R*)" ||< const (1+n)®. Let X, be the space of functions ¢ analytic
in D such that ¢ € H*® and |p'(z)| (I — |z)~® dx dy € (¥). Just asin Theorem 6.2 it
can be proved that

le(R) [ X @ llx, > constl|@llgs < ¥ 1 * W, ][22 > const Y, 27/((2)|.

nzo nz0

COROLLARY 6.9. X, is an operator algebra.

Note that it is possible to calculate explicitly the functions of R, and this
permits us to obtain examples of operator algebras. For example, let Z be a Banach
space of analytic functions in D such that Z < BMO, and 2, is dense in Z. Define
an algebra X, as the set of bounded analytic functions ¢ such that ¢’ is a multi-
plier (with respect to the pointwise multiplication) from H! to Z*.

ProrosiTioN 6.10. X, is an operator algebra.

Proof. Let 2 be a countable dense subset of the unit ball of Z. Then the
mapping

Q- D ¢(Rf)
fez
is an embedding of X, into the algebra of bounded operators. This can be proved
in the same way as in Theorem 6.2. 2

In particular if Z = VMO, then X, ={¢p :¢' € H®}, if Z = 1, then X; =X
andif Z= 124, 0 <o <1, then X, = X,.

7. CONCLUDING REMARKS

In this section we state open problems related to the subject of the article
(some of them were mentioned in the previous sections).

1) Recall that
g = {(p :a‘{y":k}m,k>0 € flé fl’ (’b(n) = 5] ymk’ he Z+}'

mik=n

Is it true that % is a Banach algebra with respect to the pointwise multiplication?
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2) Is H? @ VMO, an operator algebra?
If the answer to the first question is negative, the estimate in Theorem 3.1
could be strengthened because

(@) (M < JleMI-1¥(D)1.-

Thus the negative answer to the first question would imply ncgative answer to the
second one.
If the second question has the positive answer, it would follow that

ol =< lol & yaro,

for some ¢ > 1.
3) Is it true that
YyedH = I, e V??
4) Is it true that

M M
YyedH = T,e VM and || ||,m < LM?
5) Is it true that
M M
ryeVt=r,eV™ and |[,lm < LM?

If the answer to the question 4) is positive then

PN gl A
Hl(p!::c/‘ il(px.Hl @VMOA

for some ¢ > 1. If the answer to 5) is positive then for some ¢ > 1
Foli X ol -
6) Let X = {¢ : ¢ € H® and 0'(Z) dxdy e (¥)}. Is it true that for some ¢> 1
holiy X illell.?
7) Are the norms -l equivalent for all ¢ > 1?
Note that from the results of § 6 it follows that for all ¢ > 1

!, > constijoly @eP,.

8) Let T be a power bounded operator on a Hilbert space and ¢ > 1. Does
there exist an operator T, similar to T satisfying ' T}li<c, neZ,?
It is clear that the positive answer to 8) would imply the positive answer to 7).
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9) Is it true that for all ¢ > 1 the element z in &, is not polynomially

bounded?

10) Are the norms || - [l equivalent for all ¢ > 1?
Obviously the positive answer to the question 10) would imply the positive

answer to the question 9).

10.

11.

12

13.
14,

15.

16.

17.

18.

19.

20.

21.
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