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POSITIVE SEMIGROUPS ON ORDERED BANACH SPACES

OLA BRATTELI, TROND DIGERNES and DEREK W. ROBINSON

0. INTRODUCTION

Let # be a Banach space ordered by a normal positive cone %, with

non-empty interior int#, . First we give a simple proof of a recent theorem
of Arendt, Chernoff and Kato; H generates a positive C-semigroup S on & if, and
only if, (T + «H)~! is a bounded positive operator for all smalla> 0. Second we
demonstrate that S,int#, < int# . and then relate a variety of stronger ergodic
criteria of S. Next we examine C,-semigroups. In this case it is not generally
true that S,int4#, < int#, but this condition is equivalent to D(H)n
nint#, #@. Moreover H generates a positive Cg -semigroup such that $,int B.<
< intg,. if, and only if, (/ +«H)~! is a bounded positrve operator for all
small «> 0 and D(H)nint#, #@. We conclude with some complementary
remarks about semigroups on C*- and W*-algebras.

The aim of this paper is to characterize generators of positive C,- and C¥-semi-
groups, i.e., continuous semigroups on ordered Banach spaces # which respect the
order, and to discuss various ergodicity properties of these semigroups.

The infinitesimal characterization of continuous semigroups has bsen exten-
sively studied (for recent reviews see, for example, [3], [5], [6]). The classic Hille-Yosida
theorem demonstrates that an operator H generates a Cy-semigroup of contractions
if, and only if, the resolvents (f +- aH)-* are well-defined contraction opzrators for
all small « > 0 and the Lumer-Phillips theorem re-expresses this property as a
range condition R(J + aH) = # together with a condition of dissipativity of H.
More generally the Feller-Miyadera-Phillips theorem establishes that bounds
I+ o Y < M(1 — aw)~", n= 1,2, ... are both necessary and sufficient for
H to generate a general Cy-semigroup. Some of these characterizations then extend
to C¥-semigroups by duality. The study of positive semigroups is much less complete.

In 1962 Phillips [15] demonstrated that H generates a positive C,-semigroup
on a Banach lattice if, and only if, R(J + «H) = & and H also satisfies a condition
of dispersivity similar to the condition of dissipativity. Various generalizations
of this theorem were given in the lattice setting [8], [L6] but it was not until 1980
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that two of the present authors [4] rephrased the definition of dispersion for opera-~
tors on a C*-algebra with identity and obtained an analogue of Phillips theorem for
semigroups acting on the algebra. Yargensen [9] then announced a number of com-
epimentary results for dispersive operators acting on algebras. Recently these alge-
braic investigations were clarified and extended by Arendt, Chernofi and Kato [1}
who examined semigroups on a space % ordered by a positive cone #%. which is
normal with non-empty interior. In particular the cone of positive clements of a
C+-algebra with identity has these properties. These latter authors unified the various
notions of dissipativity and dispersion and also extended the Phiilips style gene-
rator theorems to non-contractive, positive, Cp-semigroups. They also proved a
version of a generator theorem, established by Evans and Hanche-Olsen [7), for
norm-continuous positive semigroups. In particular it was shown in [1] that 1 gene-
rates a positive Cy-semigroup if, and only if, the resolvents (/ + x/) '* are bounded
positive operators for all small « > 0. This result is somewhat surprising insofar
no explicit bounds on the norms :(f + a«H)~" are required; these bounds follow
from the positivity and the geometry of 4.

In Sections 2 ang 3 this result is generalized for Cy-semigroups and CF-semi-
groups respectively.

In Section 2 we demonstrate that a positive C,-semigroup automatically maps
the interior of &, into itself and in Section 3 we characterize the generators of
those CgF-semigroups which have this stronger positivity property. Various other
notions of strict positivity, ergodicity and irreducibility are also compared. But
first we begin by reviewing in Section 1 various properties of ordered Banach spaces.

1. ORDLERED BANACH SPACES

Although the theory of partially ordered Banach spaces has been extensively
studied it appears difficult to find a concise description of all the features relevant to
the sequel of this paper. Thercfore in this preliminary section we attempt to sum-
marize the necessary material. Proofs of most of the subsequent statements can be
found in the books by Krasnosel’skii [10], Peressini [14], Schaefer [17], or Namioka
and Kelley {12]. Hence we only indicate the occasional proof.

Let ¢4 be a real Banach space. A subset 4, of 4 is defined to be a proper closed
convex cone in A if

1. #., is norm closed,

2. B, ¥+ A, S B,

3. M, c#, foral 420,

4. A, n --B, = {0}

Each 7, determines a partial order > on % by defining @ > b whenever a -- b ¢
€4 .,. Thus a > 0 is equivalent to a € Z,. We refer to elements of 4, as positive
elements of &, and to &, as the positive cone of 4.
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A real functional o in the dual 4* of 4 is defined to be positive, w > 0, if
w(a) = 0 for all ae #,. A Hahn-Banach type argument proves the existence of
positive functionals and then the set

Bt ={w;0eP* v >0}

is called the dual cone of % . It follows straightforwardly that #* is a norm closed
convex cone but it does not necessarily satisfy

B n — B = {0}.

This latter condition is true if, and only if, #, is weakly generating, i.e., if, and only
if, =4, - %, where the bar denotes norm closure.

A positive cone 4, in the Banach space % is defined to be normal if there
exists an a > 0 such that

la + bl > «

for all a, be # , with |la]| = 1 = |{b||. Normality can also be expressed as a compa-
tibility condition between the order structure and the topology. Specifically the
following conditions are equivalent:

1. #, is normal;

2. there is a 8 > 0 such that 0 < a < b always implies

a
Bliall < Iblf;
3. there is a y > 0 such that a € b < ¢ always implies

Vbl < flall v liell.

(See, for example, [14], Chapter 2.) Alternatively normality can be characterized
by duality properties; % is normal if, and only if, B% generates #*. Specifically the
following conditions are equivalent:
1. %, is normal;
2. B = BE — BE.
This last statement also has a converse; B¥ is normal if, and only if, B =%, — B ,.
An element u € # . is called an interior point if &, contains an open neighbour-
hood of u, i.e., u is an interior point of 4, if, and only if, there is an ¢ > 0 such that

{a; |lu—al|<e}cB,.

There are two extreme cases. The set int Z . of interior points is either empty or norm
dense in #, (see, for example, [14], Chapter 4, Proposition 4.5).

The existence of interior points is a property complementary to normality;
int# # O if, and only if, norm bounded sets are order bounded. To prove the first
implication choose u € int %, and ¢ > 0 such that

{a;llu—al<el =,
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Therefore u — dafilalle A, for all ae # and all 0 < & < & (The possible equality
o == ¢ follows because 4, is norm closed.) Thus

—~(lailjo)u < a < Gialfe)u

for all @ € 4, and norm bounded sets are order bounded. Conversely if there exists
au e such that —u < af’ajl < u for all @ ¢ # then the ball of radius one around u

is contained in 4, i.e., u is an interior point in #,.
Some of the connections are nicely summarized in terms of the set b(.4) of

norm-bounded sets in & and the set o(:#) of order-bounded sets in 4. Specifically
one has

1. 4, normal implies o(#) < b(#).

2. int#, # @ is equivalent to b(#) < o(#).

3. If int #, # O then &, normal is equivalent to o(%) =:: b(ZA).
Therefore 4, is normal and int B, # O if, and only if, o(B) - b(H).

The geometric notion of interior point can also be expressed in another order-
theoretic manner. An element u € & is defined to be an order unit if for each a ¢ 4
there is a 2 > 0 such that @ < Au. Thus u is an order unit if, and only if, % :.: 4,

where
#B,={a; —ou < a < du for some § > 0}.

More generally the following conditions are equivalent:
1. uis an interior point of # .,
2. 1 is an order unit,
3. B =23,
Conditions 2 and 3 are equivalent by the foregoing definition, and 3 => 1 => 2 by

the arguments of the previous paragraph.
Note that if # e int#, and 2 > 0 is chosen such thata < Authena: :a, - - a.

withae,:wAdu 2 0anda_=iu—a>0. Thus B =9, — #,,ie, B, generates

4 and, equivalently, #% is normal.
There are various weaker notions of interior point and order unit. For example

u e, is called a quasi-interior (quint) point if
(#) o(u) >0

for all @ ¢ #*\ {0}. Again the set quintZ, is either empty or norm dense and if
int#, # @ then int#, == quintF,. Thus if intF, £ @ then (=) provides a
criterion for u to be an interior point of % ,.

Now assume that # > 0 and define

N a)=iof{l > 0; a < Ju}
for all a € 4,. 1f 1 is an interior point and if ¢ > 0 is chosen such that

{a;u—al <5} <7,
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then it follows from the above discussion of interior points that
0 < N(a) < |lall/e.

In particular if v eint#, then N, is a norm continuous function over # which
is convex and positive homogeneous. (Arendt, Chernoff and Kato [1] call N, a
half-norm.) Note that

B, ={a;N(—a)=0}.
Moreover

a < N(a)u

for all a € & because &, is norm closed.
Next define

“a“u = Nu(a) v Nu(_a)'

It readily follows that a € 8, — ||a]|, is a norm and if u € int %, the above conti-
nuity estimate for N, also explicitly establishes that || - ||, is subordinate to || - |-
But conversely if || - |, is subordinate to || - || then ¥ must be an interior point of
4, n A,. This follows because ||all, < c||a|| implies —cu < a/|la]] € cu and hence
the ball of radius 1/c around u, in 4,, is contained in %, n % . Thus the two norms
| - |l. and || - || are equivalent on % if, and only if, B, is normal and ue intA .
Moreover for each u the following conditions are equivalent:

1. 4, n %, is normal,;
2. there is a §’ such that 0 < a < u always implies
B'liall < lull;
3. there is a ' such that —u < a < u always implies
Vllall < flull;
4. there is a 6’ such that
d'llall < |la|l, for all ae 4,

The equivalence of Conditions 1, 2 and 3 is just an elaboration of the earlier condi-
tions of normality. But 3 < 4 by the following reasoning. Since —N,(—a)u <
< a € N, (a)u, Condition 3 implies that

)"“aH < Nll(a) v Nu(_a) =2 “a”u'

Thus the norm || .|| is subordinate to ||-[|,. Conversely if |lall, > ¢'lla|| and —u<

< a < u then one has |aj|, < 1 and Condition 3 is satisfied with ¢’ = &'/||u]|.
Note that int #, = @ does not necessarily imply that int#* = @ nor con-

versely. For example if 4 = LY(X) with &, the pointwise positive L-functions
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then #% = L*(X) and £%* is the cone of positive L®-functions. But int4, ¢
and int#4* # @. In general the existence or non-existence of interior points is not
stable under duality.

We complete this brief review with a comment about lattice ordering and
interior points.

Assume that the partial order > associated with &, is a latticc ordering, i.c.,
cach pair a, b € # has a least upper bound av b and a greatest lower bound a Ab.
Next let a. == (4-a) v 0 denote the positive and negative components of a and ‘'’
¢ : @y ~i- a. the modulus. The norm on 4 is defined to be a lattice norm if " ‘al ”
== jajj and if 0 < @ < b implies {ia’ < b}, and then (&, " - ) is called a Banach
lattice. If, moreover, each order bounded set in % has a least upper bound in 4 then
& is said to be order complete. For example C(X) and L=(X) are Banach lattices,
with the usual pointwise ordering and the usual norms, but note that only 4 C(X)
and % : - L*®(X) have the property int#, # © (and C(X) is not generally order
complete). The statement about int#.. # € has a general analogue. If (%, - )
is a Banach lattice the following conditions are equivalent:

1. int#, # G;

2. 4 is lattice isomorphic to C(X) for some compact Hausdoril space X.

The implication 1 = 2 can be established by demonstrating that the norm
I - I, associated with an interior point « is a lattice norm with the special property
that

lav bii, == fai,, Vv [bll,

for all a, b ¢ A . The desired result then follows from a famous theorem of Kaku-
tani, Krein and Krein (see, for example, [18], Chapter I1,'Section 7). The converse
implication is evident and the equivalence demonstrates that the existence of inte-
rior points is incompatible with the lattice structure except in the simplest case
of C(X).

2. Cy-SEMIGROUPS
A Cy-semigroup S = {S,},5, on a Banach space & is a family of bounded
linear operators on & satisfying the semigroup property
Sssn = Ss+t

for 5,7 2 0 and the continuity property

Iim|| S —all =0

t—0
for all a ¢ 4. The generator H of S is the linear operator whose domain D{F/) con-
sists of those a e A for which there exists a, b € & satisfying

lim''(1 — S)aft — b = 0.
t -0
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If a € D(H) the action of H is defined by Ha = b. We say that H generates S and
write .S, ~= exp{ —tH}.

If 4 is an ordered Banach space with a positive cone 4, a bounded operator
on 4 is said to be positive if it maps 4 .. into #,. Moreover a semigroup S is said
to be positive if each S, maps %, into 4,.

Next assume that the cone %, is normal and has non-empty interior, and let
H be a densely defined operator on 4.

Under these circumstances it is known, [1], that the following three conditions
are cquivalent:

1. H generates a positive Cy-semigroup;

2. The range condition R(Z + aH) = & holds for all small « >0, and H
satisfies the property
(P) MaeDH)NA, and o € BF is such that w(a) =0, then

w(Ha) € 0;

3. The resolvent (I 4+ aH)~! exists as a positive operator for arbitrary small
a > 0.

Our first result is a version of this theorem in which we give a relatively straight-
orward proof of the equivalence of 1 and 3 without using Condition 2.

THeorREM 2.1. Let & be a real ordered Banach space such that the cone %,
is normal and has nonempty interior. Let H be a densely defined operator on .
It follows that H is the generator of a positive Cy-semigroup if, and only if,

R(I + «H) = &

Jor all small a > 0, and H satisfies one of the conditions:
a. If ae D(H) and (I + aH)a > 0, then a > 0, for all small o > 0;
b. For some u eint A, there exists a L € R such that

Nu((l + aH)a) > (1 - a)“)Nu(a)

Jor all a e D(H) and all small o > 0, where N, is the half-norm defined by u ;
c. For all ueint#, n D(H) there exists a AR such that

Nu((1+ ocH)a) 2 (1 - G(A.)N"(a)

for all a € D(H) and all small o > 0.
This theorem is a consequence of the following lemma.

LEMMA 2.2. Let & be an ordered Banach space such that the cone %, is
normal with non-empty interior. Let H be an operator on B,0 > 0, A€ Randucint% ..
Consider the conditions :
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I.({-4VaH)a>0=a>0 jor all ac D(H);
2. N -~aH)a) = (1 — «A)N (a).
Then 2. implies 1. provided a’.<1, and conversely 1 implies 2 provided u & R(I-;-2H) &3
N D(H) and % is chosen such that
Hu > —iu,
e.g., A+ N(-~-Hu), and 22 < 1.
Proof. 2. = 1. if (I+aH)a <0 then N,(({ -+ 2H)a) =0, and by 2 one
has N,(a): : 0. Hence a < 0 and Condition 1 is satisfied.
I. = 2. Since v e int#, N D(H) there exists a 2 > 0 such that
Hu > —iu,
the best choice being A —= N,(--Hu). Assume that « satisfies a4 < 1 for this choice
of 2. Let a e D(H) and set
¢ = (I -+ aH)a.
As u ¢ R(J - 2H) there is a b € D(H) such that
u==I-+aH)b
and b > 0 by 1. Since Hu > —Au one has
+oaHu = (1 —al)u==(1 —ad)({ + aH)b
and Condition 1 implies
u = (1-—-al)b
Hence
N,b) €1 —oap)-L
The relations N, () = ¢, u - (I + aH)b and ¢ = (I + aH)a together with Con-
dition 1 then imply that
N, ()b = a.
Consequently
Nya) < N ()N, (c) < (1 — at)~'N(¢),
i.e., Condition 2 is satisfied.
Proof of Theorem 2.1. If H generates a positive Cy-semigroup S it follows
from the Laplace transform formula [3], [5], [6]
(=]
-+ xH) 1= Sdt e 'S,
J
hat R(I-i- aH) = 4 and (I -{- «aH) ! is positive, i.e., Condition a) holds. Lemma
2.2 then implies that Conditions b) and c) hold.
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Conversely it follows from Lemma 2.2 that to complete the proof of Theorem
2.1 it suffices to consider case b), i.e., to assume that R(/ 4 oH) = % and

NI+ af)a) > (1 — a)N,(@)

for all a e D(H) and all small o > 0. As ||b|j, = N (b)v N,(—b) for all be A it
follows that
”(I+ 1H)0”" P2 (1 - “)')”a“u

for all a € D(H). But since R(I 4 aH) = % the operator (I 4 aH)~? exists and one

has
I+ aH) M, < (I —ad)™*

where ||4]|, = sup{||4b||,; be A, ||b|l, < 1}. Hence H generates a C,-semigroup
S on 4 with
ISl < ¥,

(31, [5], [6]. Since |i -]}, is equivalent to the original norm it follows that S is a C,-se-
migroup on 4 with its usual norm. But (/ + aH)~! is positive by Lemma 2.2, and
hence S is positive because

lim || S,a — (I 4 tHn) "a|]| =0

n—00

for all ae 4, [3], [6].

Note that the condition ([ + aH)a = 0 = a > 0 immediately implies that
(I+af) a=0=-4-a>0=>a=0, and hence this condition, together with R(J4-aH)=
=4, is equivalent to the statement that (I -+ aH)~! exists as a positive ope-
rator. If the condition int#, # @ is replaced by the weaker condition that &, is
generating, i.e., #==%B,—2A ., the positivity of (I + aH)~1 still implies its bounded-
ness, but it is unclear whether the positivity of (I 4 aH)~* for small >0 implies
that H is a generator in this more general setting. In particular it is unclear whe-
ther this result is true on a Banach lattice ®), A partial result is that if u is a positive
element in D (H) such that Huz —Au for some 4 = 0, then (I + aH)™* B, < B,
for small « > 0, and if ae (I + aH)~24, then the limits

t —n _ L1
S,a:Iim(I—{—m-H) a=1m e m(”"H) a

n—oo n n—oo

exist in i| - |l, (see, for example, [3], Theorem 3.1.10). Thus if #, is normal the
limits also exist in the original norm, because it is subordinate to || - {|,. Moreover
if ae (I -+ aH)~3#, then ¢ — S,a is differentiable with derivative — S,Ha =:— HS ,a.

We next show that a positive Cy-semigroup maps the interior int#, of the
cone # . into itself. The strong continuity of the semigroup is essentia)l for this

#) See Notes added in proofs, page 399.
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result, and in Section 3 we give an example of a positive Cif-semigroup S which maps
all interior points into non-interior points.
Recall that a is a quasi-interior point in % ,, ae quint#,, if w(a) > 0 for
all w e BEN\ 10}, and that int#, = quint#, whenever int#4, #6.
ProrosirioN 2.3. Let S be a positive Cy-semigroup with gencrator H. It fol-
lows  that
' S(int#A,)cintB, foralltz=0

(- aH) Y (int#A,) < intF, for all small x> 0
(I +oH)? (quintF,) < quint#,  for all small o > Q
but in general S, does not map quint B, into itself.

Proof. We first show S (int4,) < int4,. If int4, : - @, there is nothing
to prove. Hence assume int#?, # @ and choose u € int#,. Since f +> S is norm
continuous there is an ¢ > 0 such that Sweint¥, forO< ¢t < e Ifreint4,,
then v < v for some 4 > 0. Hence

ASu < Spr.

Since int.%, # O, int4, consists of the points ve 4 such that w(v) > 0 for all
non-zero w ¢ B*. Thus, if w e ¥\ {0}and 0 < 7 < ¢ one has

0 < ‘w(Su) € o(S,v)

and consequently, S,r e int%,. This argument shows that S(int#,) < intZ4. for
0 < t < &. The semigroup property

St o (S!,’n)n’
applied for # > t’¢, then shows that

S(int#,) c intAB.,
for all £ > 0.
Since int A, = quint @, when int#, # O, the second statement of the pro-
position follows from the third:

(I + xH) '(quint# ) € quintH .
Therefore we prove this property. If a € quint 4, and @ € #3\ {0}, then o(S,a)>0

for ¢-=0 and w(Sa) > 0 for all ¢. Since ¢ — w(S,a)is continuous it follows that

(o]
r

o((I + aH) a)-- Sdr e ' u(S,a) >0
Q

and hence (I + aH) Y a e quint# .
The last statement of the proposition is a consequence of the next example.
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ExXAMPLE 2.4. Let
# = {fe C[0, +00); f(0) = limf(x) == 0},
equipped with the supremum norm and let &, be the positive functions in 4. Then
qQuint ., = {fe#; fix) >0 for x > 0}.

Next define a semigroup S, by

(S)() = { 0 ?

f(s—1t) if

£s
<
1t readily follows that S is a positive Cy-semigroup such that

S{quint#,)nquint@, = 9
for +>0.

The property S,(int#.) < int#, derived in Proposition 2.3 is a mild form
of ergodicity and next we analyze a variety of related conditions.

A bounded operator 4 on an ordered Banach space (4, 4.) is defined to be
strictly positive if A#, < quint#,. Similarly a Cy-semigroup S on (#, 4,) is
defined to be strictly positive if S, is strictly positive for all ¢ > 0, or, equivalently,
for all small ¢ > 0. Thus if int#, # O then strict positivity of S means that each
S, maps # . into its interior. Next we define a positive Cy-semigroup S on (%, 4.)
to be irreducible if the only closed hereditary S-invariant subcones of 4, are {0} and
.. (A subcone € = %, is hereditary if 0 < @ € be ¥ implies a e %.) Finally
S is defined to be ergodic if the hereditary cone generated by {S,a ; >0} is dense in
A, for all a e #.\{0}.

PROPOSITION 2.5. Let S, = exp{—tH} be a positive Cy-semigroup on an ordered
Banach space (8, #.), assume

either (%, #.) is a Banach lattice,

or int4, # 9,
and consider the conditions:

1. S is strictly positive;

2. S is irreducible;

3. S is ergodic;

4. for each a € B.\{0}, w e B¥\[0}, there exists a t > O such that

o(S,a) >0,

S. the operators (I 4 aH)=* are strictly positive for all small a > 0;
6. the operator (I - aH)™1 is strictly positive for some o > 0.
It follows that 1 2«3 <4< 5«6
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REMARK. The implications 1 = 2 <> 3 <+ 4 are valid without any continuity
assumption on S, and for general semigroups of positive operators.

If (4, #,) is a Banach lattice the equivalences 2 < 3 <> 4 follow from [18],
Chapter II1, Proposition 8.3 and the other implications are proved by the argu-
ments used below for the case int4, # . For this latter case we neced the follow-
ing lemma.

LeMMA 2.6. Let (%, 4 .) be a Banach space with int#, # O. If € is a here-
ditary subcone of B, the following conditions are equivalent:

1. ¥ is dense in # . ;

2. for all w € BEN\{0} there exists an x € G such that w(x) > 0.

Proof. 1 = 2. This is trivially true without the assumption that ¢ is heredi-
tary, and with the assumption int#, # O replaced by the weaker condition 4 : -
By - B

2 = 1. Assume that ¢ is not dense in % .. Then % contains no interior point
of &, because if u e ¥ Nint %, then

¢ 2{aeABy; a<iu for some A>0} A4,
by the hereditary property of . By [11], Theorem 1.2, there exists an w € Z*\{0}
such that (x) = 0 for all xe %, and w(x) < 0 for all xe%. But as ¥ < 4., it
follows that w € Z*, w # 0, w(x) = 0 for all x € ¥. Therefore Condition 2 is false.

Proof of Proposition 2.5. Condition 1 is equivalent to the statement:
I’. For each ae2,\{0}, o e #*\{0} and ¢ > 0 one has

w(Sa) > 0,

and hence 1 = 4. If int 4 # O the equivalence 3 < 4 is evident from Lemma 2.6,
together with the fact that the hereditary cone generated by {S.a; ¢ > 0} is given by

{b; 0<bh< z).kS,ka for some 4, > 0,¢ = 0, neN}o
k==1

3 = 2. If ¢ is a closed hereditary subcone of 4, invariant under S and ¢ # {0}
then there exists a non-zero positive a € ¢¥. But then ¢ contains the hereditary cone
generated by {S,a:¢ > 0}, and this cone is dense in /2, by Condition 3. 1t follows
that 4 - #,, and S is irreducible.

2 = 4. Assume int#, # @. If 4 does not hold, there is an a .4, \{0} and
an @ € .4*\{0} such that \

w(Sa): -0
for all ¢t > 0. Define

C--{beAh,; o(Sp):--0 for ail > 0}
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Then ¢ is a closed, S-invariant hereditary subcone of # ., and ae €. As w(x) > 0
for all xeint4,, it follows that ¢ N int#, = @. Hence S is not irreducible.

4 = 5. This follows from the Laplace transform representation of the resol-
vent,

o((I + aH)a) =: Sdt e~ 'w(S,a)
0

together with the continuity of ¢ — w(S,q).
5 = 6. This is trivial.
6 == 4. This again follows from the Laplace transform representation.

The next example demonstrates that the implication 2 = 1 is not valid, even
when %, has an interior point.

ExampLE 2.7. Let # = C(T) equipped with the supremum norm, where
T = R/Z is the circle and let & , consist of the positive functions in &. Define

(SN =fs—1)

then Sis a positive Cy-semigroup which is irreducible but not strictly positive.

3. C§-SEMIGROUPS

Let (#.., #..) be an ordered Banach space and (4, 4 ,) its dual. A semigroup
S of bounded operators on 4 is called a Cg-semigroup if each S, is weak*-continuous,
and the map ¢ > 0 — S,a is weak*-continuous for each ae #. This is equivalent
to the existence of a Cy-semigroup T on 4,. such that S, = T} for each ¢. Then S
is positive if, and only if, T is positive. The generator H of S'is defined in the weak™-to-
pology, and H is then the adjoint of the generator of 7, [3], [5], [6]. Note that H is
weak*-closed, and is densely defined in the weak*-topology.

Next assume that the cone £, is normal and has a non-empty interior in the
norm topology. Even though H is densely defined it may happen that D(H) N
Nint# . = O.

ExaMPLE 3.1, Let & = L*[0,1] and #4, be the positive L®-functions. Then
.. = L'0,1] and 4.... is the positive L'-functions. Define S by

0 if0<s<t
fs—1 ifr<s<l

(S.f) (5) = {

The dual semigroup T, on L'[0, 1] is then given by

ey [t fo<s
ane={"7? 115
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for #« L0, 1]. It follows that S is a positive CF-semigroup and one com-
putes that the resolvent of its generator is given by

I+ 2H)"1f(s) : Sdt e~ f(s - - at).
V]
Let o, be the state defined by

o) = »i—Sdrg(z)

for g € L®. Then if fe L® one has

(I + aH)~If)| = - ' Sds Sdt e~ f(s — o) dt |
¢ T
< ‘swsdss ) e

0 0

But ge¢int#4, if, and only if, g(x) > § for almost all x €[0,1] and some & > 0.
Hence w,(g) = 6 for all such states w,. Therefore it follows from the above estimate
that (I -+ aH)"1f¢int B, for all fe B, ie, D(H)Nint%A, : : O.

This result shows that one cannot prove a C§-version of Theorem 2.1 by the
method used in the C,-case. One can however extend the C-method to the case where
D(H) contains a point in int#. As a preliminary we characterize the positive Cg-se-
migroups which have this property.

THEOREM 3.2. Let (4, #.) be the dual of an ordered Banach space, and
assume that 4, is normal and contains an interior point (in the norm topology). Let
Sy : - exp{—tH} be a positive Cy-semigroup on . The following conditions are
equivalent :

1. DUH)NintA, # O;

2. (I--aH)ruecint# .. for all ue int#, and all small x > 0,

3. (I+~aH) 'ueint$B, for some uecint¥ ., and some o > 0;

4. SuemtP, for all ueintB, and all t = 0;

5. SueintP, for some ueint%. and some t > 0.

To prove the theorem we need the following

LEMMA 3.3, Let (4, %.,) be the dual of an ordered Banach space (P, $:4)
and assume that 9 ;. has an interior point u. If a € # ) \int @, and ¢ > 0, there exists
an @ € $.., such that

o) =1, ow(@) <e.
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Proof. 1f . is a closed cone with nonempty interior and a € d(4,) there
exists a positive functional ¢ with ¢(a) = 0, [11], Theorem 1.3. Since u €int#,
one has ¢(x) > 0, and hence one may normalize ¢ such that ¢(#) = 1. But the cone
%+ is canonically embedded in #¥ and #* is the closure of 4., in the weak¥-to-
pology [14]. Thus, approximating ¢ by a suitable w € 4., , the lemma is established..

Proof of Theorem 3.2. 1 =-2. Choose ve D(H)Nint#,. Let ucint#,
and assume that « > 0 is small enough that (I + «H)~! exists. Put a = (I + aH)v.
Since 4, == & there exists a A > 0 such that

a < Au.
But (7 -+ aH)~* is positive and hence
v=(I+aH)a < A+ aH) .
As veint4, and A > 0 it follows that
I+ aHYlucintd,.

But 2 = 3 = 1is trivial, and this establishes the equivalence 1 <> 2 < 3.
4 = 5. Trivial.

5=4. Assumethatveint#, andt; > Qaresuch that
S, veintA,.

We prove this implication with the aid of two observations.

OBSERVATION 1. If S1y0 ¢int B, for some ty, =2 0 then S, ¢&intAB, for all’
t 2 to-

Proof. If S, v ¢int 2%, there exists a positive functional @ € #%\{0} such that
a)(S,ov) == (. But as the norms || - ||, and || - || on # are equivalent (here the nor-

mality of # is used) and ||| < M’exp{lyt}, for suitable M’ and 4y, one deduces.
that

S,v < Me'y
for all ¢t > 0 and a suitable M > 0. But if ¢ > ¢, this entails
w(S,) == co(S,;)S,_,Ov) < M exp{A(t — t,)}o(S, v) = O.

Thus S,v¢int#, for all ¢ > ¢,.

OBSERVATION 2, S"';” egint#, forn=123,... .
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Proof. For n =~ 1 this is just the hypothesis on ». Since S X eint¥, there
exists an ¢ > 0 such that

S,lv 2 e,
Repeated application of S,1 to both sides of this relation gives
S,,,la: = .

As veint#, this implies Sa,v € int#, for all natural numbers n.

Observations 1 and 2 now imply that S,veint#, for all ¢ > 0. But if v
€ int 4, there exists an ¢ > 0 such that u > ¢v, and then

Su =z eS;e
for all 1 > 0. This implies that
Sucintd,

forallt > 0and allueintA,.
4 = 2. Assume that S eintZ, for all t > 0, and define

¢(t) = sup{i; Su > iu}
for each ¢t > 0. As Sucint#, we have

@) >0
for each ¢ > 0. But

o(t) = inf_{w(S,u); 0 € By, o) 1}

by the following reasoning:
First, if (¢) denotes the right hand side of this equality, one has

Y(t) == inf{o(Su) ; weB¥, o) =1}

because 4., is weak*-dense in B¥.
Second, if w € #%, w(w)=+1, and Su > iu, then w(S,y) > i and hence

Y(t) = o(1).
But by the definition of ¢(¢) one has
Su — (e B N\int B, = A(B,)
and hence there exists an @ € Z¥\{0} such that

w(Su — o(tu) == 0.
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Since v €int#, we may normalize @ such that w(u) == 1. But then

o(Su} = p(H)w(u) = ¢(1).
This shows Y(¢) < ¢(¢), and hence Y(1) = ¢(t).

It follows that ¢(¢) is the infimum of a family of positive continuous functions.
Thus ¢ is upper semicontinuous and in particular Borel. The estimate

Su =z o(tu
now implies

2]
I+ aH)u= Sdt e~'S,u = eu
]

where

g = Sdte"(p(ozt).
Q

As @(at) > 0 for all £ one has ¢ > 0, and the estimate above implies
{4+ aH)y lueint4,.
2 = 5. Assume that 5 is false, i.e., S e Z, \int#, for all ueint#, and all

t>0. Fix ueint#, and choose t; > 0, ¢ > 0. By Lemma 3.3, there exists an
o e A, such that w(u) =1 and @ (S,ou) < g. By the proof of Observation ! there

are constants M, 1, = 0, such that
Su < Me''y

(where 4, is such that ||S,|| < M’exp{4yt}.) But then
o(Sp) = (S, S, 1) < MW TVo(S, u) < eMe’

for t > t,. If A > A, it follows that

% 4 o
o((M 4+ H)~'u) = Sdt e~ Hw(Su) = Sdt e~ Mw(Su) + Sdt e M (Su) €
0 0 ,0
’0 o]
< S dt M+ S drsMe %M < ¢ M+ —M‘—a
p : A—ly

Since ¢, and ¢ were arbitrary positive numbers it follows that for any é > 0 there
exists an we 4, , such that ew(x) =1 and

o((A + H) u) < 4.
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Hence, there does not exist a 6 > 0 such that
(M1~ H)yu 2 du

and consequently (i 4- H)~'u ¢int &%, i.e., Condition 2 is false.
This ends the proof of Theorem 3.2,

The proof of the equivalence of 4 and 5 in the above theorem can be strengthen-
ed to show that any positive semigroup (disregarding continuity in ¢) which
maps an interior point in &, into a noninterior point has a property of instanta-
neous local collapse.

COROLLARY 3.4. Let 4, be a closed cone with non-empty interior in a Banach
space 4, and let S be a positive semigroup on #. If there exists a ucint#, and a
t >0 such that Sy ¢intB ., then there exists a positive non-zero functional  on
A such that

weS,==0
for all t>0.
Proof. Fix ueint@, such that Siu¢inty, for some #, > 0. There exists a
¢(t) > 0 such that

S < o(NDu

for all t = 0, e.g., ¢(¢) == N, (Su). But then
S = S, AYS a4, % < ot — to)S, u

for ¢ > t,, and this shows that S ¢int#, for all ¢ > ¢,. Combining this with
Observation 2 in the proof of Theorem 3.2 we deduce that S,uéint:4, for all
t>0.

Define

E, == {weB*% ;0(Su) =0, ou)=1)}
Then E, # @ for all ¢t > 0, and the estimate

S, S o(t, — )8, M

for t, = t, shows that ¢, > ¢, implies E =] E,n.
Since u € int 4, there exists a 4 > 0 such that |ia)| < 1 implies

)

a < iu
and hence if we 2%,
P Aaw(u).
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It follows that each E, is contained in the closed ball of radius 4 around the origin
in #*. This ball is compact in the weak*-topology by Alaoglu’s theorem, and the
sets E, are closed in this topology. It follows that

ME, +#0.

>0

Ifwel(YE,then ® > 0, w(u) = 1, and ox(S,u) = 0 for all t+ > 0. But if ac 4 then

>0

—“auu u<as “a“uu

and hence
= o(—|lall,Sw) < o(S,a) < o(|la],Su) =0,
ie.,
woS, =0
for ¢t > 0.

We next state the announced result on generation of positive CF¥-semigroups.

THEOREM 3.5. Let (#, #.,) be the dual of an ordered Banach space, and assume
that # .. is normal and contains an interior point in the norm topology. Let H be a
weak*-densely defined, weak*-weak* closed operator on 4.
The following two conditions are equivalent:
1. a. R(I + aH) = A for small o > 0;
b. I+ aH)az0=a >0 for all ae D(H);
c. D(H) n int%, # O.
2. H is the generator of a Cf-semigroup S such that
S(int#,) < int%#,
for all t > 0.

Remark. Note that it follows from Theorem 3.2 that S,(int#,) < int#,
for all ¢+ > 0 is in fact equivalent to the seemingly weaker condition S,(int#.)n
nint4%, # O for some 1 > 0.

Proof. 2 = 1. This is a direct consequence of Theorem 3.2 and standard
theory.

1 = 2. Conditions a) and b) imply that the resolvent (£ aH)~? exists as a
positive, weak*-continuous operator for small « > 0. ;To prove that H is a gene-
rator it thus suffices to establish a resolvent bound of the form

W+ aH)~"|| < M(1 — ad)="

for some M, 4 > 0, [3], [5], [6].
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To this end, pick a e D(H) y int#, and set 1 == N,(--Hu). Then

Hu > — iu
and hence
(I +~aHu 2z (1 —al)u.

Since (I + aH) ! is positive one then obtains

+aH)"tu < (1 —al)ytu

provided « is small enough, i.e., 24 < 1, Iteration of this relation gives
I+ aH)""u < (1 —al)~"u

for n =12, ... . As ({ - «H)~" is positive this implies

W aHy ™R < (L —ady~®
where

tAL, = sup{ da ,; a € #HN\{0}, {a, = 1}
for any operator A € B(). But as &, is normal, the norms ., and { - on # are
equivalent, and hence the norms " -", and !-!" on B(#H) are equivalent. In

particular there exists an A4 > 0 such that
S aH) < MU e, < M(L — ak)="

Let (4, 2 ,) be the dual of an ordered Banach space (4,., #4.. ), and assume
that &, has non-empty interior. In this case int#, -: quint#,. Proposition 2.3
established that a positive Cy-semigroup maps int# . into itself, but Example 3.1
and Theorem 3.2 show that this is not necessarily true for a C§-semigroup. We can
even show more, using the concept of N-interior points in #,. If ac ¥4, then a
is said to be an N-interior point, a € Nint %, if w(a) > 0 for all we2,,,\{0}.
One has the inclusions

int¥, € Nint4, < 4,

and all the inclusions may be proper. For example, if 4 = L®[0, 1],then fsint%
if, and only if, there exists an ¢ > 0 such that f(s) > ¢ for almost alls, whilst
feNint#, if, and only if, f(s) > 0 for almost all s.

The mapping properties of Cj'-semigroups and their resolvents on the N-inte-
rior can be quite complicated. It follows by the argument used to prove Proposition
2.3 that

(I + aH)"YNint#,) < Nint#,
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but Example 3.1 demonstrates that neither of the relations
S,(int#,) < Nint#,

I+ aH)YWintB,) < intA,
is valid in general. It can however happen that

(%) S(int%,) < int A,

for small ¢ > 0 implies
(::—::}:) S,(N]‘nt.@_,) = Nl'ﬂt.@_,_

for all # > 0. For example if for each u e Nint Z , the set 8, = {a; — Au < a < iu
for some 1 > 0} is weak* dense then this implication is valid. To prove it assume
there exists a w e Nint#, and a ¢ > 0 such that Su ¢ Nint Z,. But then there is a
functional w € 4., \{0} such that ©(S,u) = 0 and hence w(S,a) =0 forallae 4,.
Since w o S, is a weak™ continuous functional it follows that wo .S, = 0. But if
S(int4.) c int B, for small ¢ > 0 it is true for all z> 0 and hence (%) is not
valid. In particular () implies (=) if 4 is a von Neumann algebra. The following
example shows however that (x) does not generally imply (x).

ExAMPLE 3.6. Let # = L*[0,1] be as in Example 3.1, and define
Sf(x) = e *f(x), x€[0,1], ¢ = 0.
Then S, is a positive C#-semigroup such that

S(Nint#,) € Nint#, forall¢t>0
but

S(B)nintB, =G for all t > 0.

As for ergodicity of positive Cg-semigroups, the strongest form is still that
S is strictly positive, i.e.,
S(B.\{0}) < int#,

for ¢t > 0. Candidates for weaker forms of ergodicity are

S(#B.N{0}) € Nint#, forallt>0
and

S(Nint#,) < int®, for all ¢ > 0.

We show in the next two examples that neither of these conditions imply strict posi-
tivity, and the last condition does not even imply a weak* form of irreducibility, i.e.,
S, may leave a nontrivial weak*-closed hereditary subcone of %, invariant.
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ExAMPLE 3.7. Let 4 =: L®(R), and &, the positive functions in %. Define
. da
S, as the diffusion semigroup with generator H == — e ie.,
X

=yt

(S.)() = —-:L—S dye’ T fG), s>0, fe 4.
2nt

y

Then S is a positive Cf-semigroup, and S,(#,.\{0}) < Nint#,. On the other
hand § leaves the subspace Cy(R) = {f e C(R); lim f(x) == 0} invariant. But this
|x|—o0

space contains N-interior points in Z, because fe€ Co(R) n Nint4, is equivalent
to f(x) > O for almost all x ¢ R. But the space does not contain interior points of
4. and hence S is not strictly positive.

ExaMPLE 3.8. Let X be the disjoint union of T == R/Z with itself, X: : TUT,
and let
B = LX) = L=(T) @ L*(T).

Define
S(f1® f)=:S,, D S.[»
where
T S i
S X)) =« 7 ; o e
S = o de/e o) =12

and this relation is understood modulo Z in x and y. Then S(Nint#,) < int#4 . for
t > 0, but if fis a positive L®-function supported on one of the components T in X,
then S,f is supported on the same component, and hence

S(BN\OY) ¢ int .

4. COMPLEMENTARY REMARKS ON OPERATOR ALGEBRAS

Much of the foregoing analysis was motivated by the theory of semigroups
acting on operator algebras. If % is a C*-algebra with identity the positive elements
A, form a normal cone with non-empty interior and the C,-theory can be applied.
If A is a W*-algebra it is the dual of the Banach space U, of normal forms, the posi-
tive cone A, is again normal with non-empty interior, and the C§-theory
applies. In these algebraic settings a number of the statements on ergodic proper-
ties can however be improved, e.g., one can deduce a C#-version of Proposition 2.5.
‘These improvements are mainly based upon a bipolar theorem for cones. Since it
is unclear under what general assumptions such theorems are true we first isolate
the requisite bipolar properties before discussing the algebraic systems.
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Let 4, F bereal Banach spacesin duality,i.e., # < #%;,# <% ¥and

llali = sup{lw(a@)| ; we ¥, (o] < 1}
for ae # and

llwll = sup{lw(a)l; ae 4, |al < 1}
forwe#. Let #,, & . be dual cones, i.e.,

B, ={ach; w(a) >0 forall we F,}
F,={weZF; w@=0foralac .}

In particular this means that &, (resp. # ) is closed in the o(&, #)-topology
(resp. o(F, B)-topology).
If € is a subset of #, (resp. & .,) define

¢ ={we F, ; wa) =0 for all ae ¢}
(resp. €+ = {aei®B,; w(a) =0 for all we ¥}).

Then %L is an hereditary subcone of & (resp. #.), closed in the appropriate to-
pology.

We say that the quadruple (%, # ., #, #.) has the weak positive bipolar
property if

(gz(g.u.

for each a(#, #)-closed hereditary subcone ¥ in &, and each o(F, %#)-closed here-
ditary subcone ¥ in & . Furthermore, (#, # ., ¥, ¥ ) is said to have the #-strong
bipolar property if it has the weak positive bipolar property and the o(Z&, #)-closure
% of each hereditary subcone % in 4, is hereditary, i.e., if

%,___(gll.

for each hereditary subcone ¢ in Z,.

We first discuss the implications of these concepts for various ergodicity pro-
perties of positive semigroups, and subsequently give examples of quadruples satis-
fying the positive bipolar properties.

Define

Nint#, ={ae #,; w@ >0 for all we F,\{0}}
Nint#, ={weZ,; w(@ >0 for all ae Z,\{0}}.

Let S be a semigroup of bounded positive operators on £ such that each S,
is 6(4#, F)-closed. Then there exists a dual semigroup S* on & which also consists
of bounded, positive, a(F, &)-closed operators.
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We define S to be strictly positive if S(#.,.\{0}) € Nint#, for all +> 0
(or, equivalently, for small ¢t > 0), to be irreducible if the only ¢(%4, F)-closed here-
ditary sub-cones of £ invariant under S are {0} and 4, itself, and to be crgodic
if the hereditary cone generated by {Sa; ¢ = 0} is o(%, F)-dense in 2, for al}
ae B\{0}.

If S is a positive semigroup of ¢(#, & )-closed operators, consider the follow-
ing properties:

1. § is strictly positive;

1# 8% is strictly positive;

2. S is irreducible;

2%, 8% is irreducible;

3. § is ergodic;

3%, S%* 35 ergodic;

4. for each ae #,\{0}, we F,\{0} there exists a z>0 such that
w(Sa) > 0.

If (%4, 8., F, F ) satisfies the weak positive bipolar property the following
implications are valid:

Moreover, if (B, 4., ¥, & ,) satisfies the #-strong positive bipolar property then
one also has the additional implication 4 = 3.

The proof of these statements is a straightforward extension of the proof of
Proposition 2.5, together with the fact that the weak positive bipolar property implies
that there is a one-one correspondence between closed hereditary cones % . and
F ., given by € o ¢+,

Assume for the moment that the ¢(J4, F)-closed convex hull of every
o(#, F)-compact set in & is ¢(#, F)-compact, and the same with # and # inter-
changed. This condition is fulfilled if & =: 4% or # == % * and allows one to express
the resolvent (I 4- aH)~! of S in terms of a Laplace transform

o((I4-aH) 1a) == Sdt e’ w(S,,a),
0
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whenever t — w(S,a) is continuous for all a ¢ &, w € #. Under these circumstances
Condition 4 is trivially equivalent to each of the conditions:

5. the operators (I -+ o)~ are strictly positive for all small @ > 0;

6. the operator (I -+ aH)~1! is strictly positive for some o > 0;
and these are equivalent to the corresponding conditions 5% and 6% for S*.

We now give some examples of quadruples satisfying the positive bipolar
properties.

1. Let (4, %,) be a separable, countably order complete Banach lattice, or,
more generally, an order complete Banach lattice with an order continuous norm,
i.e., every order convergent net in 4 is norm convergent. Thus & could be L” where
1 € p < oo (but # = L*® must be treated separately, either as the dual of L' or as
in Example 3 below). Then every norm-closed hereditary subcone of #, is order-
complete, {18], Theorem 11.5.14 and Corollary.

Let F = #*, F, = HB¥. Then F is an order complete Banach lattice, [18],
Proposition 11.4.2, and the o(&F, #)-closed hereditary subcones of #T are the
order-complete hereditary subcones of #%.

Now, if ¢ is an order-complete hereditary subcone of an order-complete
vector lattice (&, &), define

€. =1f{aecé,; anb=0 for all be¥}.

Then &, is the direct sum of ¥ and €. ,[18], Theorem 11.2.10. Thus if (&, &) =
= (4,98 .), €+ is identified with the positive linear functionals on ¥, —%,. Thus
the polar operation defines a one-one correspondence between the order-complete
hereditary subcones of #.. and & .. But as the order complete hereditary subcones
of 4., resp. & .., are just the hereditary subcones which are closzd in the o(#, %),
resp. o(F, %), topology it follows that the weak positive bipolar property is valid.
It is easily shown that the norm closure of an hereditary cone in a Banach lattice is
hereditary, and hence the #-strong positive bipolar property holds. A compactness
argument establishes that the weak*-closure of each hereditary cone in %, is here-
ditary, and thus the % -strong positive bipolar property also follows.

2. Let # be the sclf-adjoint part of a C*-algebra, %, the positive part,
F =B F, = B%. Then (B, B ., ¥, ¥ .) has the weak positive bipolar property
by [13], Theorem 1.5.2 and Theorem 3.10.7. But if & is a hereditary cone in &,
then €, the norm, or weak, closure of %, is a hereditary cone by the following rea-
soning:

If uy, ...,u, €% and ne N, define

n 1 n -1
u, = (g uk)(—-l+ Y, uk)
k=1 n k=1

13 — 2660
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where % = (uy, ..., u,). The set of &'s is ordered by inclusion. Also

n 2/ q n -1/ =n 1/2 I' 1 ) ~1 n‘
l’a:—:(xuk) (»--I-{— Z"k) (Z"’*) <”(— ~I '?‘Zuk) ‘(2 ”i-')
i n Jimt kol ¢ n k kol

and hence v, € ¥ by the hereditary property.
Furthermore,

@ == lima'2u, - = limu,q'/2
o L4

for all a e ¥, by [3], proof of Proposition 2.2.18.
Define

¢ ={aeB.; a'? = lim ¢"/*u, = lim u,a"/?}
& &

%y == {ae B,; a=limuau,}
-4
where the limits are assumed to exist in norm. We now show that
C =Gy =: G

a. ¢ < %,. We already argued that ¥ < %, but if a, is a sequence of positive
-elements converging in norm to an element q, then it follows by polynomial appro-
ximation that f(a,) — f{a) for all continuous functions f; and in particular a.-»al:s.
Therefore %, is closed, and hence ¥ < %,.

b. ¥, € ¥, is trivial.

c. o< €. If ae B, and limu,au, exists, then limwu,au, € ¢ because

-2 L4

uau, < @ ut <! aflu,

.and hence w,ou,e¥% by hereditarity. Thus €, = %. _
We now show that ¢ is hereditary. Assume be %, ae ¥ and

0<b<a.

Realizing # on a Hilbert space 7, let P be the range projection of a, and use spec-
tral theory to define a—%/2 as an unbounded positive operator on P. Extend a—1/2 to
J by setting a3l — P) =: (I — P)a~1/2 = 0. Then the above relation implies

0 < a V%oVt g P,
Put ¢ = a~¥2pa-12. Then ¢ > 0, [c! < 1 and

b = a'%cal/>.
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But then

ubu, = (u,a%) c(a*®u,) - a**ca'’* = b

and hence be €, = (Z’__
1t follows that % is hereditary, and (4, #,, #, % ,) has the #-strong posi-
tive bipolar property.

3. Let # be the self-adjoint part of a von Neumann algebra, 4, the positive
part of # and & the hermitian functionals in the predual of #. Then &, consists
of the normal positive functionals on #. The quadruple (8, #,, #, #,.) has the
weak positive bipolar property by [13], Theorem 3.6.11. If ¥ is a hereditary cone in
A, then @, the weak*-closure of ¥, is a hereditary cone by a reasoning similar
to the @*~case: if u,, ..., u, € € one again defines

n n -1
U, =(Z uk)(—LI +Y uk)
ke=1 h k=:1

and u, is again an increasing net of positive elements in #,. It follows that #, con-
verges to a positive operator p € B, in the strong operator topology, [3] .1t is not
hard to show that p is a projection, and then

C=1{acB,;a :lignuaaua} c=ph.p

where closures and limits now are in the weak*-topology. Thus & = pPB.p Is a
hereditary cone, and (%, #,, &, & ,) has the &-strong positive bipolar property.

We conclude with a few remarks on the generator theorem for positive Cy-semi-
groups S on a C*-algebra 2. The cone 2, of positive elements of A has a non-empty
interior if, and only if, 2 contains an identity 1. In this case Iis an interior element
and if e D(H) it follows that the Cy-semigroup S, == exp{—¢H} has a bound of
the form ||S,|| < exp{wt}. Thus the rescaled semigroup S, = exp{—#(H + wI)}
is contractive. It is unclear whether the condition X e D(H) is necessary for this
type of boundedness but it is easy to construct examples in which this condition
is not satisfied. For example let A = C(T) where T is the circle and

. de
H=— — 14 W
d12+ ()

where the function is piecewise continuous but discontinuous. The operator H is
defined on the continuously differentiable functions in C(T) whose second derivatives
make suitable jumps at the points of discontinuity of V. Hence H is densely defined
and it is dispersive in the sense of [4], [9], [1], whenever ¥ = 0. Hence H generates a
positive Cy-semigroup of contractions on C(T) but I ¢ D(H). (The remark after 6.6
in [1] must be modified accordingly.)



398 O. BRATTELI, T. DIGERNES and D. W. ROBINSON

It is of some interest to know whether Cy-semigroups on a C%-algebra auto-
matically satisfy a bound of the form "S," < exp{wt} because this could ailow
one to discuss generator theorems for algebras without identity by adjoining an
identity I and setting HI =: . -@I. %

APPENDIX

In this section we collect some results concerning linear maps between ordered
Banach spaces; in particular we investigate the relationship between boundedness
and order boundedness.

DEeFINITION Al. Let (#;, #;,), i = 1,2, be ordered Banach spaces. The linear
map S:#, - ¥4, is said to be order bounded if it carries order bounded sets into
order boundcd sets.

In particular, the difference of two positive maps is order bounded. Under
certain conditions boundedness can be derived from order boundedness, and the
following result is a generalization of a classic result which deals with positive
linear maps [2].

THEOREM A2. Let (4, #,:4), i =1, 2, be ordered Banach spaces, and assume
Py 4 is generating and B, is normal. Then every order bounded linear map S: %, -
- XA is bounded.

Proof. If S were not bounded we cound find a sequence {b,} in #, with b, « : 1
such that !Sb,! > 2?". Since #,, is generating, there is a constant M > ( such
that b, -:a, — ¢, with a,,¢, =2 0 and 4, , 'c,! < M. Since Sa,— S¢,} > 2%,

on

there is, for each n, a positive b, such that b, < M and 7Sb;; > —2 . Put b =

= }:}2‘”b,’,. Then 0 < 2-"b, < b’ for all i, and, since S is order bounded, there are
%, v€H, such that x< S(2-"b)<y for all n. By normality of #,, we have

IS(2-h) £ - l-max(iix;!, i{yi) for some constant y > 0; but this is impossible
Y

”

since S (2-"b)) | > 22 -for all #. Hence S is bounded.

The next result goes in the opposite direction and supplies a criterion for bound-
edness to imply order boundedness. First recall from Section 1 that if o(:#) (resp-
b(#)) denotes the set of order bounded (resp. bounded) subsets of an ordered
Banach space, then normality of #, implies o(#) = b(4) and int(#.) # 9 if, and
only if, b(#) = o(#). This immediately gives:

PROPOSITION A3. Let (#;, #;,), i-=1,2,be ordered Banach spaces. Then
if #,. is normal and 9, is generating, every bounded linear map S: 4, - A, is
order bounded.

%) See Notes added in proofs, page 399.
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Proof. Under the stated conditions we have S(o(#,))< S(b(%,)) =b(%,) <
< o(%,), thus S is order bounded.

COROLLARY A4. Let (8, B ,) be an ordered Banach space.

a. If B, is normal and int B £ DB, a linear map S: B — A is bounded if, and
only if, it is order bounded.

b. If # . is normal and generating, a linear functional on B is bounded if, and
only if, it is order bounded. '

The following proposition gives sufficient conditions for the cone of positive
operators in B(4,, 4,) to be normal.

ProrosiTion AS (cf. [12)). Ler B, denote the cone of positive operators in
B(Hy, Bs). Then if By, is generating and B, . is normal B, is normal (in the operator
norm topology of B(%,, B,)).

Proof. For Se B, define ||S||, = sup{||Salj; a e %,,.\{0}, lla]] < 1}. Since
A, . is generating, every ae % can be written a = @, — a, with a;, @, > 0 and
llayll, llagl|< Mlla|l for some constant A >0. Setting a’ == a, -+ a,, we have —a’ £
< a<d and —Sa' < Sa < Sa’'; thus, by normality of %,., ||Sa|| < 9]|Sda’|] for
some constant & > 0. Since [la'|| < 2M]lall, this gives ||Sal|/|lali <2M 3 for a0, i.e.,
IIS]] < 2M9||S|l+. Now, if 0 £ S T, we have 0 € Sa < Ta for a >0, and
hence ||Sa|| < §||Ta|l by normality of #,,, i.e., [|S|l;. < 6||T),, and finally ||S}! <
<2MS||S||. < 2M2|\ T, < 2M83|{TYl, since obviously |7}, < ||Tj| for any po-
sitive T.

It would be of interest to derive general conditions which guarantee that B,
is generating in B(H,, B,).1t should suffice that %, is normal and 4, is generat-
ing and in this case one could then deduce that an operator is order bounded if,
and only if| it is the difierence of two positive opérators.
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Notres added in proofs. After this paper was finished, Batty and Davies constructed
examples showing that the questions on page 379 and 398 have negative answers, i. e. they construct.
first order differential operators H,, H, on the Banach lattice Cy(R) such that (1. «ff,)y?
exists as a positive operator for small «>0 but H, is not a generator, and H, gencrates
a positive Cy-semigroup, but no estimate of the form {{e"”ﬂﬁlgeﬂ" is valid, [19). The present
results has been pushed further in [20].
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