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CONTINUOUS AND ANALYTIC INVARIANTS
FOR DEFORMATIONS OF FREDHOLM COMPLEXES

M. PUTINAR and F.-H. VASILESCU

1. INTRODUCTION

The aim of this paper is to prove the norm continuity of certain invariants
that are attached to Fredholm complexes of Banach spaces and their endomor-
phisms. In particular, we prove the continuity of the Lefschetz number, which can
naturally be defined in this context. The analytic and smooth dependence of these
invariants will also be considered.

The usual stability of the index of a Fredholm operator under small pertur-
bations can, of course, be regarded as a continuity statement. Starting from this
simple remark, the second named author has proved in [14] the norm continuity of
the Lefschetz number attached to a Fredholm operator and a pair of operators that
intertwines it, as a function of three arguments. The first named author has then
noticed that similar results can be proved for a larger class of invariants, that is
derived from the characteristic polynomial. In this paper we shall extend these
considerations to the case of Fredholm complexes of Banach spaces. Roughly
speaking, for each pair consisting of a Fredholm compiex and an endomorphism of
it we define a rational function, which is called here the characteristic function (see
Definition 1.2 below ), and show that this assignment is norm continuous in a neigh-
bourhood of the origin in the complex plane. In particular, the coefficients of the
Taylor expansion of the characteristic function at the origin are norm continuous
complex-valued functions. In order to state more accurately the main result (The-
orem 1.3 below), let us introduce some notations and definitions.

Let X and Y be Banach spaces {(over the complex field C), and let us denote
by .Z(X, Y) the space of all continuous linear operators from X into Y. The space
ZL(X, X) will be simply denoted by £(X).Forevery Se #(X, Y) we denote by N(S),
R(S) and y(S) the null-space, the range and the reduced minimum modulus [7] of S,
respectively.

A complex of Banach spaces is a sequence (X, a) = (X?, o} <z of Banach
spaces X? and operators of € Z(X?, X?*1) such that R(a?) « N(«”*1) for all p e Z.
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The associated cohoiology will be denoted by (HP(X, «)),cz, Where, as usually,
H?(X, «) stands for the quotient N(a?)/R(«?~1). If we fix a family of Banach spaces
X (X?),ecz, then we identify the complex (X, «) = (X?, a”),cz with the family
of operators o = (a”),ez, wWhich is said to be a complex on X. We denote by
9(X') the set of all complexes on X.

An endomorphism of the complex (X, o) is a family of operators 8 : : (§7),ez
such that 6?7 € Z(X?) and %P0 == 87*+14P for all p € Z. We denote by End(X, «) the
set of all endomorphisms of (X, «).

Let ¢ = (€P)pez and 5 = (yP),ez be arbitrary families of operators such that
&P opPe P(XP, XP+™) for all p, where m is a giveninteger. Then we define the
pseudodistance

(L.1) 1€ — nll = sup ;& — »7|},
PEZ

which does not necessarily have finite values.

A complex (X, «) is said to be Fredholm [12], [13] if
(i) the function p — dimH?(X, «) is finite and has finite support, and
(i) y(e): == inf{y(«?); pe Z} >0
(see [10), [9] for similar concepts).

Let us note that if X is of finite length (i.c., X? = 0 for all but a finite collection
of indices), then the condition (ii) is a consequence of (i), The set of all Fredholm
complexes on X will be denoted by &(X).

For every a € #(X) we define the index of « by the formula

(1.2) ind(X, o) = inda = Y, (—1)?dimH?(X, o).
PEZ

The number (1.2) is, in fact, the Euler characteristic of the complex (X, «); it is
invariant under small perturbations in the following sense:

1.1. THEOREM. For every o€ @(X) there exists a positive number ¢, such that
if e §(X) and ||a — df| < &,, then &€ P(X), dimH?(X, a) < dimH?(X, %) for
all p and inda = inde.

The proof of this theorem is essentially contained in [12], Theorem 2.12 (see
also [15]).

Let us define the set

F(X) = {(¢,0); oed(X), 0 End(X,a)}.
The set #(X) will be given the topology induced by the pseudodistance (1.1).

1.2. DerFINITION. Let (a, 0) € #(X). The characteristic function of the pair
(o, 8) is the rational function

Det (z-1 — 62)

H¥(X, )

Y, 0(2) = Zind= ’
(a,9) kleIz Det 71 _ 92k+1)

H2k+l(X, @)
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which is well-defined for z in a neighbourhood of zero in the complex plane. Here

Deth(X )(w — 07) is the determinant of the mapping induced by w -- 6P in the

quotient H?(X, «), i.e. the characteristic polynomial of the mapping induced by 07 in
H(X, ); if H?(X, ) == 0, then we define this determinant to be equal to one.

Let @, be the algebra of germs of analytic complex-valued functions in neigh-
bourhoods of the origin, endowed with its natural topology of inductive limit of
Banach algebras. The main result of this paper is the following:

1.3. THEOREM. The assignment

'%(X) 3(0(3 0) il 4 €=, 0) € @0
is a continuous function.

The proof of Theorem .3 will be given in the third section. We only note that

X(a,())(z) =1 — LG(O)Z _!“ cey
iwhere

(1.3) L(0) = pé(- D2 Tt oy (07)

sthe Lefschetz number of the endomorphism 0 with respect to the Fredholm complex
a 13, [4]. Here Ter(X,“)(O”) is the trace of the mapping induced by 07 in H?(X, x);
it is assumed to be zero when HP(X, o) = 0. Let us notice that (1.2) can be obtained
from (1.3) when 0 is the identity. Theorem 1.3 implies, in particular, the continuity
of the mapping

F(X)3(a, 0) » L)€ C

(see Corollary 3.1).

The statement of Theorem 1.3 can be improved in the sense that the analytic
(or smooth) variation of the argument (o, 0) is inherited by the characteristic func-
tion. Such results will be presented in the fourth section. The fifth (and the last)
section contains some final comments and related examples.

2. THE AUXILIARY MACHINERY

In this section we present a sequence of lemmas that are needed for the proof
of Theorem 1.3.

Let X be a Banach space and let 4 € Z(X). If M and N are closed subspaces
of X that are invariant under 4 such that M = ¥ and dimN/M < oo, then we
denote by Dety,,(A) (resp. Try,y(A4)) the determinant (resp. the trace) of the operator
induced by 4 in N/M. If M = N, then we define Dety,y(4) = 1 and Try,p(A4) - - 0.
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The next four lemmas, which are of classical style, have a more or less obvious
proof that will be omitted.

2.1. LEMMA. Let A€ #(X), and let M < X be a closed subspace that is inva-
riant under A, with dimX/M < co. Let N be a complement of M in X, and let
P denote the projection of X onto N along M. Then we have the equality

Det‘\(PA E N) CE DetX',M(A).

2.2. LEMMA. Let Ae #(X), and let M and N be closed subspaces of X that
are invariant under A, such that M < N, dimX/N < oo and dim N/M < oco. Then
we have the equality

Dety y(A) - = Detyx(A) - Dety,5,(A4).

2.3. LemMa. Let X be finite dimensional, and let M and N be subspaces of
Xsuchthat X = M -~ Nand M 0N == 0. If P is the projection of X onto N along M,
A€ P(X) and M is invariant under A, then we have the equality

Dety(A) : = Dety(A)-Dety(PA ! N).

2.4. LEMMA. Let X be finite dimensional. Then for all A and B in £(X) we
have the estimate

Dety(A) - Dety(B); < nla(max{ A7, [Bi})4 — B,

where 1 : - dimX.

A technical result that is useful in the sequel is the following:

2.5. LeEmMA. Let Se #(X,Y) and Te L(Y,Z) be such that R(S) : N(T}
and R(T) is closed. Let also Ae ¥(X,Y) and Be L(Y,Z) be with the propert:
that R(§) < N(T), where S== S - A and T==T -+ B. If e,z (A%, ez B,
s = 9(S)7Y rp 2 (T)"1 and (1 + eurs) (1 -+ egiy) < 2, then R(S) == N(T} and

rell - egry)
2— (-~ (1 -+ egry)

@1 HS) 1 <

This resuvlt, which cxpresses the stability of the exactness under small per-
turbations, can be found in [12], Lemma 2.1 and Corollary 2.2.

2.2. LEMMA. With the conditions of Lemma 2.5, for all ye N(T') and y < N(T)
one can find the elements x and x in X with Sx =y, S% .= y, and such that {x - - x¥

is us small as one wants if |3 — yij and ||S — S, are sufficiently small. Moreover, the
choice of x can be made independently of that of X.
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Proof. We consider the numbers rg > y(S)~* and rg > 7($)~. We can choose

x € X such that Sx == y and ||x|| <€ rglly||. Let us observe that y, = y — Sx € N(T).

Therefore we can find x, € X such that Sx; ==  — Sx and ||x,|| < rylly — Sx |-
Let us set X == x; + x. Then we can write that

I% — xll < rgl = Sxll <
(2.2) )
< gy — vl 4 rs) S — SHyD.

Since the function S — rz can be chosen to be bounded by (2.1), the number ||x — x||

can be made as small as we desire when {[p — y|| and IS — S| are sufficiently
small. Plainly, the choice of x is independent of that of X.

If X and Y are arbitrary Banach spaces, then we denote by X @ Y their direct
sum, endowed with the norm |x @ y{|* = {|x[* + ||yji* for all xe X’ and ye€ Y.
We shall identify the subspace X @ 0 of X @ Y with X and the subspace 0 @ ¥
with Y.

27. LemMma. Let Se P(X,Y), Te X(Y,Z) and Ce L(M,Y) be such
that R(S) + R(C) = N(T"), where M is a finite dimensional space and R(T) is closed
Let us consider the mappings

o LM, X)® LM) > LM, Y) and 1: XM, Y) > LM, Z)

given by the formulas 6(E @ F)= SE + CF for Ee (M, X), Fe £(M), andt(G) ==
=: TG for Ge (M, Y). Then we have that R(o) = N(1) and that R(t) is closed.

Proof. Let us note that the space #(M, X) is isomorphic to the direct sum X
of m copies of X, by the mapping

LM, X)5E—>Ev, @ ... @ Ev,, € X",

where {v,, ..., v,} is afixed basis of M. Analogously, (M), #(M, Y) and ¥ (M, Z),
can be identified with the spaces M (™, Y™ and Z¢™ respectively. Then the complex

LM, X) ® L(M) > 2M,Y)S LM, Z)
is isomorphic to the complex

X (m) @® M™ S ym 5 Zm,
where

(5@ ... DX, DM D ... DwW,) =(Sx; +-Cw) @ ... @ (Sx,, + Cw,)



8 M. PUTINAR and F..H. VASILESCU

and
107D ... 1) =Tn®...® Ty,

for all x;e X, w;e M, y;€ Y and j--1,...,m. The condition R(S) : R(C) ==
-= N(T) insures the equality R(¢) = N(7), while R(T) = R(T) implies that R(T)
is closed. Therefore R(o) == N(7) and R(z) is closed, by the mentioned isomorphism.

2.8. LEMMA. Let S, T and C be as in Lemma 2.7. Let also A€ F(X) and
Be #(Y) be such that SA := BS and BN(T) « N(T). We define the operator
Si€ L(XPM, Y) by the equality Si{(x @ v) = Sx -+ Cv for all xe X and
vE M. Then there exists an operator AL € L(X @ M) such that A, X A and
S14, =: BS;.

Proof. Every operator 4, € (X @ M) such that 4, | X == A has necessarily
the form A,(x @ v) = (Ax +- Ev) @ Fuvforall xe Xand ve M, where Ee #(M, X)
and Fe #(M). The condition S,4, = BS, is equivalent to the equality SE -+- CF - :
= BC. Since BCe N(t) (where t is defined as in Lemma 2.6), the existence of a
pair (E, F) with the required property follows by Lemma 2.7.

2.9. LeMMA. With the conditions of Lemma 2.8, if A,€ (X & M) is any ope-
rator with the property that A, X = A and S;A, - - BS,, then we have the equality

Detygs ynesy( — A) - Detres yres(w — B) -

(2.3)
== Dety(w — Py, . M),

where P,y is the canonical projection of X ® M onto M and w is an arbitrary complex
number.

Proof. Let N, be the space R(S) n R(C), and let us denote by M, the space
C—Y(N,). If M is a complement of M, in M, then it is easily seen that C': M, — N is an.
isomorphism, where N, = C(M,), and that N, is a complement of R(S) in N(T)
Let P, be the projection of N(T') onto N, along R(S), let and Q, be the projection
of M onto M, along M,. We set Q, := 1, — @, and let us denote by Qn, @1 the
projections 0 @ Q,, 0 & Q,, acting in X @ M, respectively. We note the equality

(2.4) Dety(w ~ PyAM) == DetMo(W - éoAﬂMo) 'DetMl(“' = Q;Al:lwn),

which follows by Lemma 2.3. Indeed, let us show that the space M, is invariant under
Py A,'M. We notice first that the operator 4, has the form A4,(x @ ¢): = (dx -i-
-+ Ev) @ Fv (see the proof of Lemma 2.8). From the equality S;4; == BS,, we infer
that A,N(S,) = N(S)). Let us observe that

N(S) = {x ® vy; x€ X, vy€ My, Sx -+ Cry==0}.
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The invariance of N(S,) under 4, implies the invariance of the subspace M, under
F. Since Py Ay | My == QuAy | My = F | M,, we obtain that (2.4) holds, by Lemma 2.3.
Next we prove the equality

(2.5) Detyr (W — Qody | M) = Detas yas(w — Ay).

Indeed, let us define the operator U: N(S,)/N(S) » M, by the equality U(x &
@ v, -+ N(S)) = v,, where x @ v, € N(S)). It is easily seen that U is an isomorphism
of N(S))/N(S) onto M,. We also note that UA, = 0,(4, | M) U, where A, is the
operator induced by A4, in N(S,)/N(S); this equality follows from the above men-

tioned relation FM, = M,. Therefore the operators w — A4, and w — @(,Al | M, are
similar, so that the equality (2.5) holds true.
Now we show the relation

(26) DetMl(w — Q1A1 | Ml) = DetR(Sl)/R(S)(W - B)

Indeed, from the equality S;4; == BS,, we infer that (CIMl)élA]LlM1 =: P,B(C|M,),
since S;|M, == C|M; and PlSlQ0 =: 0. Hence w — @1‘A1[M1 and w — P,B| N, are
similar. On the other hand, by Lemma 2.1 we obtain that

-DCtNl(W — P BIN)= DetR(Sl)/R(S)(W — B),

since R(S,)) (= N(T)) and R(S) are invariant under B.
The equality (2.3) now follows from (2.4), (2.5) and (2.6).

For every pair of closed subspaces M and N of the Banach space X we set

(M, N) = sup dist(x, N).
st

We note that if Sand S are elements of L(X, Y), then we have the estimate
(2.7) 3(N(S), N(S)) < »($)*IS — s,

provided that R(S) is closed (see {12], Lemma 2.6).

2.10. LEMMA. 1) Let S, T, A, B and C be as in Lemma 2.8. Let also §, T, A,
and B have similar properties to those of S, T, A and B, respectively. If ||§ -— S,
[i T— T|| are sufficiently small and the function T - y(f’)‘l is bounded for T in a
neighbourhood of T, then we can find C € (M, Y) such that R(5) = N(T), where &
and t are defined as in Lemma 2.7, with 5, C and T instead of S, Cand T, respectively.
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2) Let S, §1, A, and A, be the extensions of S, 5”, Aand A to X® M, in the
sense of Lemma 2.8, respectively. If S — Sii, | T — T|, |4 — Alj, !B — B' are
sufficiently small and the function T 7(1~‘ )~ is bounded for T ina neighbourhood

of T, then the operators A, and A, can be chosen such that A, — A, is as small
as we desire.

Proof. 1) Let {vy, ..., v, be a basis of the space M, that is chosen according
‘to Auerbach’s lemma [2]. In particular, ;¢; -= 1, and for an arbitrary elcment

veo= Ay - .+ A0, € M owe have 14; < Yol for all j. If 6 > o (N(T), N('f)),
then we can find a system of vectors {J,, ..., ¥,} = N(T) such that Ce; - y,°<
< 0jCy, for all j. Let us define the operator

m

T m -
Jj==1

J=1 j=1
It is easily seen that {C — C. < mdliCj. We also have |j7 — 1" T~ T, and
15 - 0" < (1§ — St - iC — O,

If .S-- 8., T— T are sufficiently small and the function T — W(T)-1 iis bounded
in a neighbourhood of T, then {C -— Cjj can be made as small as we want, by the
estimate (2.7). Therefore R(g) == N(7), by Lemmas 2.5 and 2.7.

2) The operators 4, and A, bave the form A,(x @ v)-: (dx - Ev) ® Fu
and A,(x ® v) = (Ax —}~Ev) @ Fu for all xe X and ve M, which follows from
the proof of Lemma 2.8. Moreover, SE - CF -- BC and SE - Ci - BC. By the
first part of this proof and the estimate (2.2), we can choose (E, F) and (E, F) such
that

VE® F—E® F < r(|BC— BC; 41,5 — o} {BC"),

where r. > 7(g)~1 and r, > y(c)~1. The operators 4, and .1, satisfy the following
estimate:

(A A @) =i (A - Ay (E—-E)o)@(F--Fri <
SEA -4 +-"E@F—EQ@ FY)2ix@ v,

If S~ 8, T— Ti, ilA — Aii, iB-— B are sufficiently small and the function
T - ;'(i’)‘l is bounded for T ina neighbourhood of 7, then the function ¢ - ra

can be chosen to be bounded for & in a neighbourhood of & (by (2.1)), and therefore
id, — A,| can be made as small as we desire, by the previous estimate.
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3. PROOF OF THE MAIN RESULT

The first part of this section is dedicated to the proof of Theorem 1.3. Then
we present some consequences of this result,

Let X = (X*),ez be a sequence of Banach spaces, and let (o, 0) € #(X). For
the sake of simplicity, et us denote by X2(6, w) the polynomial Deth(X’ d)(w — 0P).

) O S A,,,p‘,, are the eigenvalues of 67 in H?(X, o), repeated according to their

multiplicity, and hence m, = dimH”(X, «), then we have
10, 27Y) == 2 Pl —z3;,) ... (1 — 2o p)-

Therefore, with the assumption that 2, ,= ... =1, ,--0 if m, =0, we can
P’

write the equality

(] - 2/11.,2];) .. ] Zom, ok ..k)

- Z}q,,zka,m) oo (b= zZ, ok 10 ’k+1)

G.1) (@ = 1

keZ

Consequently the function 7, 4 is analytic in a ncigbourhood of zero and

Z(ago)(o) == .I.
Let us deal with the continuity of the mapping

F(X) 3(8, 0y = 1G5 € 0,

at a certain point («, 0). There is no loss of generality in assuming that H?(X, o) = 0
if p <0. Let us define the number

X, o) :=min{n 2 0; H(X,«)= 0, p = n}

We shall prove our assertion by induction with respect to n(X, o).

If n(X, @) =0, then 7. 3 5 = 1 for every pair (&, 0) such that ||& — af) <s,,
where ¢, is given by Theorem 1.1, and therefore the assertion holds true.

Now we assume that the assertion is true if nX, o) =n = 0, and let us con-
sider a complex x € ®(X) such that n(X, «) == n -}- 1. We shall make an auxiliary
construction for which we can apply the induction hypothesis. Namely, let A"~
be a complement of R(a"~?) in N(¢). Then we define Y"-* =: X"~ @ M"~ Let
A" be the extension of o"~1 to Y”~1 in the scnse of Lemma 2.8 (with ¢"~1 for S
and the identity for C). Then we have R(f"~") := N(o*) and N(f*~?) == N(a"~%).
Therefore, if ¥? == X?and f7 = a? for p#n - 1, then the complex (¥, f) == (¥?,
fi”),cz has the property that n(¥, ) = n. Consequently we may apply the
induction hypothesis to the complex (Y, B).
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Let % € @(X) be a complex such that || — 2} < ¢g,, where g, > 0 is provided
by Theorem 1.1. Let B"‘l be the extension of &"~* to Y”~'inthe sense of Lemma 2.10
(with "~ for .§; let us notice that Lemma 2.10 applies if ¢, > 0 is sufficiently small).
Let 671 and t7’1“1 be the extensions of 0"~ and "1 to ¥"-1 in the sensc of Lemma
2.10, respectively (with 6"~ for A and "=1 for ). We also define 07 07, Uf Jl’,
/.ﬂ’ i a? for p # n-- 1, and let us set O, = (6§),ez, (71 - (Jf)pez and ,1? . (75'”),;52.
By the induction hypothesis, the function Ls 5) tends to the function Zm,gl) in the

topology of @, as (E, 51) tends to (B, 0,) in the topology of Z(Y).
Let us assume momentarily that n is even. Then we have the equalities:

oK, ™
ind (0,27
X"‘" '___znd,A ~
G, 0) (2) kél_;_l—g "RH(() -1y X
2
e "’w,h ) (b, 2 @O,
0, 27 2, 271 G, 2

Ay () (Det (a0 —Pn-lef-lfM"-l))-l,
where P,_, is the canonical projecton of Y71 onto M"—!, We have used here the
equalities

1(2-—1 0") PR

o=1 __ n—1
Det (z 017 -Det_ o, LHRG"Y

NG HNGTY R(F

= Detnln—l(z_l— n- A)" 1}M" 1)

which is the relation (2.3) applied to this case, and
y2-1 -1 -—1 _ gn=-nyy"~LH -1
(0, =) - DetN(E,,_l)/N(E,,_l)(a 017Xz (0, z7Y),
(3.2)

130, z7%) = — 0150, =),

(“"")1R<~"'1
which are obtained by Lemma 2.2. (Of course, the second equality from (3.2) is
trivial when we have R(ﬁ"‘l) == N(a"), which happens if ¢, is small enough.)

When n is odd the calculation is similar and we deduce, in general, that the
following equality holds:

(3.3)

1)"_1

Zindﬂ - ind EX( 5(2)(Det 1_1(2..1 . Pn-—lbi‘_liM"_l))(_ .
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A similar relation holds if «, B, 0 and (71 are replaced by «, 8, 6 and 6,. From Theorem

1.1 we have that indff = indf and ind& = ind« if e, > 0 is sufficiently small.
Consequently, on account of the equality (3.3), we can write that

A Y 7
tasld _Tai® (o),

34 —
oY Xaof(z) X 0p(2) \@(67727%)

where @077, z71) <= DetMn-i(Z—l — P (077 MY,

Now we apply the induction hypothesis. Since in the algebra @, the set of all
invertible elements @;* is open and the map f— f~! is continuous on 05! [16],
there exists a neighbourhood V¥, of zero such that

5.5,@

l
5, 0, - .
Y@ 0y (@) 1< no(lp — Bl + 116, — i), ze€ Vy,

where 7, is a positive function such that ,(r) —» 0 as r — 0.
We also notice that the polynomial zmn—1¢(§;"1, z~1) is convergent to the poly-
nomial z"n-1p(6;~1, z-?) uniformly on compact subsets of the complex plane as

0, — 6,]| = 0, by Lemma 2.4, where m, ., = dimM"-L. Since the value at zero
of these polynomials is one, the above argument also applies to this case, and we
can find a neighbourhood ¥V, of zero such that

o017, z7Y

@<= — 1 <mb =6, ze Vs,

where 5, is a positive function such that »,(r) - 0 as r - 0. We only note that

I8 — Bl and |[6)~1 — 6,|| tend to zero as ||& — «|| and {|§ — 6] tend to zero, by Lemma
2.10. Hence there exists a neighbourhood V of zero and a positive function n such
that #(r) - 0 as r - 0, and

X6 5 — Xy < n(l& — ol + 6 — 6D, zeV,

which is the desired continuity. The proof of Theorem 1.3 is complete.
3.1. CorOLLARY. The mapping

F(X)a(a, 0) » L(0)eC
is continuous.

Proof. From (3.1), we deduce, by a simple calculation, that

(0X(4,6)/02) (0) = — L4(6).
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Therefore the continuity of the mapping (¢, 8) — L,(6) follows from Theorem i.3,
via Cauchy’s inequalities.

3.2. Remarks. 1°. The previous argument shows that all coefficients in the
Taylor expansion of X, 4 at zero are continuous functions on the space Z(X).
2° The characteristic function (and the Lefschetz number as well) is still

continuous at each point («, 0) if we only ask that ||& — al| - 0 and [i§7- - 67} — 0
for every pe Z. This condition is sufficient since X;(é, w) == 1 when H?(X, %) :: 0
and ||l@ — «f| is small enough, regardless the size of ||§P - @P]].

3.3. PROPOSITION. Let us define the set
F(X) = {(a, 0)e F(X); TIPetyriry (0% 71) 5 0.
keZ

Then F,(X) is open in F(X) and the mapping

Detgor x, (6%)

keZ DetH;:kA§.1(X' u)(02k+l)

(3.5) F(X) 3(x, 0) -

is continuous.

Proof. Let us consider the function
Ma:(os :) == ('_2)_indlx(z,0)(z)3

which is well-defined outside a disc with center at zero and a sufficiently large radius
(this assertion follows easily by examining the equality (3.1)). Moreover, if (.)€
€ F(X), then M (0, z) is analytic at infinity and M_(0, co) is just the mapping ¢ 2.5).
Hence it will be sufficient to prove the continuity of the mapping

(36) '6/71(X) 3 (G(, 0) - 3(03 ') € @co s

where @, is the algebra of germs of analytic functions in neighbourhoods of infi-
nity, endowed with its natural topology of inductive limit of Banach algebras.

The proof of this assertion is similar to that of Theorem 1.3, so that we only
sketch it.

We show first that the set & ,(X) is open in & (X). We use the notation and
the inductive argument from the proof of Theorem 1.3.

If n is even, then from (3.3) we infer that

(=DM (6, 2) == My(0, 2)-Detypa(z"1 — P,_,00~1| M"-3),
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since indf§ — inda = — dimM"-! = —m,_,, by Proposition 2.9 from [12]. Thus
M(0, co) # 0 implies that My(0,, co) # 0. By the induction hypothesis, we have
that Mﬁ(ﬁl, 00) 5 0if (f, 6,) is in a neighbourhood of (B, 0,). Therefore M..(J, 00) #0-
if (&, 6) is in a neighbourhood of (a, ).

If » is odd, then (3.3) implies that

(—1)"" My (0,, 2) = M8, 2)-Det na(z=* — P,_ 03| M"-1).
But in this case we can write that

])ﬁtan(Z"1 — Pn_1€;’-1 J M""l) ==, DetN(un),R(’n--x)(Z—l — 9”)
by (2.3), since N(a") == R(f"?) and N(p"-1) == N(«"~!). Moreover, ¥(6,0) # O
by the hypothesis. Hence Mp(6,, co) # 0 and we can argue as above. Consequently
the set #;(X) is open in F(X).

The continuity of the mapping (3.6) at the point (o, §) (from F,(X)) follows.
by the formula

M’;(‘é, Z) ME (51, Z) ((P(éil—l’z_l) )(—-l)" ,

MA0,2) ~ M6, D \o(@ T, 275

which is obtained from (3.4), as in the proof of Theorem 1.3.

We end this section with a version of Theorem 1.3, that is valid for complexes.
of unbounded operators.

Let X == (X?),cz be a sequence of Banach spaces and let D = (D?),ez be a
sequence of linear spaces such that D? — X7 for all pe Z. We denote by o(X; D)
the set of all families of maps a = (a”),cz such that a?: DP— X?+1 is a closed linear-
operator and R(a?) < N(a?*) for each p. An element « € d(X; D) will still be called
a complex. Let ®(X; D) be the subset of those elements of ¢(X; D) that are Fredholm
(the definition is the same). An endomorphism of the complex x € d(X; D) is a family
0 = (07)pez such that 07 € L(X7), R(07|D?) < D? and a?0” = 7+'a? for all p. We
denote by End(X, o) the family of all endomorphisms of the complex o € &(X; D).
Let us consider the set

F(X; D) = {(a, 6); ae o(X; D), 0e End(X, o)},

which will be given the topology induced by the pseudodistance (1.1). It is plain that.
the characteristic function can also be defined in this context.
3.3. PROPOSITION. The mapping

F(X; D)3(a, 0) > Y0 € 0,
is continuous.
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Proof. We reduce the statement to the bounded case, by a well-known pro-
cedure. Namely, we consider the following norm on the space D?:

"lle =yl + llooyll, ye D~

Endowed with this norm, the space D? becomes a Banach space, since « is a closed
operator. We note that lla”|l, < 1 and that ;|67||, <max{|67", 1162+1"} for all p.

Now let (&, 0)€ F(X; D) be such that ||& — «fl < co and 4§ - - 0] < oco.
We show that the operators induced by a? and 67 on D? are bounded. Indeed, it
is easily seen that

@2yl < (1 +jjar+t — er ) max{l, [ja” — o[} {|3],
.and
62y[i, < max{[|B [, {|&2 — a? || [|B7[[, [|&> — or|| 1GP+2Y, {0742} iy,
for all ye D and p e Z. Furthermore, we also have that
(37 — a?) yli, < max{||&ar —a?|, [|&P*1 —aP*1||, ||GP — 0P| |ar+t — P} iy,

and

1| (57 —07)y |, < max{||62—07 |, | &2 —a? ||| 6711, || &P —aP || [|BP+2[;, || 07+1 — 07+ 214} [ v,

for all y € D? and p € Z. These estimates show that || @ —a]|, tends to zero as || — «}i

tends to zero, and that ||§? — 67|, tends to zero for each p as || §—0|| tends to zero.
"The desired assertion then follows from Theorem 1.3, on account of Remark 3.2.2°,

4. ANALYTIC AND SMOOTH DEPENDENCE OF PARAMETERS

In this section we study the variation of the characteristic function when the
arguments vary analytically or smoothly. We show that, in general, the type of varia-
‘tion is preserved by the characteristic function. In the first part of this section we
deal with the analytic dependence of parameters.

4.1. LEMMA. Let X, Y and Z be Banach spaces,® let @ = C™ be open, and
det S:Q - L (X, Y) and T: Q - L(Y, Z) be analytic such that T(2)S(A) == 0 for
all A€ Q. Assume that R(S(4y)) = N(T(%)) for a certain J,e Q. If g: @Y is
analytic and T(A)g(2) = 0 in Q, then we can find an open neighbourhood V), of i,
.and an analytic function f: Vo — X such that S(A)f(2) = g() in V,. Moreover, if
2(4) =0, then f(A,) can be given an arbitrary value in N(S(2,)).

The proof of this lemma, which extends a result from [6], is sketched in [11]
{see also [15]).
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4.2. LEMMA. Let X, Y, Z and W be Banach spaces, let Q — C™ be open:
and let S:Q > L(X,Y), T:Q-> LY, Z) and U:Q > $(Z, W) be analytic
such that T(A)S(A) == 0 and UA)T(A) = 0 in Q. Assume that R(T(4y)) = N(U(4y))
and that there exists a finite dimensional complement M of R(S(4,)) in N(T(4,)) for
a certain g€ Q. Then there exist a neighbourhood V), of 1y and an analytic function
Sp: Vo= P(X @ M, Y) such that T(A)S(A) = 0. Si(A) | X = S(A) and R(Si(A)) =
= N(T(A)) for all Le V.

Proof. Let us consider the operators t(1) from ¥(M, Y) into L (M, Z) given
by ©(A)(G) = T(A)G for Ge ¥(M, Y), and w4) from L(M,Z) into L(M,W)
defined by v(2) (H) = U(A)H for He ¥(M, Z). Since R(T(%y)) = N(U(4)), Lemma
2.7 implies that R(z(4,)) = N(v(4,)). Then the previous lemma assures us of the exis-
tence of a .Z(M, Y)-valued function C, that is analytic in a neighbourhood of 4,,
such that t(4)C(1) ==0 and C(4y) = I,,. If we define S,(1) (x ® v) = S(A)x +
- C(A)v for all xe X and ve M, then we have T(2)S,(1) = 0 and S;(4) | X = S(4).
Since R(S,(4p)) = N(T(4,)), the property R(S,(4)) = N(T(4)) also holds in a neigh-
bourhood of 1,, by Lemma 2.5.

4.3. LeMMA. Let the conditions of Lemma 4.2 be fulfilled. Let also A: Q —
—2(X) and B: Q— L(Y) be analytic, such that S(A)A(A)=:B(4)S(4)and B(A)N(T(A)) =
< N(T(A) for all i€ Q. Then there exist an open neighbourhood V, = V, of 4,
and an analytic function Ay:V, » L(X @ M) such that S,(A)A;(A) = B(1)Sy(2)
and A (A) | X = A(A) for all le V.

Proof. As in Lemma 2.7, we define the operators

o(A): (M, X) D LM) > PM,Y) and 1(1): (M., Y)-> ¥ (M,Z)
by the formulas (1) (E @ F) = S(O)E + C(HF and (1) (G) = T(A)G, where
C(2) has been obtained in the proof of Lemma 4.2. We note that R(a(4,)) = N(2(4)),

by Lemma 2.7. Therefore, from Lemma 4.1, we infer that there are a neighbourhood
V, of Ay and two analytic functions E(1) and F(2) in V; such that

S(ADHEA) + C(A) F(A) = B(1) C(4).
Then the function A4,(4), given by
A(A) (x ® v)=(A(A)x + E(D)v) ® F(A)v, xeX, ve M,

is analytic and has the required properties (see the proof of Lemma 2.8).

Let X - (X?),ez be a sequence of Banach spaces, and let Q< C™ be an open
set. A mapping
Q37 - (a(d), 0(A) e Z(X)

22484
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is said to be analytic if aP(2) and 6°(7%) are analytic for each p € Z, and the mapping
A — a(2) is continuous on Q in the topology of #(X) (induced by the pscudodistance
(1.1)). Of course, the condition of continuity is superfluous if X is of finite length.

4.4. THEOREM. Let X == (XP),cz be a sequence of Banach spaces, and let Q < C™
be open. Let us consider an analytic mapping

Q57 - (), 6(D)) e FX).

Then the mapping
Q32 = Laroan € Oo

is also analytic.

Proof. 1t is enough to prove the analyticity of the mapping X(,;, 4¢s)) in
neighbourhood of an arbitrary point A;€ Q. With no loss of generality, we may
assume that H?(X, 2(4,)) = 0 if p < 0. We use the inductive argument from the
proof of Theorem 1.3. With obvious modifications of the notation in the proof
of Theorem 1.3, from (3.4) we obtain the cquality

(4.1) X (a(r),000)(2) — X(ﬂ(i-)m,(z))(z) ( (0171, f:f)__)("l)n

7'(1().0),0().0)j(z) Z(ﬂ(zo),el(zon(z) @071 (4y), z7Y)

where the extensions f7~*(1) and 67 (1) can be chosen to depend analytically on 4
in a neighbourhood of 2,;, by Lemmas 4.2 and 4.3. The mapping X(B(A),al(i-)) depends

analytically on A by the induction hypothesis, and the mapping
(4.2) 2017 Y(A), 27Y) == 2 M Dety e a(zt — P, y057NA) MM Y

depends analytically on A by obvious reasons. From the properties of the algebra
@y, it follows that the function (4.2) is invertible and that its inverse is also analytic.
Consequently, from (4.1) we can derive the analyticity of the function 7 ,;, o))
and the proof of the theorem is complete.

4.5. COROLLARY. With the conditions of the preceding theorem, the mapping
Q32— L, (0(A)eC
is analytic.
4.6. COROLLARY. Let us consider the analytic mapping
Q34— (a(2), 0(4) e Z(X).
Then the mapping

Q324> M,;(0(2), *) e Oy
is analytic.
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4.7. REMARK. Since the proof of Lemma 4.1 can be easily adapted for real
analytic functions, a version of Theorem 4.4 in such a context can also be given.

We are not aware of any version of Lemma 4.1 which would be valid for
smooth functions and general Banach spaces. For this reason, in order to give a
version of Theorem 4.4 in the case of smooth functions, we shall work, from now
on, only with complexes of Hilbert spaces. In regard to terminology, we say that a
function (generally vector-valued) is a €"-function, where r is a non-negative integer
or infinity, if it is continuously differentiable up to order r on its domain of defini-
tion (which is usually an open subset of R”).

4.8. LEMMA. Let X, Y and Z be Hilbert spaces, let Q = R™ be open, and let
$:Q@o> LX,Y) and T:Q - L(Y,Z) be €-functions, such that T(A)S(A): 0
Jor all Ae Q. If R(S(4)) = N(T'(%y)) and R(T(Ay)) is closed for a certain A € Q,
then the orthogonal projection P(1) of X onto N(S(2)) is a €"-function in an open neigh-
bourhood of A,.

Proof. We note first that if 4: Q > £(X,Y) is a é"-function and A(%) is
surjective for each 2, then the orthogonal projection of X onto N(A(2)) is a ¥"-func-
tion in Q. Indeed, it is easily seen that the operator A(A)A(4)* is invertible on
Y for each A€ ©. Then the function

Iy — AD*(AQR) AD)) T A(D),

which is a #"-function on Q, defines the orthogonal projection of X onto N(A(4))
at each point A € . (This argument has been suggested to us by C. Apostol.)
Next we consider the function 4: Q - (X @ Z, Y), given by the formula

(4.3) A(D) = S(A) Py + T(A)*P,, Le®,

where P, and P, are the natural projections of X @ Z onto X and Z, respectively.
Since R(S(4)) = N(T(4,)) and R(T(J,)) is closed, the operator A(%y) is surjective.
Therefore the operatér A(2) is surjective for A in a neighbourhood V of A,. By the
first part of the proof, the orthogonal projection Q(4) of X @ Z onto N(A(4)) is
a ¢'-function in V. We also notice that

N(AD) = N(S(2)) @ N(T(A)*), L€ Q.

Then P(1) = PyQ(2) | X is the projection of X onto N{S(4)), and it is a ¢"-function
in V.

4.9. LEMMA. With the conditions of the previous lemma, if g:V—~Y is a
Cr-function such that T(A)g(1) =-0 in V, then we can find a €"-function {1V - X
with the property that S(A)f(2) = g(A) in V.
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Proof. By the preceding lemma, the operator

4.4 AN(Ixgz - QA

is injective and surjective, and therefore invertible, for all 1€ V, where A(2) is given
by (4.3) and Q(4) is the orthogonal projection of X @ Z onto N(A(4)). Moreover,
the inverse of (4.4) is a ¢’-function. Then the expression

JQ) == (Px — PxQ(A) (A(A) (Ixez — Q1)) 'g(4), i€V,

defines a %'-function that satisfies S(1)f(4) == g(4) in V. The last assertion follows
from the identity

(S(DPx + T(A*P)(1xez — Q) (A4) Uxez — Q) 'g(4) = - &(2),
and from the fact that R(S(4)) and R(T(A)*) are orthogonal.

4.10. LemMa. Let X, Y, Z and W be Hilbert spaces, let Q = R™ be open,
and let S:Q - L (X, Y), T: Q@ > L(Y,Z) and U:Q — L(Z, W) be G'-functions
such that T(A)S(A) == 0 and U(DT(A) == 0 in Q. Assumethat R(T(Ay)) - = N(U(A)),
that R(U(%y)) is closed and that there exists a finite dimensional complement M of
R(S(%)) in N(T(4,)) for a certain o€ 8. Then there exist a neighbourhood V, of
Ay and a G'-function S;: Vy, —» L(X ® M, Y) such that T(2)S;(A): -0, Sy (DI X :
= S(2) and R(S(A)) = N(T(2)) for all L€ V,.

Proof. Let P(A) be the orthogonal projection of Y onto N(T7(4)), which is a
%’-function in a neighbourhood of 4,, by Lemma 4.8. Then C(2) == P(A)| M is a
% -function, and we set S,(1) (x @ v) == S(A)x + C(A)v for all xe X and ve M.
The function S;(4) has the required properties in a neighbourhood of 44, as in the
proof of Lemma 4.2.

4.11. LemMA. Let the conditions of Lemma 4.10 be fulfilled. Let also A: Q —
— P(X) and B: Q — L(Y) be € -functions such that S(A)A() = B(A) S(1) and
B(AN(T(2)) « N(T (1)) for all € Q. Then there exist an open neighbourhood V, <
c Vyand a C'-function A;:V,— L(X ® M) such that S,(2)A,(A) - = B2)S|2)
and A\(A), X = A(%) for all Le V..

The proof of Lemma 4.11 is similar to that of Lemma 4.3; the only difference
is the use of Lemma 4.9 instead of Lemma 4.1.

Let X = (X?),cz be a sequence of Banach spaces, and let 2 = R be an open
set. A mapping
Q3] - (x(d), 0() e F(X)

is said to be a ¥"-function if «?(2) and 07(%) are %"-functions in  for all p, and the
mapping A — a(4) is continuous on Q in the topology of @(X).
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4.12. THEOREM. Let X = - (XP),ez be a sequence of Hilbert spaces and let Q = R™
be open. Let us consider a ¢"-function

Q222 - (a(d), 6(1)) e F(X).
Then the mapping
Q32 = Xag;,000 € Oo
is also a C€-function.

The proof of this theorem is similar to that of Theorem 4.4, so that it will be

omitted. We only mention that one uses Lemmas 4.10 and 4.11 instead of Lemmas
4.2 and 4.3.

4.13. CorOLLARY. With the conditions of the previous theorem, the mapping

Q34> L) (0(D)e C
is a €’-function.

4.14. COROLLARY. Let us consider the €’-function
Q32 - (x(R), 0(4) e F(X).
Then the mapping

Q34— M, ;(00%), )e 0y
is a €"-function.

5. FINAL COMMENTS AND EXAMPLES

The implications of Theorem 1.3 and of its versions and corollaries have not
yet been completely worked out. In this section we shall present some immediate
consequences, open problems and connections with similar mathematical objects.

1°. We begin this discussion with a consequence of our results for operator
theory. Let X be a Banach space and let S € .Z(X) be a Fredholm operator. Let also
C(S) denote the commutant of Sin L(X). If A € C(S), then we can define the function

Detysy(1 — zA4)
DetX/R(s)(l -_ ZA)

Xs,0(2) =

which will be called the characteristic function of the pair (S, A4).

5.1. PrROPOSITION. Let us consider the Taylor expansion of the characteristic
Sfunction of the pair (S, A) at zero, namely

Xs.af2) = Y, *LE(A).

k=0
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If LE(A)#0 for a certain m> 1, then there exists a positive number £¢> 0 such that
if Se LX) is a Fredholm operator, A€ C(8), I|IS— S|l < ¢ and PA - Al < ¢,

then either A or its adjoint has an eigenvalue.

Proof. Let m > 1 be minimal with the property that LE(4) s 0. Then we have
Les.olz) -+ 14 27 LENA) 4 ...

Therefore ¥ . # 1. By Theorem 1.3, we also have tem * I if !';S”--‘ S and

|4 -— Al are sufficiently small. In this case cither N(S‘) # 0 or R(S‘);éX . Accord-
ingly, either A has an eigenvalue or its adjoint has one.

Let us mention that the case L{(A4) s 0 has been treated in [14] (where Lg(A4)- -
- —L®(A) is called the Lefschetz number of A with respect to S).

2°. Most of the above considerations make sense in the case of a Fredholm
system of operators [12] and an operator in its commutant. However, the interpre-
tation of the results is not as easy as in the previous case. Any contribution in this

respect would be of interest.

3°. Corollary 3.1 is not a precise extension of Theorem 1.1. Indeed, the semi-
continuity of the functions ¢« - dimHP(X, a) is not reflected by Corollary 3.1. As
a matter of fact, nothing of this sort can, in general, be expected, as shown by the

following:
5.2. ExaMpLE. Let X be equal to C?, and let S(1) and 4(1) be operators on

X given by
A0 y! 0
= , A = ° ’
5 (0 0) @ (0 g(l))

where Z€ C is a parameter, g is a continuous function on C and A€ C is fixed.
Then we have that
g fA#0

T A(D) =
sy D) {).o+g(0) if 1=0.

In spite of this example, is there any (non-trivial) class of endomorphisms
in End(X, ) such that the function

(d! 0) - TrHP(X' Q)(Op)

restricted to that class is semi-continuous for each p?

4°, The characteristic function is invariant under similarities in the following
sense: Let (X, o) and (¥, f) be complexes of Banach spaces, and let &: (X, o) —
- (Y, f) be an isomorphism, i.e., é=(.?),ez is such that each £ is an isomorphism
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and £P+iaP = Br+ifr for all pe Z. Let 6 € End(X, «). If 7€ End(Y, B) is given by
P = £POP(EP) =1, then we have that X(, o) = Xy .y, by the invariance of the determi-
nant under similarities.

5°. We shall use the terminology from [4]. Let K be a polyhedron (or more
generally, a compact ANR), and let f: K — K be a continuous map. Let H*(K; C) =
+ :{HP(K; C)}pez denote the singular C-cohomology of K. Then the map f naturally
induces a morphism f*: H*(K; C) - H*(K; C), f*=(f"),ez.- Let us define
the function

GRS | | Detyorg, o1 — 2™

b
kez Det112k+1(K; C)(l — zf*+1)

which is analytic in a neighbourhood of zero. By analogy with Definition 1.2, the
mapping X (z) may be called the characteristic function of f. It has a property of
continuity which is similar to that given by Theorem 1.3.

Let Hom(K) denote the set of all continuous functions f: K — K. The set
Hom(K) can be given a metric space structure induced by the relation

o(f,8) = "S’ggd(f (@), g(®)), f, g€ Hom(K),

where d is the metric of K. Then the mapping
Hom(K) > f - X,e 0,

is continuous. Indeed, if fe Hom(K) is given, then there exists a 6 > 0 such that
every g € Hom(K) with the property that 5(f, g) < d is homotopic to f(see [4, II1.A]).
Therefore the maps induced by f and g in H*(K; C) are equal [5], and the function
X, is actually equal to X, for all such g’s.

Now let us consider the Taylor expansion of X /(z) at zero, which can be written as

X2y =Y, z"L™(f; C).
m=0
We note that LO(f; C) = 1 and that —LW(f; C) = L(f; C) is just the Lefschetz
number of the map f.

It would be interesting to give the numbers L{™(f; C) a topological interpreta-
tion (m > 2). As it is known, the number —L®(f; C) (i.e., the Lefschetz number)
coincides with the fixed point index of the map f, by the theorem of Lefschetz-
-Hopf {5].

6°. Let us recall some facts from [1]. Let M be a smooth compact manifold,
and let E,, E,, ..., E, be smooth vector bundles over M. Let d,: I'(E,) - I'(E,. )
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be differential operators such that d,,,-d, = 0 for all p, ie., (I'(E),d)-:
= (I'(E,), d,);-ois a complex, where I'(E,) is the space of smooth sections of E,.
Assume that the complex (I'(E), d) is elliptic. Then its homology (HP(I'(E), d))5. o
is finite dimensional.

Let f: M - M be a smooth map, and let ¢,: f“E, —» E, be smooth bundle
homomorphisms. Let T, be defined by (7,5) (w) = @,5(f(w)), if s€ I'(E,). Assume,
in addition, that d,T, == T,.d, for all p. Then T = (T,);., is an endomorphism
of the complex (I'(E), d), whose Lefschetz number is defined by the relation

n
LT) =Y, =nr Ter(I‘(E), ol Tp)-
p=0

A fixed point w € M of the map f is said to be simple if Det(1 ~- df,,) # 0,
where df,, is the induced map on the tangent space at w. Assume that /1 M - M
has only simple fixed points in M. Then there are only a finite number of such points,
by the compactness of M.

The Atiyah-Bott theorem asserts that, with these conditions, one has the
formula

Z (_ l)pTl' q’p,m

LT) = p=0
@ f(a§:'=w {Det(1 — df )|

where Tro, , makes sense since @, , is an endomorphism of the vector space (E,),,
for every fixed point w € M of the map f.

In particular, this formula can be used to show that the ¢*-variation of all
parameters (i.e. the differential operators from the elliptic complex, the bundle
homomorphisms and the map f) implies that the Lefschetz number is also a

f-function.
A similar result can also be obtained as an application of Corollary 4.13.

Indeed, let us denote by m, the order of the operator d,. Let H°(E,) be the Sobolev
space of order ¢ associated with the sections of the vector bundle E,. Then we have
the following Fredholm complex of Hilbert spaces:

D0 m Dl —~{m_+m.))
0 — HY(E)) » H "o(E)) = H 70 "V(Ep) ey -« - -

(H, D):
) D,_, H—(m0+m1+"'+m")(E,,) -0,

where D, are the bounded operators induced by the operators d,, 0 < p < n. The
operators ¢, are differential operators of order zero, so that if we assume that f
is a diffeomorphism, then each operator 7, extends to a continuous operator
0,€ ¥ (H(E,)). Moreover, § = (8,)5-o is a morphism of the complex (H, D)e
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By a theorem of Hodge [17], we can identify the space H7(H, D) with the space
HP(I'(E), d) (via harmonic forms), and we obtain that

(6,) = (T)-

T Tr
HP(H, D) HP(C(E), o)

Therefore, with our notation, L(T) = Lj(6). By noticing that the Hilbert space:
operators D, and 0, vary smoothly when d,, ¢, and f depend smoothly on a para-
meter (preserving the order of d,), then Ly(6) varies smoothly, by Corollary 4.13.
Let us remark that this procedure applies even in case when f has multiple fixed
points,

7° The analytic variation of the characteristic function can also be obtained
in the frame of the deformation theory of analytic spaces [8], [3].

Let X and Y be analytic spaces, let f: X — Y be a proper morphism of analytic
spaces, and let 2 = (%7),cz be a complex of @x-sheaves which are flat on Y, with
coherent cohomology and exact, except for a finite number of terms. Let @ ;: 2*— 2"
be a morphism of complexes of @,-modules. For each y€ Y we can define the
characteristic function

Det (1 — 26%)

2k .
Hkrx, 23
(1 — z O%+1)

X2, 0 (2) = H
¥y
ez Detnz"“(r(xy. )

where we have denoted by X,, #5 and O, the analytic fibres of the corrésponding
entities (see [3] for details). With standard algebraic arguments (the construction
of a universal complex of finite type free modules on Y {3, Chapter 3]), one can
prove that the assignment

YSy k=> X(gy, @y) € (90

is analytic.
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