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ON DOMAINS OF POWERS OF CLOSED SYMMETRIC
OPERATORS

KONRAD SCHMUDGEN

INTRODUCTION

Let T be a densely defined closed symmetric operator in a Hilbert space 5. As
M. A. Naimark has observed, the domain 2(T?) of its square need not to be dense
in 3. Naimark [5] even proved (using a result of J. von Neumann) the existence of
a closed symmetric operator T with 9(T?) = {0}.

In this paper we investigate some properties of the domains @(T*) of the
powers of T. To be more precise, we are mainly (but not only) concerned with the
following two questions:

When @(T") is dense in #? When 2(T"*7) is a core for T™?

Except from Naimark’s Doklady notes [5] published in 1940, this problems
appearently have not yet been further studied (as far as the author is aware).

Let us briefly describe the content of this paper and some of the results.

In § 1 we investigate some general properties of powers of a closed symmetric
operator T. Among other things we prove that if at least one of the deficiency indices
of T is finite, then @ (T):= q D(T™ is a core for each operator T%, ke N, and

ng

hence 2,(T) is dense in 5. Consequently, in our further study of the problems men-
tioned above we may restrict ourselves to the case where both deficiency indices
are infinite. If the underlying Hilbert space # is separable, then T has a self-adjoint
extension in J#. This enables us (at least in principle) to investigate both problems
for restrictions T of a (given) unbounded self-adjoint operator 4 in #. Throughout
the remaining parts of the paper, we will adopt this view point.

In §2 we give general answers to the questions from above. The criterions
depend on the self-adjoint operator A znd the size of the deficiency space #, of T-

In § 3 we prove some technical results which are needed in § 4.

§ 4 contains the main result (Theorem 4.5) concerning the two questions. Let
A be an arbitrary unbounded self-adjoint operator in 5 and 9 a set of positive
integers. Then there exists a closed symmetric operator T with T' = 4 such that
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2(T™"), n, re N, is a core for T7 if and only if ¢ |. Moreover, if N is bounded
and k is an upper bound for R, then we can choose T such that this is truc for
i r < k and in addition @(T*#) is not dense in #, while @(T%) is dense. This
theorem illustrates from a new view point the difficulties and pathologies which
can occur in working with unbounded operators.

The second part of Theorem 4.5 can be strengthened in the following manner.
There exists a closed restriction T of A such that @(T%) is dense in 3, but &(T*'1)
reduces to the zero vector. The proof is lengthy and will not be included in this
paper. In § 5 we give a short proof in the case & == 1. It is based on an argument
which the author has seen in [2] and [3].

The main result of § 5 (Theorem 5.1) is the following. For each unbounded
self-adjoint operator A in a separable Hilbert space 5, there exists a projection P
in # such that

(I — P)# 0 9(A) = P n 2(A) = {0}.

IFrom this theorem some other appearently different (known and new) results
describing ‘“‘pathological’’ phenomenona of unbounded operators follow ecasily.
Setting U -- I — 2P, we have the existence of a unitary operator U in # with
U2 N {0}, a result due to J. von Neumann [6]. Taking P# and (I-- P)3#
as deficiency spaces, we obtain densely defined closed restrictions T, and T, of A4
with (T3) - D(T3) == {0} and Z(Ty) n 2(T.) = {0}. The second part of this asser-
tion is a recent result of van Daele [2]. Finally, for each k € N, there is a linear sub-
space Z of Z(A**) with @ n D(4*+?) = {0} such that A* is essentially self-adjoint
on @ and A%1 t @ is closed and has infinite deficiency indices. In some sense, Theo-
rem 5.1 helps to see somewhat more clearly in the matter of these phenomenona.

NOTATION

We fix the notation and recall some basic definitions which will be used in
this paper.

N,, N and Z denote the non-negative integers, positive integer and integers,
respectively. Sequences are usually denoted by y == {y,, ne N}, 6 = {§,, ne N},
and so on. We let y8:= {,6,, ne N} and y/é:= {y,/d,, ne N}. & is the space of
all complex sequences having only a finite number of non-zero terms. F,, ke N,
denotes the projection in ¢, which is defined by Fiz: = (x, ..., x;, 0, ...) for
@ {x,, neN}el,. We set Fp=0.

#, A etc. are infinite dimensional complex Hilbert spaces. We write (- , -
end ||-!] for the scalar product and the norm of these spaces. To avoid ambiguities,
the scalar product and the norm of the sequence space £, will be denoted by (-,-)
and i}l .1;, respectively. If &;,j =1, ..., n, are subsets of &#, then &, 4+ ... -\- &,
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stands for the set {¢; + ... + ¢,; 9;€ £, 2* and & are the orthogonal comple-
ment resp. the closure of a linear subspace & in 5.

Because the domains of powers of densely defined closed symmetric operators
are not dense in general, we have to deal with operators whose domains are not
dense in . Let T be a linear operator in #°. 2(T), (1), A (T) denote the domain,
the range, the nullspace of 7, respectively. Let us define 7°:= I, I the identity map-
ping in#, p(T):= ¥,a;T’ for each complex polynomial p(z) = ¥ 4,z and D (T):=
:==Q 2(T". T, < T, means that Z(T}) < 2(T,) and T ¢ = Top for ¢ e Z(T).

ne

T is closed if and only if &(T) is completz with respect to the graph norm {jo|;:==
s (|| To))? + |lpl]®)Y2 A linear subspace 2 of 2(T) is a core for T if and only if
%(T) is the closure of 2 in the graph norm. Let T, T, be linear operators in 5, A"
The orthogonal direct sum T; @ T is the linear operator in the orthogonal sum
H @ A which is defined by (T, @ T5) (¢ + @)= T10; -+ Tops, ¢, € Ty,
¢2€ D(T,). A similar meaning is attached to finite and countable orthogonal
direct sums.

Now let T be a closed symmetric: operator in 5. Then, (T + i)2(T) and
(T’ — 1) 2(T) are closed subspaces of #”. Their orthogonal complements #, and
2 _ are the deficiency spaces of T. The dimensions dim 4#, and dim # _ are called
the deficiency indices of 7. The Cayley transform W of T is a partial isometry from
HOHK, =(T+1)2(T) on # OH#_ =(T —i)P(T) which is defined by
W({(T +1) ¢):= (T — i)p, o 2(T).

Throughout the whole paper, let 4 denote an arbitrary densely defined un-
bounded self-adjoint operator in #. Let E(4), A€ R,, be the spectral projections,
V=(4—1)(4+i)"* the Cayley transform, and 4(4) the spectrum of A.

Finally, let us séy that two vectors ¢, iy € # are A-orthogonal if f(4)e 1
1 g(A)y for all bounded continuous functions f, g.

§1

1.1. We begin with some well-known facts. We include the (short) proofs
because this is easier than localizing an explicit reference. Suppose that T'is a den-
sely defined closed symmetric operator in the Hilbert space 7.

Lemma 1.1, Let p; (1), j = 1,2.3, be complex polynomials in t with complex
coefficients. Suppose degree p; < n whereneN andj = 1,2,3.

(1) If py(t) = O on R,, then {p(T)@, @) > O for ¢ € D(T™).

(i) If [py()* < 1po(DI® + Ipa(2)|2 on Ry, then

(Dol < ||pA(Te | + lips(T)e |
Sor all ¢ e (T™).
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Proof. Extend T to a self-adjoint operator, say A, in a larger Hilbert space and
apply the functional calculus for A.

ReMaArk. (1) follows also immediately from the fundamental theorem of algebra.

The latter implies the existence of a polynomial g(z) such that p,(¢) = : g(1) q(1). Since
T is symmetric, {py(T)¢, ¢) = |g(T)p|? = 0 for ¢ € Z(T").

Let ;- 4,, meN, be the graph norm defined by |l@ld = IT"!* L. fig)®
on 2(T™). Applying Lemma 1.1, (ii), with p,(¢) : = t*, p.(£) = 1%, ps(t) == 1, we obtain

CoRrOLLARY 1.2, If k <n, k,ne N, then [l <jjoi + |j@l?® for o€ UT").

Recall that a linear subspace 2 = 2(T™), me N, is a core for T iff & is
| * |l,-dense in @(T™). Therefore, Corollary 1.2 immediately implies

CoroLLARY [.3. Suppose k < n, k,ne N. Let p(z) be a complex polynomia
of degree k.

If 9 < 9(T") is a core for T" and 2(T") is a core for T*, then 2 is also a core
for p(T).

COROLLARY 1.4. For any complex polynomial p(z), p(T) is a closed linear
operator.

Proof. Suppose that n:= degree p(z) = 1. Since, by Corollary 2, the graph
norms | - |l,¢ry and || - ||, are equivalent, it suffices to show that I™ is closed, i.c.,
%(T") is || - |l,-complete. We argue by induction on n. Assume that 7" is closed.
Let {¢p,.} be a || - |,-Cauchy sequence. Applying Corollary 2 (with k =: 1), we see
that {T¢,} is a Cauchy sequence in #'. Let @, —» @, ¥, = T, - ¢, T" Y, :
ot TP, — € as m — -+-00 in . Since T is closed, ¢ € Z(T) and  : - Te. Because
T7-1 s closed, £ € Z(T*"Y) and & = T7~ Y = Trg.

REeMARKS. 1) By Corollary 2 and Corollary 3, & is a core for p(T) if and
only if T is a core for T*, n:~= degree p(z). Therefore, we can devote ourselves in
what follows to the study of cores for powers of T.

2) Corollary 4 is no longer true without the assumption that 7 is symmetric
(sce Remark 3 in § 2 for counter-examples).

1.2. Let 52, _ be the deficiency spaces and W the Cayley transform of T
let Gpio=d, CWEH, -+ ...+ W25 for ne N. The closed linear sub-
spaces S, = 4., neN, of # are called the iterated deficiency spaces of T (with
respect to 1). Let P, be the projection on 52,.

LeMMA 1.5. @(T") = (W — I)" (I — P,)# for each ne N.

Proof. We proceed by induction on a. For n := 1 the assertion is clear. Assume
now that @(T7) = (W — Iy'(I — P,)H. Let Yy e Z2(T"). Since Yy € 2(T7), ¥ =
(W — Dp witho Lo, Ty =i(W + 1) (W—I) ¢ e 2(T") implies Ty —if=
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= 2i(W — Iy*~‘p € (T™), thatis, (W — I)"~2¢p = (W — IV¢ with & 1 #,. Since
W — -2 1L #, and (W — D¢ | #, for k= 1, ...,n— 1, theinjectivity of
W —1on ©H, gives ¢ = (W — I&. From ¢ 1 5, and ¢ 1 5, it follows
that £ L W*#, and thus ¢ | o#,.,. Therefore, == (W — [)* (I — P, ;)¢
Conversely, it is easy to check that these vectors are in @(T"*).

LEMMA. 1.6, Let k, ne N.

(i) D(T™") is dense in # if and only if (W* — 1)y € S, € A, always implies
Y= 0.

(ii) Suppose that k < n. @(T") is a core for T* if and only if for z=:1and
z=—1i,(W*—Iy z—i*"W* + DYy e #,, W € #, implies (W* — I)(z — i"(W* 4
+-If W e o,

Proof. (i) By Lemma 5, 2(T™) is derse in 2 if and only if the range of the ope-
rator S:=(W — I)"(I — P,) is dense, that is, #/'(S*) == {0}. The above condition is.
only a reformulation of A°(S*) = {0}.

(ii) @(T7) is a core for T* if and only if (T* + ) @(T*) < (T* + z) 2(T")
for z—=1i and z= —i. Letting S,,, =W+ D+23W —Iy"(I— P,),
me N, m > k, and using again Lemma 5, this is equivalent to :S‘,:k:}? = m._%’,
z = 4-i. Since the condition mentioned in the lemma is a reformulation of #/(S¥; )&
< A(S¥, ), the assertion follows.

The next lemma has been shown in the proof of Proposition 2.1 in [8].

LemMma 1.7. If D(T") is a core for T"~* for each ne N, then D(T) is a core
for each T*, ke N.

PROPOSITION 1.8. Let k,ne N, k<n. Suppose that the linear subspace %,
is closed in .
If @2 < (T is a core for T, then 9 is also a core for T*.

Proof. By Corollary 3, we have to show that 2(T™) is a core for T*. By Lemma
4, (ii), it suffices to prove that (W*—Iy'~* @ € #, for ¢ € H# alwaysimplies ¢ € #, ..
Fix a vector ¢ € # with (W*—I)y*~* ¢ € #,. Since &, = A, by assumption, we can
find a vector Y € 4, such that (W* — I)""*(¢p — y)e %,_;_,. Here we will set
% _, = {0}. Our proof is complete if we have shown that ¢ == y. We proceed by
induction. Let re{0,...,n — k — 1}. Assume that (W* — I)""Y(¢p — )€ &,.
For r = n ~— k — 1 this is true. We want to prove (W* — I)"(¢p — )€ %,_,. Let
us write (W* — I)'*i (o — ) as £+ (W* — I)n where (€ ¥,, ne ¥,_,. Since
W*P_ =0, this gives

W — DI — PY[W* — D) (¢ — ) — n]—P_[(W* — D) (p—¥)—n] + {=0.
Clearly, W* is the Cayley transform of the closed symmetric operator —T-

and Y9(—T)=W* —-1)(I— P_)s¥. Since D({(—T)*) is the direct sum
Y(—T)+#, + #_, the above equation can onlv be true if all compo-
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nents are vanishing, that is, P_.{ =0 and (W* —I)(I — P_){=:0 where {=:
= (WH~1)(@ — ) — n. Because W* — [ is injective on# © s _, we obtain
(I--P_){: 0. Hence (=0 and (W* —I)(¢ — ) =ne %,_,. For r=:0 this
gives ¢ :- ¥ which completes the proof.

REemark. It follows from the preceding proof that ¥, is the (algebraical)
direct sum of its subspaces #,, (W* —DNH ., ...,(W* —I)'"1# . for each
n€ N. Hence %, is also a direct sum of ., W53, ..., (W'~ 1#,.

1.3. The main result in this section is

THEOREM 1.9. Let T be a (densely defined) closed symmetric linear operator
in JE€ with deficiency spaces H# .., # _. Suppose that one of the following conditions is
satisfied

() G,: S, W H, ~ ...+ (W' -YH . is closed in H for each ne N.

(b) At least one of the spaces ., or S _ is finite dimensional.

Then, 2,(T) is a core for each operator T*, ke N. In particular, D(T) is
dense in J.

Proof. (a) The assertion follows from Lemma 7 and Proposition 8.
{b) Without loss of generality we may assume that dim 5, < oo (otherwise
we replace T by —T'). Then, ¢, is finite dimensional for ne€ N and (a) applies.

REMARKS. 1) If the operator 7 has equal finite deficiency indices, then
Theorem 9 reduces to Proposition 2.1, (ii), in [8]. Our proof has used some argu-
ments from [8].

2) The questions formulated in the introduction could be answered in terms
of the adjoint operator 7% We mention a simple example: £(T”") is dense in #
if and only if the operator (7)" is closable in 5#. But we do not go further along
this line. As we have explained in the introduction, Theorem 9 enables us to take
a different point of view throughout the remaining sections of this paper: The closed
symmetric operator T will be considered as a restriction of a self-adjoint operator 4
acting in the same Hilbert space.

1.4. We conclude this section with a result concerning the deficiency indices
of T" It is probably known.

Following [1], p. 305, a complex number 2 is called a point of regular type
for T if there is a constant ¢ = ¢(4) > 0 such that ||(T — Do|| = || ¢|| for ¢ € 2(T).
Let p,(T)denote the set of these points. p (T is an open subset of C,[1]. By 2,(p(T))
we denote the set of all complex polynomials of degree » which have no zeros in
CN\pAT).

For the next lemma we merely assume that T is a closed operator on J#.

LemMA 1.10. Let py, po€ 2, (p(T)) for some ne N. Suppose, for each con-
rected component Q of p,(T), the number of zeros of p, and p, in Q (counted with
saudtiplicity) coincide. Then, dim Z(p,(T)HL == dim Z{(p(T))*.
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For py(z) = z — Ay, ps(2) = z — 4y, Lemma 10 is a classical result due to Krein
and Krasnoselski (see [1], § 100). Using tke argument of the proof from this case
(as given, for example in [1], p. 306), Lemma 10 can be shown by induction on
the number of common zeros of p, and p,. We omit the details.

Now we set k, = n/2 if ne N is even and k, = (n + 1)/2 if neN is odd.
Let @} resp. &, be the set of all pe 2,(p,(T)) which have k, resp. n—k, zeros in
the upper half-plane and fn — k, resp. k, zeros in the lower half-plane. {Again the
zeros are counted up to multiplicity.

CoROLLARY 1.11. Let T be a closed symmetric operator in .

(a) Let p,. be arbitrary polynomials from P3F. Then, dim Z(p.(T))* and
dim B(p_(T))L are the deficiency indices of T* for i resp. —Ii.

(b) If there is a real number in p (T) (in particular, if T is semibounded), then
both deficiency indices of T are equal to dim Z(p(T))* for each p e 2, (p.(T)).

Proof. Since T is symmetric, the complement of the real line is jin p,(T) and
p.(T) has at most two connected components. To prove (a), we apply Lemma 10
with p,(z) = z" 40, py(2) = p.(2) and Q the connected component of the upper
resp. the lower half-plane in p,(T). By the definition of %, the assumption concern-
ng the zeros of p, and p, is satisfied. The second assertion (b) follows again from
Lemma 10 if we take into account that p,(T) is connected in that case.

§ 2

In this section we begin to study restrictions of the unbounded self-adjoint
operator A. Let ¥, be a closed subspace in # and P, the projection on ..
Obviously, W:= V(I — P,) is a partial isometry in 3 with initial space #° O #
and final space # © V.. It is easy to check that W is the Cayley transform of a
closed symmetric (in general not densely defined) restriction T of 4 with deficiency
spaces &, and 3# _ = V3#,. First we need a more convenient form of the iterated
deficiency spaces #, which are, by definition, the closures of %, =5¢,_ 4+
W, + ... R,

LeEMMaA 2.1.
G=H +VIH, +.. .+ V- -, =5 +(A—i)"2, +.. A=) -
Jor each ne N.

Using W* = V-1 — P V-1, the first equality follows by induction. The
second equality is an immediate consequence of V-1 — I = 2i(4 — i)~%

From [8] we recall
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PROPOSITION 2.2. 9(T"), n € N, isdense in # if andonly if #, 0 %(A4")  {0).

For n: - 1, Proposition 2.2 has been independently obtained in 4]
We now give a general answer to the second question.

PROPOSITION 2.3. Let k,neN, k < n. @(T") is a core for T* if and only if
KN DAF) © (4 — D)~ =Ry, .

Proof. The proof is similar to the proof of Lemma 1.6, (ii). As in Lemma 1.5,
D(T™) - (V -~ Iy"(1 — P,) # for me N. Set Spuz:= (T* + z) (V — Iy"(I - - P,)
where me N, m > k, ze C,. 2(T") is a core for T* if and only if

(T*+2) ATH) = Sy o H# S S,u.%# = (T* + 2)NT")

for z — i and z:= —i. Clearly, this is equivalent to N(Spiz) € A(Sgi ),z -0
The operator (T* + z) (V — I)" =: (4* + z) (A + 1)"(2i)” is bounded if m > k.
Hence we have

N (Sip,s) = (peH: (A% +2) (4 —i)"peH,}
and
N(SE) = {peH: (A" + 2) (4 — ) peH,}.

Since ¢ — (4* + Z) (4 — i)¥¢ is a one-to-one map of # onto # for Imz # 0,
N(Six,2) € H(S¥.), z == +i, is equivalent to {Y € #: (A — i)Y~ e ,} < H,.
Substituting & : = (4 — i)*~"y, the latter leads to #, N D(A"F)c (4 — i)--R .

REMARKS. J) Obviously, the opposite inclusion (4 — i)~¥-K, < #, »
N D(A"-*) of the condition occurring in Proposition 2.3 is always valid.

2) We take this opportunity to correct an (essential) error in the Zentral-
blatt review [11] of Naimark’s paper [5]. In this review (but not in Naimark’s paper!),
it has been asserted that 2(T?) is dense if and only if 5, + s _ is closed in #.
This condition is clearly sufficient because 2(T?) is even a core for T under this
assumption (note that %, + #_ = V%,) by Proposition 1.8. We show by an easy
cxample that it is not necessary.

oo
Let 3 : : }, @ Luay,, b,), wherea,, b,€ Ry, a, < b,, for ne N. Let T be the

n=:1

{closed symmetric) differential operator —i (—;1 in 3 acting in each component with
x

boundary conditions zero at a, and b, for each ne N. The deficiency spaces #,
and S _ are spanned by the vectors @Ff = (fi,(x) = e~%5,,), k€N, rtesp. o; -
- Gl(X) = €%0,), ke N. Here §,, stands for the Kronecker symbol. It is well-
known that 5, 4 3. is closed if and only if there is a constant ¢, 0 < g < 1,
such that

Ko™ 0-)| < qllo*llile-|i for ot e, o~ e _.
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Suppose that lim b, — a, = 0. Tnen,

/00

lim Ko, o) o I leell =1 = 1
k—co

and hence 5#, + o _ is not closed in 5. On the other hand, 9.(T) is a core for
each operator T%, ke N. Of course, Z(T?) is dense in 5.

3) Let T be the closed symmetric operator from the preceding example. Be-
cause D(T) is dense, T* is a well-defined closed operator in . Since #, + #_ is
not closed in 4, it can be easily seen that (7%)2 is not a closed operator (but clo-
sable because 2(T) is dense). If we choose T such that 2(7T?) is not dense in 5# (by
Theorem 4.5), then (T%)? is not even closable. Hence Corollary 1.4 becomes false
if we do not assume that T is symmetric.

§3

The main aim of this section is to prove Corollary 3 below which will be ap-
plied in § 4. Nevertheless, some resuits (in particular, Proposition 1) are essentially
stronger than needed, because they seem to be of some interest in itself and they
could have further applications.

3.1. ProposiTION 3.1. Let {&,,ne N} and {5,, n€ N} be positive sequences.
There exists a vector @ € D (A) such that

() ]((A — i)l"(/), (A — i)m‘/’>| < g, li(A — Yol (4 — iy"ol)
and
(2) H(A —_— i)l"(pll S (S””H(A. . i)m )](p”

for all k, me N, with k # m.

The proof is based on a technique which the author has developped in studying
unbounded operator algebras (see, for example, [9]).

Proof. First we prove the following assertion. For any ¢> 0, o > 0 and
me N, there is a vector £ € Z,(A) such that

€) (A — )&, (A — D)"E)] < elied — DR I(A — i)™¢|l
for k-:0,...,m—1,

49 (4 —D"ell = «,

and

(41/) “(A . l‘)m—ilé’“_ < g.
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Without loss of generality we can assume that sup{4 ; /€ a(4)} - :-4-00 and
% -1. Letne Nand 0 < g < 1. Since 4 is an unbounded self-adjoint operator, we
can find real numbers A, s =<0, ..., n — 1, and vectors {,€ 8,5 0, ....n 1,
such that the intervals [4;, A, -+ 1] are mutually disjoint, 2 < A, < gz, ‘&0 |

n 1

1 ' MY 5 SR I
U B

and & - E(A, A, 4 1)E fors::0,...,n— . Let £::==

Obviously,
(5) (4 — )™l = 1.

Suppose that k€ {0, ..., m — 1}. Then

g KA - i, (A = )mEpL

3,

KA = &, (A = e

n j%o (4 — )71
1 7 V1) 4] 4 jmik 1 n-t pmik mtk a1 p(m—k)J
(6) < - ‘_J_—n_ g._z. — E < — .q- . <
n I;~j _ 1I._m n i }.;-"_" n % A‘r)n—k
2nnk
< _/':'o—mék(] —_— qm-k)—-l_
n

On the other hand,
A= M&all ik

(7 (A4 =) > —= - > S >— -
Vnil(A—iy"&gl ~ 1dg =1 —imYn — 2mapk)n

If we choose n and ¢ so that 22"k < Yfne(1—g™-*) for all k- 0,...,m- -1,
then (5), (6) and (7) yield (3) and (4’). 1t remains to verify (4''). A similar estimation
as (7) gives

R R

n (1 — ¢%)

Taking 7, sufficiently large, (4)" is satisfied.

Now we complete the proof of the proposition. Without loss of generality we
assume thatg,,; < ¢,and §, < 1 for all n € N. By the preceding assertion, there is a
sequence {¢,, n € Ny} of vectors in D.(A4) such that for all k, me N,:

. 3 ni—1 .
(8) I — iyl > = ( S G4 — iyl -+ 1),
() j-0

n

m--1
O =l > = (A~ ey (4 —irpyi 1) itk <
8"' j:0

(10) (4 — iy"=20, < 277,
(D) A= (A= iV, <eall(d — fopul (A — o, if k < m.
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Moreover, by decomposing A as an orthogonal direct sum of countably many un-
bounded self-adjoint operators, we may assume in addition that

(12) A, L A%¢, for k # m, k,m,r seN,.

[~
Let ¢ =¥ ¢,;. (10)ensures the convergence of the series in all graph norms ||| o,
=

n € N. Therefore, ¢ € D,(4). Using (8), {10) and 4, < 1, we get

m-—1
(A4-—i)"ol| 2 [[(A—D)"@nll— Y, (4 — i)l —

j=0

(13)

o . 2 .
— Y A=)l > ';II(A — )",
j=m+1 J
and similarly
(13) 4 — iyl < ‘3‘ 1A — "o

Hence (8), (13), (14) give us

. 2 3 - 2 .
(A4 — )"l 2 35 (4 =)@l > 5 (A4 — D", >

n m

2 3 .
2 — -4 =" o,

Om

1.e. (2) is satisfied.
Suppose now that k < m, k, me Ny. By (13) and (8),

. 2 .
(4 — i)Yol = ;;—ll(A—l)"%II z 2.
Applying this and (8)—(13), we obtain

[{(4 — iYp, (4 —D)"p)| < K(A — iYg,, (4 —D)"p,)| +

m--1 o0
+ Y, KA =)o, (A—=D)"p) + Y, K(A-- i, (4 —i)"g;)l <
j=0

Ji=mt1

< 8"1”(/4 - i)k(pm” ”(A - i)m(pm” -+ 8,"|[(A - i)m(pmH < 28m”(A - i)m(pm” <
< gull(A4 — iVl I(4 — i)7o|.

Since the left hand side of (1) is symmetric in & and m and {¢,} is monotonic,
this implies (1). Now the proof is complete.
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REMARK. As we can see from the proof, A — i could be replaced by 4 -~ 2
where 4 is an arbitrary complex number. In particular, Proposition 1 is valid for A
instead of A — i. The technique works in fact for each unbounded normal operator.

3.2. COROLLARY 3.2. Let 1 > ¢> 0, 0 > 0 and ne N. There exist a vector
e, ¥ ¢ D(A), such that

(15) A = )y (A - )] < A - DY (A — )]

(16) Y G D > (=) Y gl (A — D
“i=0 & =0

(17 (4 — =gl < 8 (4 — iy-C-Dy]

Jorallr,s--0,....,nwithr#sand x;e Cy, j:-0, ..., n

Proof. We apply Proposition | with ¢, == &/2, 3,, = /2 for me N. Let ¢ be
the corresponding vector from 9,(A4) satisfying (1) and (2). Set U (A- 1)"p.
Then

(A — ), (A — ) < ; (A - i)~ (4 —~ i)=Y

and

(A - i)"'l,I‘;H < z (A — i)‘("l);ﬁn for r,s=0,...,n,r #s.

Now let ¢ be an arbitrary vector in # with & ¢ 9(A). Taking ¢ - : J/ i al
and choosing the positive number « sufficiently small, (15) and (17) are satisfied.
{16) follows easily from (15).

3.3. For the construction in § 4 we only need

COROLLARY 3.3. Let {8,, ne N} be an arbitrary positive sequence. There exist
a sequence (Y, , n € N} of mutually A-orthogonal vectors Y.}, ¥, ¢ D(A) for all ne N,
and a positive sequence {q,,ne N,} such that

Yo oo X "2 n oo . o
(18) Y Y A=Y 2 q, Y Y bt A — DT R
LRS! L} F I A

Jor all ne Ny and z;:=- {x;;,leN}y e &, j— 0, ..., n,

(19 (A4 — D5l < 8, [I(4 — == |

for all ne N,keNy,k < n.
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Proof. By the spectral theorem it is possible to write 4 as an orthogonal direct
sum Y @ 4, of unbounded self-adjoint cperators 4, in Hilbert spaces o, ne N.
n

We apply Corollary 2 to A, with ¢ = 1/n and 6 = §,. Let i, be the corresponding
vector. (19) follows immediately from (17). We prove (18). Let ne N. Since the
vectors Y,, /e N, are mutually A-orthogonal,

[I

(20) LT J= ¥
J=0 1=1 =

. 2
xp(A — D~ |
0

n

t J

If I > n, then Corollary 2, (16), and ¢ = 1/2 n yield

S, A = )] > % bl = vl

Jj==0 1 = j=0

Now suppose that / < n, /e N. Clearly, the vectors (4 — 1)~/ y,, j=0, ...,n,
3 yj(A—i)-fw,H
j=0

is a norm on the (n 4 I1)-dimensional vector space 4 ,:= Lin{(4 —i)~/y,,
J =0, ...,n}. Therefore, we can find a positive constant f; with

are linearly independent because ¥, ¢ 2(4). Hence py(z):=

P > By S 2 A — 7 g

j=0

for all vectors 5. Setting g, = min{1/2, 3,, ..., B,-,} and putting both cases [ > n
and / < ninto (20), we obtain the desired inequality (18). Now the proof is complete.

Let 5, be the closed subspace of 5# generated by the sequence {,, ne N}
from Corollary 3 and let T" be the corresponding closed restriction of 4. Since # . n

Nn2(4) = {0}, T is densely defined. Moreover, from (18) we see that the
spaces

Gy=H, + A=) H, + ...+ A=)V ., neN,

are closed in ## and hence coincide with the iterated deficiency spaces #,. This
fact will be stated separately as

COROLLARY 3.4. There exists a (densely defined) closed symmetric restriction T of
" A withinfinite dimensional deficiency spaces # ., # _ suchthat, for each neN, the
space

Go=H, +(A—DTH, .. (A= DD, (=8,
is closed in H#.

5 — 2484
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§4

Throughout this section, let us adopt the following convention concerning
the notation: For small greek letters such as v5;, nt, n? etc. and capital script letters
such as 75, 25, &3 etc. the upper symbols s, 1, 2 are always indices. They do not
refer to powers.

4.1. Let k be a fixed natural number. Recall that 4 is an arbitrary unhounded
self-adjoint operator in 5. By the spectral theorem, we can find unbounded self-
-adjoint operators A,, A,, B acting in Hilbert spaces J,, # ., # such that
K= O A, ® N and A=A, @ A, @ B. The elements of # will be written
as sums @' + @ -+ @, pre Ay, 0 € Ay, o€ A . Let {n}, ne N} be a sequence of

o0
B-orthogonal vectors in " such that the series 7:== ¥ (A — ))~F 4} is converging
n=1

in )¢, that is,
M {I(4 —D)~*nill, ne N} € £.

Let {m,,ne N} be a sequence with m, € N, for n€ N. Suppose that s is either 1
or 2. Let &, — {z,,, ne N} be a complex sequence. For 4, we choose a sequence
{y5,ne N} in i, satisfying the conditions of Corollary 3.3. Let %3 be the
closed subspace of ) generated by {{5, ne N} and let &; =95 +(4 — )" ¥ +
F oo+ (A —D"C-D £ neN. Recall that ¥ is a closed subspace of 4,
for all n€ N because of the properties of the sequence {y5}. Clearly,

-1 oo
‘@Z::; {‘//-—'nz Z x”(A - i)—i l//‘;; u",‘j::{le,le N}E 4 fOl‘ j=0, coes n—l}

Je=0 =1

is a dense linear subspace of %% . For simplicity, we identify y € &5 with the n-tuple
(@ps - - -» @s—y) Of sequences from <. (This is possible because the vectors (4d—i)—7y,
leN,j=0,...,n — 1, are, of course, linearly independent.) Set 2 = (4 — i)~1n}
for ne N.

Now we define linear operators 775 from 2;, into ¢ by

T = Tia)i= Y, (@0, (I — Fn ),

I=1

n-1
T =T (s ooy @poy)i= Z 4 —i)-J yf(mj) ifn<k
j=0
and
TSN = T @y -« .y Bpy) 1=

n-1 Ld
=T (Zes s Z-) — Y, (A =D Y, (2, Fmp#yy fnzk- 1.
Jj=k I=1
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Note that all sums are finite because z; = <. Recall that the scalar product and the
norm of £, will be denoted by (-, -) resp. ||| - |||

Let # . denote the closure of

graphd} + graphi = {¢* + T o' + ¢* + Ti¢*; ¢'€ 9}, ¢*€ i}

To describe the corresponding iterated spaces 5, (defined as the closure of
K+ A—DTH L+ ...+ A —D)C-Y ), we use the notations yji=

i= (4 — D)"Yl y5:={y5, 1eN} for r,leN and &,:= Lin{(4—i)~/ n;
Jj=01,..., n—k} forneN,n>k+1.

LeMMA 4.1, Suppose that
(2) ’”"s/yz—l € fﬂ! ] %S/Y;f ¢ [2a
B (I — En) =yl N4 = ~nill, neNye by forr=0,....k—1,s=12,
and '

@ {l1Fm 2/l A —D)~"m3ll, neN} €, for reN, r > k,s=1,2.

Then the operators T 5, n€ N, s = 1,2, extend continuously to bounded operators T,
from &5 into A'. We have

(5) #,=graph T} + graph T2 forn=0, ...,k

and
6) &y S H, < graph T} + graph T2+ &, for neN, n > k4 1.

Proof. We prove that J7 is bounded from 2% into A for n=0, ...,k;
5=1,2 Letje {0, 1, ...,k — 1}. By (3), we have

(4 — D~ Ti(e) | = H;(zp (I — Fm)#) (4 — D) Iqi|P =

= 2 (2%, I — Fu)x/yDE (A — D~ ni|P <
< (fll I~ Fu)z/villI2 1 (A=)~ nil®) filz 5l <
<co:Jst. gilillplR.

The latter follows from formula (18) in Corollary 3.3. Therefore, 773 is bounded.
A similar estimation applies to 75, n > k.

Now we prove the second assertion of the lemma, that is, we verify (5) and
(6). First let n < k. By the definition of 5, {@* 4+ T 0' + 0% + Ti¢p?; 0% 25}

9
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is a dense linear subspace of #,. Since 7% is continuous, (5) follows. Now suppose
thatn > k- 1. If ;e & for j=:0,...,n — 1 and s = 1,2, then by definition of
75, and

n--1 n--1
2 (A - i)_lg-i(mj) P ‘a/-fi(xl)’ sy xn-l) —:" Z (mjy ’/zs);(A - 1) 4 ’]}
J<:0 j=k
)
n--1
T @os oo agm)) Y (V) 204 — jymItkALes
J=k

The second sum in (7) is contained in &, . Since 7% is continuous and the finite dimen-
sional subspace &, is closed in %, (7) implies #, < graphd ) - graph 2. ¢,
It remains to show that &, = s#,. We have to prove that (4 --i)~"5eH#’, for
#::0,...,n-—k. First assume that r <n — Kk — 1. Since obviously yi , >
> Yie, for €N, (2) implies z/y},, ¢4, Hence f(x):=(z, #/yie,) is a
discontinuous linear functional on & with respect to the £,-norm. Therefore, there
Are Vectors g, « ¢ {V,u, [eN}, me N, in & such that 4, — 0 in the £,-norm and
JUw) = 1 as m > <+ co. Letting

00 y
0= Y- ll"L (A4 —i)~" %y} for me N,
I=1 yk+r,l

we have limg,, -0 in ;. Because J} is bounded, limJ}e, -:0. By (7),
n

1

(fm> 2V NA — D754y > (4 —D)="ne A,

Replacing 7} by JZ, the same argument works for r = n — k and yields
(4 —i)~¢-0 yes,. This completes the proof of Lemma 1.

4.2. LeMMA 4.2. The sequences {nl}, {m,} and z;, {Y5} for s = 1,2 can be
chosen such that v ¢ D(A) and the conditions (1) —(4) are satisfied.

Proof. Here we essentially make use of the growth conditions contained in
Corollary 3.3, (19). Let us assume that {y$}, s = 1,2, and {#,} satisfy formula (19)
in Corollary 3.3 with positive sequences &° == {85} resp. ¢ =: {¢,} which will be
chosen now. (Note that for {5}} the other conditions of Corollary 3.3 need not
be true.)

Then we have ¥ , = (4 — D=5l < 0, (4 — D)=yl = 8p}..1,, for
s::1,2, ne N, n 2 k. Choosing §; = 1/n for ne N, the sequence yi_,/7y; will be
unbounded. Hence there is a j7,€ £, so that gyl /v ¢ £o. Setting 1= g 38,
(2) follows.

Again by Corollary 3.3, (19), we have

(8) (A — )< o litd — D=C-Vpl for neN,reNg,n > r.
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Multiplying with appropriate positive numbers we can assume that
(A — )=%*+1pll == 1 for ne N. Moreover, we choose ¢ such that ¢, < 2=" for
ne N. Then (1) is satisfied and #n ¢ 2(A).

Now we turn to (3). Since =/y; € £», we can choose m, so large that

N — Fu eyl Indll << 27" for neN, s=1,2.

Then z,/yi€ £, and
N — Fon )yl 1A — D= | < T — Fon )/ villl [l

for r =0, ...,k — 1 imply (3).

Finally, we prove (4). Let re N, r = k. Since ¥ # 0 by construction, there
are real numbers A, such that E(2,,, A, -+ Dyi=1:¢f #0 for all neN and
s=1,2 Hence »,=1{(4 — )y = llojlla;, where ay:= max(|iy; — i,
A, + 1 —il). Letting

a,:=min{||ofl,a;,:s=1,2; I=-1,...,m,} for neN,
we get y;, = a;t! for I=1,...,m, and therefore

&) 1 Fom, /3l < @z " Hllsfll] - for neN and s =1, 2.

By a repeated application of (8), we obtain forn = r
(10) (A4 — )=l < (A4 — D7l < g A — D=l = 5 < e,

Now we choose ¢, such that c,a; "~ |||j#|]| < 2=" forne Nand s =1, 2. From (9)
and (10) it follows that forn > r

N Fom, VRl (A — D=l < 277

Hence (4) is fulfilled, thus completing the proof of Lemma 2.

4.3. The following is the key to our main result.

COROLLARY 4.3, There exists a closed symmetric restriction T of A such that

(a) D(T") is dense in 3 for all ne N.
(b) 2(T"") is a core for T" where n,re N if and only if r # k.

Proof. Suppose the sequences {1}, {m,}, #,, {¥5} are chosen as in Lemma 2.
From § 3 we know that the spaces &5=%° +-(4 — )2 L5 +... +(4—i)- D ¥5 |
neN, s==1, 2, are closed subspaczs of 4. Since Yje 2(4) for all [eN,
25, N 9D(A4) = {0}. From Lemma 1 and # ¢ 2(4) we infer that #,n P(4") =
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= {0}, ne N. Let T be the closed symmetric restriction of 4 defined by means of
a’f.{. , that is, the Cayley transform of T'is W = V(I — P,) where P, is the projece
tion on 5¢ .. Then, by Proposition 2.2, @(T™) is dense in # for all ne N.
To prove (b), first let r == k. By Lemma 1,

(A= D)"1€ DAY N 6,y S D(A") 0 Hpep and 5 ¢,

According to Proposition 2.3, Z(T7+F) is not a core for T% Now we consider the
case r 7 k. Let r & N. By Proposition 2.3, it is sufficient to prove that

(1f) HneNGAY S (A—1)""H,.
From Lemma 1 we see that for s =1, 2
graph 7., 0 H(A") < graph T, t (4 — 1)~"L5 == (4 — i)~"graph T, t L5 <

= (A — i)~ "graph 7%,

Therefore,
(graph.7 )., - graphT 2 ) N #,,, 0 D(4A") = (A — i)~"H,.

If n--r<k, then 5, 6 = graphJ},, + graphJ 2., and (11) is valid. Now
suppose that » -;- r = k 4 1. By the preceding, it suffices to check (11) for the
subset &y, of o#,,,. First let r < k. Because # ¢ 2(4), P(4")N &y, {0}

Suppose now that r > k. Again by 5 ¢ Z(A),

DA™Y O Gpyy = Lin{(4 — D)=, (4 — D)=, ..., {4 — D)="""kg} (4 — )", .

Since &, € #,,, and &, € H#, by Lemma 1, (11) is fulfilled in this case which
corapletes the proof of Corollary 3.

4.4. The next corollary only needs Lemma 1 and condition (2).

COROLLARY 4.4. There is a closed symmetric restriction T of A such that

(a) 2(T*) is dense in . Z(T**) is not dense in .

(b) If n-r <k, nreN, then Y(T"™") is a core for TT.

Proof. We choose the sequences {5}, #, so that (2) is satisfies. Let m, == 0
for ne N, 7} # 0, 7} € 2(A) and 5} = 0 for n > 2. Then the assumptions of Lemma 1
are fulfilled. (Recall that Fp, = F,==0 by definition.) Since € D(A4),n=(4—1)Fyle
& 4(A** YN, ,,. Therefore, by Proposition 2.2, 9(T%**) is not dense in .

The remaining assertions follow similarly as in the preceding proof. Note that
H#,., :graphJ L., + graph I 2, for n 4+ r < k by Lemma 1. This completes the

proof.
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ReMARK. Corollary 4.4 alone could be obtained by an essentially simpler con-
struction. We decompose A4 as 4, @ B, where 4, and B are unbounded self-adjoint
operators. We only use the operators 7 1. As in the proof of Corollary 4.4, we assume
that (2) is satisfied and 7} has one-dimensional range, ie., 7 }(zo) = (%, #)n}
We only mention the results in that case because the proofs are similar as above.

Then, for r < k,n,re N, 2(T"*") is a core for T if and only if n +r < k.
To study the density of @(T™), it will be convenient to discuss the two cases 7} € Z(4)
and n} ¢ 9(A) separately. First let 5} € 9(A4). Then, 2(T%*1) is not dense in 2,
while 9(T*) is dense. Now suppose that 7} ¢ Z(4). Then, all domains Z(T™), me N,
are dense in J#. The latter case is also interesting from another point of view which
we will shortly discuss. Let .}?+ be the closed subspace of ## generated by #! and
{yh, ne N} and let T be the corresponding closed restriction of A. Obviously,
H. 2 A, and thus T o T. Since T is an orthogonal direct sum of restrictions with
deficiency indices (1,1), @w(f") is a core for all 7™, me N. As we have seen, (T
is not a core for T7 if n 4 r > k > r. In other words, by restricting T to a closed
operator 7" on a smaller (but still dense) domain it may happen that all domains
Z( i‘"'*") are cores for 77, n, r& N, while T has not this property. Moreover, we see
that @2 _(T) is still dense in 5# (because .@w(f") < 9,(T) is dense by Theorem 1.9).
But the assumptions of Lemma 1.7 are not fulfilled. Hence, “2(T"*) is a core for
T" ne N” is sufficient (by Lemma 1.7), but not necessary for the density of 2 (7).

4.5. THEOREM 4.5. Let A be an arbitrary unbounded self-adjoint operator in
the Hilbert space #. Let M be a (possibly empty) subset of N.

1. There exists a closed symmetric operator T with T < A such that:

(@) D(T™) is dense in I for all me N.

(b) @(T*) is a core for T", n,r€ N, if and only if r ¢ R.

II. Suppose that M is bounded. Let k € N such that k > n for allne . There
is a closed symmetric operator T with T = A such that:

(a) D(T*) is dense in . B(T*+Y) is not dense in .
(b) For any n, re N with n +r < k, 2(T"*") is a core for T" if and only
if r¢ .

Proof. First we consider the case where 9t is empty. Then, it suffices to take
T = A in part I and to apply Corollary 4 in part II.
Now suppose that 3t # @. To prove I, we decompose A as an orthogonal

sum Y, @ A, of unbounded self-adjoint operators 4,, n€ N, and apply Corollary 3
nEN
to cach operator A4,. Part 11 will be treated similarly. Let 4 = 4, @ E @ A, where
nen
Ay and A4,, ne N, are unbounded self-adjoint operators. We now apply Corollary 4

to A, and Corollary 3 to 4,,, n€ R. This ends the proof.
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4.6. REMARKS. 1. Our main aim was to show that the phenomenon stated in
Theorem 5 can occur for restrictions of an arbitrary unbounded self-adjoint ope-
rator A. If we only want to have examples of this kind, then the construction could
be made quite simpler. One possibility has been discussed in the remark in 4.4.
Further, for special operators A (for example, 4 ~: 4, ® A,, A,, A, unbounded
self-adjoint operators), the construction in § 3 could be essentially simplified.

2. The preceding construction has many degrees of freedom. They can be
used to obtain restrictions 7 having some additional properties. We give a sample
of this: There is an essentially self-adjoint operator Q on a dense domain & contain-
ed in £(T) such that 7 and Q satisfy the Heisenberg commutation relation 7Q¢ - -
--QT¢ - - ip for all ¢ € @. Examples of this kind (based on a quite different
construction) can be found in [10], Subsection 6.4.

3. Using the technique established above, we can prove further results in
the spirit of Theorem 5. Thus part Il can be essentially generalized. For example,

on the subspace #1:=: §(T*+) the same phenomenon as described in I, (b). can
occur ete. (of course, provided that T is still unbounded on 2(T%*')). With a more
refined technique it can be shown in part I, (a), that there is a restriction T such
that 2(T*) is still dense in #°, but Z(7%*) : - {0}. For k =- 1 this assertion is proved
in the next section.

§5

Throughout this section, closed operators and self-adjoint operators are always
meant to be densely defined. Moreover, we assume that the Hilbert space .# is
separable.

5.1. The main results of this section are the following.

THEOREM 5.1. Let B be a closed unbounded operator in 5. There exists an ortho-
gonal projection P in S such that

P 0 D(B) =- (I — P)3# 0 Z(B) = {0).

THEOREM 5.2. For each unbounded self-adjoint operator A in 3, there exist
closed symmetric operators Ty, T, with T, ¢ A and T, = A such that Z(1}) n
NHT): {0} and 2(T?) = Z(T3) == {0}.

The main idea of the proof of Theorem 1 given below 1 have first seen in a
recent preprint of van Daele [2]. Later I learned that it already occurs in [3]. This
argument essentially simplified my more involved original proof of the theorem.

The existence of restrictions Ty, T, with 2(T)) n 9(T,) = {0} is a result of
van Daele [2] (stated in [2] under the additional assumption that A is non-singular
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and positive). Examples of this kind has been first constructed by J. von Neu-
mann [6].

5.2. First we derive Theorem 2 from Theorem 1. Suppose that Theorem 1 is
already shown. Let P be the projection from Theorem 1 for the operator 4. W,:: =
i=: V(I — P) and W,:= VP are the Cayley transforms of closed symmetric
restrictions T, resp. T,of A. Recall that ¥V is the Cayley transform of A. Since
PH# NDY(A) = (I — P)# n2(A) = {0} by Theorem 1, T, and T, are densely
defined by Proposition 2.2.

Now let ¢ € Y(T) 0 D(T,). Then, pe (I — V)PH# n(I — V)({I — P)#. Since
I--V is injective, we obtain ¢ = 0, thus proving the first part of Theorem 2.

Next we check that @(T7) = P(T?) = {0}. Clearly, P5# is the deficiency space
of T, fori. Since XT,) == (I — V)P# isdense in#, P# + VIIPH 2V YI—V)PAH
is dense in#°. Because @(T7) = (I — V)3 (# © (PH + V-1PH)), we have Z(T?)=
== {0} and similarly 9(T%) = {0}. This completes the proof of Theorem 2.

5.3. Proof of Theorem 1. First we note that A:= (B*B)Y/2 is an unbounded
self-adjoint operator in 3 with 2(A4) = 2(B). Using the spectral resolution of 4, we:
can find an orthonormal basis {¢,,, k€ N, ne Z} of # such that

Q) A4 -+ )y~ top, | < 1/lnj! for all keN and ne Z.
Let .4 be the set of all vectors Y € 5 with

2) Y, (¥, @uye =0 ae on [0, 7] forall keN.

Hes — OO

Obviously, # is a closed linear subspace of #. Let P be the orthogonal projectiom
on . Assume now that y,e 2(4) n A . Since

|<l//0’ (Pkn>[ = I<lp09 (A + ]) (A "}‘ j)_l(pkn>l B '<(A - ])lll(l’(A "{_ i)—](pkn>E <
<l (4 — i)y dollf |n}? by (1),

(>

f;‘(z) = ”‘ZI <l//0 » (p;\">Z"

n= — 00

defines a holomorphic function on C,\\{0}. By (2), f,(z)is vanishing on a set of non-
-zero Lebesgue measure. Hence f,(z) == 0. By the uniqueness theorem for Laurent
series, this implies (Y, ¢;,» = 0 for ail ne Z and k € N. Consequently, o = 0.

From the theory of Fourier seriss it is clear that # L == (I — P)J is the set
of all £e€ s# such that

+00
Y, <& Qe =0 ae on[r, 27] for all ke N.

n= — 00

Therefore, the same argument applies to )" L. This completes the proof of Theorem 1.
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5.4. Let A again an unbounded self-adjoint operator in &#. If & « Z(4")
is a core for 47, then & is a core for A* where k < n, %, ne€ N (see Proposition 1.8).
Conversely, a core 2 < £(4**1) of A* need not to be a core for 4***. As a by-pro-
duct of the preceding proof we obtain a much more striking result along this line.

THEOREM 5.3. Let A be an arbitrary unbounded self-adjoint operator in 3F.
Let ke N. There exists a linear subspace & of Z(A**Y) such that :

() A* is essentially self-adjoint on 9, i.e. 9 is a core for A*.

(b) A**2 + @ is a closed symmetric operator with infinite deficiency indices.

(©) 2 n 9(4%2) = {0}.

Proof. Put @:= (I — VY1, where .7 is the closed subspace of #, as
defined 1n 4.3.

Let us begin by proving (a). By definition, (4*-+2)@=(4*+-2) (I—-Vy<(I--V)#
forz::iand z =:—1i. Since # L n D(A4) == {0}, I—V)A is dense by Proposition 2.2
(applied in the case J# . == %+, n = 1). Because

Si, zi=: (4% + 2) (I — V) = (4* =+ 2) (4 + i) ~4(2i)*

is a bounded isomorphism of # onto # for z == 4-i, we obtain (4* - 2)7 : = H#
for z- :iand z - : —i. This means that 4* is essentially self-adjoint on 2. In parti-
cular, & is dense in J#.

Next we prove (b). We have

(4452 3 )9 o= (A5 - 2) (1= VI = Ser, ok

forz::iand z = --1i. Since A" is closed, (4%*1 — 2)@ is closed. Therefore, A* ' } &
is 2 closed operator. It is easy to check that 4%™ } & has the deficiency spaces
(A - DFH (45 L 2y L. Of course, these spaces are infinite dimensional. (The
latier also follows from Theorem 1.9 and condition (c¢) which will be shown now.)

Assume that @€ @2 n 2(4*). Let ¢ = (I — Vy*+lp,, where ¢, & 4. Then
(A 4 )ilp = ) o, e 2(A)nA. By 43, o,-=0 and hence ¢ :=0. This
proves (c), and completes the proof of Theorem 3.
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