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CONTROL SUBSPACES OF MINIMAL DIMENSION,
UNITARY AND MODEL OPERATORS

N. K. NIKOLSKII and V.I. VASJUNIN

Let us consider a linear dynamical system
x(t) = Ax(t) + Bu(t), t >0,

where 4:X — X, B:U — X are bounded linear operators, X (the state space)
and U (the control or input space) are some normed linear spaces. The general
problem of control is to describe operator pairs (4, B) admitting an appropriate
input signal u(-) such that the system starting from a fixed initial state x(0) even-
tually reaches a prescribed neighbourhood of x, x € X. If the pair (4, B) has this
property one says that the system is controllable. It is well known (see e.g. [1], [2])
that for x(0) = 0 the system is controllable iff the subspace BU is cyclic for 4, i.e.

X = span{4*BU : k > 0}

where span {...} is the closed linear hull of the set {...}.
In the paper [3] (see also [4—6]) the following characteristic of an operator 4
was introduced

disc 4 & supmin{dimR’ : R' = R, R' € Cyc A}
ReCycd

where Cyc A is the family of all finite dimensional cyclic subspaces, i.e. of all such
R’s, Rc X, dimR < oo, that Egx = X, where

def
Egp = Ef=span{4"R : n > 0}.

(Here “‘disc” stands for “Dimension of the Input Subspace of Control”.) For a
transfer operator A of a controllable system the quantity discA shows to what
extent it is possible to minimize the dimension of the control subspace of our system
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without loss of controllability. The reader can find in [3,4] some discussions of pro-
perties of disc 4 and of its connection with the spectral multiplicity

uA mmfdlmR R e CycA}.

The knowledge of Lat A (== the lattice of invariant subspaces of A) in some
cases enables us to compute disc 4, this quantity depending on LatA only. This
paper yields a collection of such cases: unitary and semiunitary operators, Cy-con-
tractions and sums of these operators.

1. MAIN RESULT. Let U be a unitary operator in a separable Hilbert space
Hy. We can think that

®
Hy - S H(t) dv(t),

T

S ) dv(t) - S tf(H)dv(t).

T

where v is the scalar spectral measure of U on the unit circle T: - {{: { . - 1}. Let

v, 4 v, be the standard Lebesgue decomposition of v. Since the measure v can
be replaced by an equivalent one, we shall suppose that v, is a part of the Lebesgue
measure 7. The v-a.e. defined function #(¢) *! dim H(t) is the iocal multiplicity
of the spectrum of U. The numbers

M == V€SS supr(f),

H, = v -esssupr(?)

are the spectral multiplicities of U, (the singular part of U) and of U, (the absolute-
ly continuous part of U) respectively. If v, == m and

p == m-ess infr(1),
the bilateral shift &, of multiplicity p is contained in U. So we can decompose
U=U,0U,®5,.
Here U,, is the maximal reductive part of U,.

We shall use the expression “for almost all s#-dimensional subspaces of R
meaning the invariant measure 7, on the Grassmann manifold G,(R) of all n-dimen-
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sional subspaces of R. We shall say that the operator 4 has many cyclic subspaces
if for any Re CycA almost all subspaces R < R, dim R’ = disc 4, are cyclic.
Now we can state the main result.

THEOREM. Let U be a unitary operator, T a Co-contraction, S, the unilateral
shift of multiplicity n and let A be the following direct sum:

M A=St+ U+ S, +T

Then
disc A = max{u,, n + max(l, ur, k + u, + w}

and A has many cyclic subspaces.

To understand better the statement let us consider the contribution of each
summand into the disc of the sum. The following heuristic explanations constitute in
a sense the plan of the proof (see also Section 3 below). But the proof depends on
too many technical details to permit a short pithy description. Apparently it will
be useful to return to these explanations when reading the proof of the theorem.

Note at first that disc (as well as the spectral multiplicity) is invariant under
similarity, so we can assume without loss of generality the sum (1) to be orthogonalt

If operators A and B have many invariant subspaces and if the lattice of the
invariant subspaces of the sum 4 @ B splits up into the sum of lattices

Lat(4A @ B) = LatA4A @ LatB

(ie. Eclat(A® B)= E=E @ E,, E eLatd, E, e LatB) then
disc(4 @ B) = max{disc 4, disc B}.

Due to this property we can separate the singular part of the unitary operator. As
to the other summands the operator S, increases the whole disc by n. For S, itself
disc S, == n + 1, but this “superfluous’ unit disappears being summed with other
operators. A unitary operator with the absolutely continuous spectrum can be
thought of as

U, =% U,,.

Remind that &) is the bilateral shift of multiplicity p and is the maximal reductive
(i.e. LatU,, = LatU¥) part of U,. The spectral measure of U,, does not contain
the Lebesgue measure. The formula

discU, = p, +p=(p, — ) +2p

can be interpreted as follows:

disc U, = disc U,, +- disc &%y,
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1.e. the contribution of the reductive part is equal to its spectral multiplicity

discU,, = p, =pu, —p

and the contribution of the bilateral shift is twice as big as its spectral multiplicity
disc &y = 2p.
For the backward shift we have

disc S = k = dimKer S},

and for a Cy-contraction

disc T == uy.

The first of these operators adds its disc to the disc of the unitary operator, but
the second one makes its contribution to the whole disc only if its disc is bigger
than disc (S @ U,). Here we have the situation analogous to the singular unitary
operator. Though now the lattice of the invariant subspaces does not split up into
the sum of lattices, the functional calculus for our operators is rich enough to sepa-
rate the thin spectrum of Cy-contraction from the spectra of U and S}.

Now we shall try to explain (not leaving the intuitive level) when the disc
of a direct sum is the sum of the discs and when it is their maximum. Roughly speak-
ing, if the spectra of operators overlap we have the first case otherwise the second
possibility occurs. But “‘the overlapping’’ does not mean here the mere intersection
of sets, it rather means the relative “‘density’ of spectra. So the spectrum of U, is
very thin and chips off from everything else. The spectrum of T'is thin enough also,
it “filters’ through the spectra of the unitary operator and of the backward shift,
but the spectrum of the shift operator (the “‘densest’ one) is impervious to the
spectrum of a Cy-contraction. The spectrum of S; is “friable’, it consists of cigen-
values, however due to its mass (it fills the whole unit disc D) it makes the same con-
tribution as the absolutely continuous spectrum of the unitary operator, which
is “denser’’, but lies on the unit circle only. (The “friability’’ is exhibited by the fol-
lowing fact also: adding S* to itself we get cyclic operator again in spite of increase
of the multiplicity of eigenvalues (i.e. the dimension of the eigensubspaces).)

2. NOTATION AND SOME AUXILIARY PROPOSITIONS. The symbol (X, ¥)
will be used to denote the set of all linear bounded operators from X into Y,

def
L(X) = L(X, X). A subspace always means a closed subspace. Let E be a subspace of
a Hilbert space H, then E' == H © E denotes the orthogonal subspace and Pg
denotes the orthogonal projection of H onto E.
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We shall deal with operators in separable Hilbert spaces only. Now we restate
for this case some simple properties of disc A, that can be found (with other
introductory material) in [3].

2.1. disc4 > p, > dimKer A*.

2.2. disc(4 ® B) = max(disc 4, disc B).

23. [EeLatd, pyp < oo] = disc(P, 4| E*') < disc A

24. [Eclatd, ReCycA] = P ReCyc(P . A |EYY.

2.5. Let M be a set of m-dimensional subspaces of a finite dimensional
space R (i.e. M <= G,(R)) and suppose M has the full measure (i.e. 7,(P) =1).
If for every M, M ¢ M, a family N,; = G,(R) is given such that 7,(N,) = 1 then
the set

Gy m(R) N {span(N, M) : NeRy, MM}
has the full measure in G, .(R).
26. f M < G, (R), 7,,(M) =1 and R’ < R then
T, {M : MeG,(R), PpMecWM}=1.
2.7. If operators A and B have many invariant subspaces and

Lat(4 ® B) = Lat4 @ LatB
then
disc(4 ® B) = max{disc 4, disc B}

and the operator A @ B has many invariant subspaces.

2.8. A complete information concerning C,-contractions needed below can
be found in the books [7,8] and in the paper [9].

We would only remind that every C,-contraction is unitarily equivalent to
the projection of the shift operator

S:f-z, feH%E)
onto the subspace

Ko = HYE) © OHXE)
for a suitable choice of the auxiliary Hilbert space £ and of the inner function ©.

(H?(E) is the Hardy space of E-valued functions.) The orthogonal projection in
H*(E) onto K, is

P,=0QP_O% =] — OP,0O%
where P_ =1 — P, and P, is the Riesz projection of L2 onto HZ2 So we have
T=P,S K,
or a unitarily equivalent representation

T = S*!K(_';
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where O() -= O(0)*, { e D. The symbol H*(E,, E;) will be used to denote the
set of all bounded analytic functions from D into L(E,, E,); {H®(E) = H*(E, E).

3. PLANX OF THE PROOF. Beginning the proof of the theorem we separate at
first the singular part of the unitary operator (Lemma 4) and later on we deal with the
unitary operator with the absolutely continuous spectral measure. Lemma 5 is an
auxiliary one, it is essentially contained in [3]). We state it here for the sake of
completeness.

Lower estimates of the disc are given in Lemmata 6—8. In these lemmata
we construct some of “the worst” cyclic subspaces. These examples sum up in
Lemma 9 containing the following inequality

disc(SF@ U@ S, @7T) > n--max{l, ur, k- py -+ p}.

In the rest of the paper we prove the opposite inequality. Since the lattice of the
investigated sum does not split up into the sum of lattices, we have to consider not
cach summand separately, but the sum as a whole. We do this in the concluding
Lemma 23, but at first we consider some more simple parts of the sum SF @ U @
®S,®T. In Lemmata 10—12 Cy-contractions are investigated and the total is
expressed by Lemma 13: disc 7 == puy. Further in Lemmata 14—16 we deal with
the shift operator S,. Lemma 17 unites the obtained results with the information
concerning Cy-contractions. The results are stated in Corollaries 18--19: disc S, : :
con -t 1, dise(S, @ T)=n + pr. In Lemma 20 the backward shift S is investi-
gated and the total is stated in Corollary 21: disc §F = k, and in Corollary 22:
disc (S§ @ T') = max{k, ur}.

In conclusion, as it was already said, all obtained results will be summarized
in Lemma 23 to compute disc(Si @ U@ S, @ T). Let d be equal to » -+ max{l,
ng, b -i- g 4 pl. Tt s necessary to choose, in an arbitrary finite dimensional cyclic
subspace R, d vectors whose span is cyclic. We choose at first (2 -:- y;) vectors
such that the direct sum operator in question induces in the invariant subspace
they generate an operator containing U,, @ S,.p. The operator U behaves like
the sum U,, @ Sy @ Sy, so in the orthogonal complement of the obtained subspace we
have, roughly speaking, the operator Si,, @ 7. Now we find (k -+- p) more vec-
tors that gencrate the whole space where the operator S}, is defined. Doing this
we impose on the chosen vectors some additional restrictions ensuring the possibi-
lity of the simultaneous approximation every vector from the domain of 7.

Now we turn to the realization of the sketched program.

4. Lemma. Let U, be a unitary operator whose spectral measure is singular.
Let A be a contraction, whose unitary dilation has an absolutely continuous spectral
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measure ¥, If A has many cyclic subspaces then
disc(U; @ 4) = max{u, , disc4}.

Proof. According to Proposition 2.7 it is sufficient to show that U, has many
cyclic subspaces and

Lat(U, ® A) = Lat U, @ Lat A.

The last can be easy obtained from the F. and M. Riesz’ theorem on analytic mea-

sures (see e.g. [8]). Indeed, let v, v, be the respective scalar spectral measures for
U, and for the minimal unitary dilation of 4. So if

Uix, @ A"xy L )1 @ys, n20,
then

SC"(xl(C), WO dv (D) + S CxalD), oD dvD) =0, 30,

T T

and the F. and M. Riesz’ theorem implies the vanishing of both integrals (for all
n > 0). This just means that every subspace from Lat(U, @ A), is the orthogonal
sum of two subspaces from Lat U, and from Lat A.

The fact that U, has many cyclic subspaces is a corollary of the following
lemma.

5. LEMMA. Let R be a finite dimensional subspace of the space H,

<2}
H= SH(t) dv(t),
T

def
u = v-esssupdim H(t) < oo.

Let {j()} be a familv of evaluation mappings, j(t): H — H(t), such that
JWh=hkt) v-ae, VheR
If
J(OOR == H(t) v-ae.
then for almost all p-dimensional subspaces R, = R the following equality holds:

J(OR, = H(t) v-ae..

1) In other words, 4 is the sum of a unitary operator whose spectral measure is absolutely
continuous and of a completely nonunitary contraction, see [7].



314 N. K. NIKOLSKIT and V. I. VASIUNIN

Proof. Let h,, h; € R. We may assume the equalities

n(t) = j(Hh,
hold for every te T. Put

o, = {t : (1) + ahy(t) =0, hy(t) # 0, hy(1) # 0}, aeC.

Since o, Nop:== @ (x# ), we have v(s,) =:0 for almost all «, x e C. Taking
into account the equality j(£)R = H(t), we get

2 JOh=h(t) #0 v-ae.

for almost all vectors 1 ¢ R. So lemma is proved for y = 1. Assuming the lemma is
valid for some u we prove it for the next one.
Fix a vector 4 satisfying (2) and put

H'(t) = H(t) © I(1)- C,
2]
H’=S H'(t)dv(r), R’ =: PuR.

Since j(t) R :-- H'(t), by the induction hypothesis we have j(t)R, = H'(t) for almost
all R, e G,(R). Put R,,, = span{h, R}'}, where R,/ is an arbitrary u-dimensional
subspace of R such that Py'R; == R,. Since A varies in a set of almost all vectors
from R and R, varies in a set of almost all subspaces from G (R) (Propomlon 2 6),
R, 18 almost every”’ element of G,.(R) (Proposition 2.5). o

6. LEMMA. Let T be a contraction whose minimal unitary dilation has
absolutely continuous spectral measure. Then

disce(S, @ T) = n - discT.

Proof. (Induction on n). Let n==1, Ry ¢ CycT, dimRy - : discT and sup-
pose R, does not contain proper cyclic subspaces. Such Ry exists by the definition
of disc. Put

R span{l ® O, O @ Rq}.

It is clear that Re Cyc(S @ T). LetR’ < R be a cyclic subspace for the operator
S @ T. Choose a basis {x;} in R’ where x; are vectors of the form:

X, =1®h, x,==0@®h;, 2<i<dimR.
Letting
L =span{T*h;: k >0, 2<i<dimR’}
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we verify that L is the whole space, where T is defined. Indeed, let £ | L. Since
R eCyc(S@®T), there exists a family of polynomials {p; :1 < i< dimR,
k = 1} such that

dimR’

O®f=likm Z Pu(S®T)x;, =
i=1

dimR’
= (imp,) @ (n;n (D) hi)-
=1

i

Hence
3 lim p,, = O,
k
. dim R’
4 h/in Z PuT) by = f.
i=1

Assuming that the minimal unitary dilation of T is the operator of multiplication

®
by z:h — zh inS H(z) dv(z), we can choose a bounded outer function ¢ satis-

fying @f e L*. Multiplying (4) by the vector ¢(T)*f and using (3) and the fact that
f 1L L, we get
(f, o(T)*f) = likm((P(T)plk(T) hy, f) =

= tim Splk(C) OO0, FE) ey dv(E) = 0.
T

Clearly there exists a sequence {¢,} such that |¢,| < 1 and ¢,({) = 1 a.e. on T, ie.
limg,(T)*f=f Hence f= 0, ie.

span{h; : 2 < i < dimR'} = Ry

and therefore dimR’' =1 4+ dimR; = dim R, ie. R" = R. Hence R does not
contain proper cyclic subspaces, and disc(S@® T) > dimR =1 + disc 7.

It is now clear that the induction goes. The spectral measure of the minimal
unitary dilation of the operator S, @ T is absolutely continuous. Hence the ine-
quality

disc(S,-; @ T) 2n—1+discT
yields
disc(S, @ T) = disc[S @ (S,-1 @ T)] >

=21 4+ disc(Sy-, ®T) = n+ discT. 7

7. LEMMa. disc S, =2 n + 1.
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Proof. The equality disc S = 2 has been proved in [3]. (To prove disc S > 2
it is sufficient to check that the two dimensional cyclic subspace R -=span{z, z® -
-+ 1/2} contains no cyclic vectors.) Then Lemma 6 implies

5
i

disc S, = disc(S,-, ® S) 2 n—1-+discS=n-+1.

8. LEMMA. Let U be a unitary operator with an absolutely continuous spectral
measure. Then

disc(U@ S§) =2 puy + 1+ k.

Proof. Put p == p,. We can assume that U is the orthogonal sum of u ope-
rators without multiplicity:

U= 3,94, 4 <LH),

i=:1

H;=ILE), T=E == ---":‘EugEu-z-l: ..o E

o
(Af)O=Lf(D), (€T, fieH,1<i<p
Then U @ S§¥ can be rewritten in the following form

i utle def
U®SF=Y o454, A ecLH),

i1

Hi=H p<isp+tk,
A YO == LUO —fO)), (eT, feH:, p<i<p+k

Let x be the characteristic function of the set E,, or of an arbitrary set of posi-
tive but not of full measure in the case 4 = p. Define the following family of
vectors x;,y; € H;:

X;=% Yi=l—y 1<i<p;

3

x;i=1E, p<icg

y/]
x;=Pyx, p<i<sp+tk;
and put

R=span{x;,,y;: 1 <i<p+k 1<j<p}

It is clear that R € Cyc4, because span{y, 1 — x} e Cyc S, 1 is a cyclic vector of
a reductive cyclic unitary operator and because P,y e Cyc S* (cf. [8]).

Let us verify that R’ ¢ Cyc 4 if R’ ;3 R. Consider a non zero vectorf e RO R'.
The vector f belonging to R is of the form

[ utk
f= Z,@ (aix; + Biyi) ® Z ® a,x;.
i1

feeb 1
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Now we shall check that the A-invariant subspace spanned by R’ is orthogonal to
the following non zero vector g:

| '
g=[¢ zﬂa(ainxinzxi—ﬂinyiuzyi)] @[ $ ewlixley ] ®
i=p+1

i=1

utk
@[ 3 e aiuxi||21]~

i=p+1

To do this it is sufficient to prove that R’ | gH?. Letting 2 ¢ R’ we have

B ptk
h= Y ®@x;+Biy) ® Y, ®ux
i=1 i=pr1
and
utk L
0=(h =Y axlxlF+ Y BByl
i=1 i=1
Hence

n
(h, ") = Y, [i&llx,1* (xi5 {1 x,) — BiBillyill® (vs, £ 2p)] +
i==1

“ utk
+ Y @ xlP s ) Y e flxl® (x, Y =

i1 i=u+1

utk Lo
=[z GE il + ¥ ﬂ!ﬂ.-llyillz](x, gy —
i=1 i=1

- i BiBillyilr (1, {"*%) = 0.
i1

So the cyclic subspace R contains no cyclic subspaces. Therefore
disc(lU® S¥) >dimR=pu+ p+ k. s

ey
i

9. CorROLLARY. If U is a unitary operator and T € C, then

disc(S¥@UD S, ®T) > n+ max{l, up, k+ p, + n}.

Proof. Due to Proposition 2.2 we may assume without loss of generality U
has an absolutely continuous spectral measure. Then

disc(Sf@U® S, @7T) > (Lemma 6)

znt+disc(SFPUDT) = (Proposition 2.2
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2n -+ max{disc(S§ @ U), discT} > (Lemma 8, Proposition 2.1)
>n -+ max{k + pu, + B, pr}.

The case without operators S;, U and T was considered in Lemma 7.

Now we turn to the proof of the main part of the theorem, which gives
upper bound for the disc. Let us begin with the consideration of Cy-contractions.

10. LEMMA. Let T be a Cy-contraction, O =: diag{m,, m,, ...} be the charac-
teristic function of its Jordan modelV. Let RelLlatT, u gt Hpp < 00, and
me H®. If m(PgoT R*Y) = O then m e m,, H®.

Proof. Let H be the space where T isdefined, and let H,, = closm(T)H. Clear-
ly H, € R, and therefore By, < M i.e. there exists a subspace L e Cyc(T,H,)
such that dim L < u.

Let T, be the Jordan model of T in the space H,, X€ L(H, H,) be a quasiaffine
transform intertwining T, and T:T,X = XT. We are going to show that the subspace

XL iscyclic for M, M= T, clos m(T;)H,. Firstly, since L < H,,,
XL <« XH,, < closXm(T)H = closm(T,)XH = closm(T))H,.

On the other hand
span{M*XL : k > 0} = span{T+XL : k > 0} =

= span{XT*L : k > 0} = closXH,, = closm(T)H,.

So XL e Cyc M, hence, ppy < dim XL = dim L < u. However the Jordan operator M
has the spectral multiplicity u, = sup{j:m ¢ m;H*}, because m(T)=: O for every
contraction 7 whose minimal function divides m. Therefore, m € m, . H*.

11. LEMMA. Let T € L(H) be a Cy-contraction, R be a finite dimensional sub-
space of H. Then the equality m, = mg holds for almost all x € R. (Recall that my is
the minimal function of the operator T Eg, Eg = clos{T"R :n > 0}.)

Proof. (Induction on dim R). For dimR = 1 the assertion is obvious. Assum-
ing its validity for dimR < n let us prove it for dimR =n 4 1.

Let us fix a hyperplane R’ = R, dimR’ = n, and a vector x € R\ R'. Since
Ep = span{Ez., E,}, the equality

mg = LCM{mg., m,} = LCM{m,., m,}

1 The Jordan model of a Cy-contraction T is the unique operator of the form PgS|Kg
with ® = diag{m,, m,, ...}, m;jim;.; € H®, which is quasisimilar to the contraction T, see [10], [8]



CONTROL SUBSPACES OF MINIMAL DIMENSION 319

(where LCM means “Least Common Multiple”) holds for almost all x' € R* (by
the induction hypothesis).
It remains to prove that
My yox = LCM{mx', mx}
for almost all & in C. Let

LCM{m., m,}

My tax

-3

These functions are mutually disjoint, because

LCM{m,, m,}
LCM{mx‘+¢.\f: mx’+ﬁx}

GCD{ma, mﬁ} ==

(where GCD means “Greatest Common Divisor””) but LCM{My 1ax » M4 pa}=
= Mgpan{x, x'y = LCM{m,, my} if « # B. Therefore m, = 1 for all « except an
at most countable set. 7

12. LeMMA. Let T be a Cy-coniraction, p =: uy < 0, ReCycT. Then al-
most all subspaces R, € G, (R) are cyclic.

Proof. Let O denote the characteristic function of T, T = P,S|K,, K, =
= H*E) © OH*E), and let O, = diag{m,, ..., m,} be the characteristic function
of the Jordan model of T. Since p < oo, T is a weak contraction (see [9]), hence
there exists det @ and the following equality

det @ = det@, = ﬁ m;
i=1

holds.
By Lemma 11 for almost all one dimensional subspaces R, € G;(R) we have

mp = Mg = my.
Now we fix such a subspace R, and define the functions @, and 0, by the equalities
Eg = O,H¥E) © OH¥E), 0, = 0%6.

Then 0, is the characteristic function of the operator T{ERI. (More exactly, the
pure part of 0, is the characteristic function of T {ERL, but since this difference has
no influence on det0,, it does not matter for us (see [7], Chapter VII).) Since it
is an operator without multiplicity, the determinant of its characteristic function
coincides with its minimal function, i.e.

detf, = mp = m,.
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The function O, is the characteristic function of the operator T;:

def .
T,== Po T'Ke, Ko = Ei = HE)© 6,HYE).
Since @ =: 0,0,, we have

m;
det o] ,II L
[ I:!

det 9, :
det 01 n11

Now, letting Ry e G(R), Er = O ,H¥E) © OHXE), we shall prove that
the inclusion

(5) I < (detO)H>

ias4l

is valid for almost all R, € G,(R). We have proved this inclusion for s =: 1. Assum-
ing this inclusion for almost all R; € G(R) let us prove it for (s + 1)-dimensional
subspaces R, ;.

Fixing a subspace R, satisfying (5), put

T,=Po T K, K= E;s = H¥E) © O ,HE).

By Proposition 2.4 we have Po R e CycT and so by Lemma 11 the equality m,
£= M holds for almost all vectors x € Po_R. Noting that the set of y & R such that
Pey = xand m, = mr, has the full measure in G,(R) (Proposition 2.6), we choose
any such vector y and put R,,, = span{R,, y}. In this way we obtain almost all
subspaces from G,,,(R) (Proposition 2.5). Now it is sufficient to show that the
inclusion (5) is valid for the constructed R,.,.

We shall verify, at first, that the following equality

Eys = O,,,HE) © O HXE)
holds. Indeed, we have
E,fﬁ1 = span{Egs, E:} = E§S ® Efs
hence
Ejs=Eg © Ex = [0,,,H(E) © OHYE)] ©
© [0,HXE) © OHXE)] = O, HE) © O HXE);

since the function 0,,, = 0% ,0, is the characteristic function of the operator
TE fs without multiplicity. Therefore

det @, = detf, ., det O, , —= mr det O
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Since the multiplicity of TIERS does not exceed s, we have by Lemma 10
myr € mgy H®.

And using the induction hypothesis we obtain

# det O, m,
) | R G( — | H® = *-det Oy, | H*® < det O, H™.

P52 Msiy Mgy
Thus 1€ det © ,H>, hence det©, = 1, i.e. @, = I, therefore the equality

Er, = HYE) © OH¥E)
holds for almost all R, € G,(R).

N

13. COROLLARY. Every Cy-contraction T has many cyclic subspaces and

For operators without multiplicity this assertion was noted by D. Rastovié
[11]. In this case it follows immediately from Lemma 11.

Now we turn to the proof of auxiliary propositions that will be needed for
the examination of the shift operator.

14. LEMMA. If a family of functions {f,\%.,, f, € H?, has no common inner divisor,

k

then the inner part of the functions Y, ¢,f, is mutually disjoint with any fixed
s=1

inner function for almost all vectors ¢ = {c}%_, e CX.

Proof. (Induction on k.) If k£ = 1 the function fis outer by the assumption,
therefore it is mutually disjoint with any inner function ¢. Let lemma be valid
for k < n and consider the case k = n -+ 1.

Put y = GCD{g, f;: 1 < s < n}, then the induction hypothesis implies

s=1

® aco fo, 3 ot} =v
for almost all ¢ = {c,}7.; € C”. Fix a vector ¢ € C”" satisfying (6) and put

Py = GCD {(P’ Z csfs + af;t+1 } ‘

s=21

Then

GCD{p., 95} = GCD {q», ¥ csfs,f,.ﬂ} —

s=1

= GCD{Y, f,+1} = GCD{o, fi:1 <s<n+1} =1,
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i.c. the functions ¢, are mutually disjoint divisors of the function ¢, and hence
@, -- 1 for almost all « i.e.

a1
GCD {(p, Y csfs} =1
sl
for almost all ¢ ¢ C**1.
15. LEMMA. Let F={F;:1<i<n, 1 <j< N}cL(C' I}) be a strong

outer H-function¥'. Then for almost all R € G,(C~) the function ® det(F R)is -
tually disjoint with any fixed inner function @.

Proof. Let {¢/};¥ | be a basis in (CV)* and {/*}. , be a basis in the space
IS 1

(A"(CM))* of n-forms over CV, r =: dim A*(CV) : - N
)

). Let F be the following
n

n-form

n N r
= A (Z F,jef) = Y fh
i1 \jo-i s -1

By the theorem on outer functions (see [8]) F is outer iff GCD{f:1 < s < r}: 1.
By Lemma 14 for almost all #-vectors G ¢ A"(C™) the function

(F, G == }i [ G
CHE |

is mutually disjoint with ¢. This implies the wanted assertion because there exists
a measure preserving bijection, mapping n-dimensional subspaces onto the set of
decomposable norm one n-vectors

R -span{gy, ..., g <G =g A... AE,
and det(F ' R) :- (F, G.

16. LeMMa. Let R ¢ Cyc S, and ¢ be a scalar inner function. Then

a) for almost all R" € G,(R) the subspace ESz, has the form OH}, where @ is a
two-sided inner function, po = 13 and GCD{det @, ¢} =1,

b) R'€ Cyc S, for almost all R ¢ G,.,(R)¥.

1) A linear continuous transformation F : E,— HYE,) is called a strong f*function.
It is called outer if span {z" FE, : i = 0} : - HE,). The theorem on outer functions from (8]
(p. 38) asserts that a strong H:-function £ is an outer one iff dim E, > dim E, and the principal
minors of the matrix F;; (that defines the function F in some bases of £, and £,) have no common
inner divisor.
2 j.e. the inner part of the function.

%) pg is by definition the spectral multiplicity of the operator T - : PyS Kg. Recall (see e.g.
{91 that under condition (I — @) € &, the equality pg - : 1 holds iff the set of all minors of @ of
corank one has no common inner divisor.

4) This expression can be incorrect if dim R -< i -i- 1. In such case (here and below) writing
that something is valid for almost all R’ € G,;,(R), we suppose that the assertion holds for R itself,
it m turns out to exceed dimR.
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Proof. The proposition a), (i.e. a) for n = 1) was proved in Lemma 14.

Let us demonstrate now that a), = b),. By Proposition 2.5 it is enough to
verify that the subspace @ H? (which is defined in the condition a)) together with
almost any vector from R generate the whole space HZ. Since yg = 1, Lemma 12
implies that almost any vector from PyR is cyclic for the operator T = P_S, |K,,
as P,R e CycT. Hence the projections onto K, of almost all vectors x e R are
T-cyclic, and therefore

span{OHZ, Six : k > 0} =
= OH; ® span{T*Pyx : k > 0} = H?.

Now to complete the proof by induction, we have only to verify that the con-
dition b),., implies a), for all v > 2.

Let 7,_, be the orthogonal projection of HE= HZ , @® H? onto H3_,.
If R e Cyc S, then m,_; R eCycS,_, and by condition b),_, almost all #-dimen-
sional subspaces of n,_,R are S,_;-cyclic, hence the inclusion 7,_,R €Cyc S,_,
is valid for almost all R'€ G ,(R) or, in other words, for @ defined by the equality

() Ey= OH}

the function n,,_, @ is outer. On the other hand by Lemma 5 rank @ = » for almost
all n-dimensional subspaces R'< R. So in (7) [ = r for almost all R' € G,(R), i.e. @
is a two-sided inner function. Moreover p, = 1, because the fact that n,_,0 is outer
implies that(r,_,0)’s minors of rank » — 1 have no common inner divisor a fortiori
it is valid for ®’s minors of rank n — 1.

The assertion that GCD {det ©, @} = 1 for almost all R’ is contained in Lemma
15. Indeed, let{F;}}_; be a basis in R (N =: dimR) and F;; be the coordinate func-
tions of F;, F; ¢ H:. The cyclicity of R implies that the strong H%function F =
= {F};} is outer. Since the function © from (7) is the inner part of F|R', we have

GCD{det ©, ¢} = GCD{det(F|R) ¢} =1

for almost all R' € G,(R).

17. LEMMA. Let T e L(H) be a Cy-contraction, us < oo and R € Cyc(S, @ T).
Then almost all subspaces R' = R with dim R = n < max{l, ur} are cyclic for
S, @T.

Proof. Since P2 R € CycS,, Lemma 16 implies that ‘almost all (n 4 1)-di-

mensional subspaces of P, R are S,-cyclic. Therefore we have the equality

(®) span{Sk P . R : k > 0} = H}



324 N. K. NIKOLSKIl and V., I. VASJUNIN

for almost all R" € G,,1(R). Let 4 = S, @ T and m; be the minimal function of 7.
If for R'(8) is valid, we have the following inclusion

span{A*R’ :k > 0} > my(A)span{A*R':k > 0} =

= [m(S,)span{Sk(P gR' > 0}1® {0} =mH:® {O].

Let H' = (H; © mrH;)@® H and A’ =: Py-A H'. The operator A’ is a C,-
-contraction and its Jordan model is the orthogonal sum of i copies of the contraction
with scalar characteristic function m; and of the Jordan model for 7, therefore
M4 = i+ pg. Since PyR e Cyc A, Lemma 12 implies that

9 span{A’*Py-R' : k > 0} = H'

for almost all R = R, dim R’ =: n -+ u; (see Proposition 2.6). So for almost
all R" = R with dim R' = n + max{l, u;} we have both (8) and (9). As it was
shown (8) yields the inclusion

Ef > mpH: @ {O} = (H')*

therefore (9) implies the equality
E}g o= (H')J' @ span{A”‘PHrR’ k z= 0} H2 @ H.

18. COROLLARY. The operator S, has many cyclic subspaces and dlSCS i
a4

19. CoroLLARY. Jf T is a Cy-contraction, the operator S, ® T has many cycllc

subspaces and disc(S, ® T)=n < pr. Q

20. LEMMA. Let @ ¢ H®(C”, C?) be an inner function, @ = @6, be its “-ca-
nonical factorization (for definition see (7)), K % H *©6H:, T Sy K. Then
R e Cyc T implies the inclusion

E} o H.© O%H:

Jor almost all R' € G,_ (R).

Proof. (Induction on p, p > n). For p = the assertion of the lemma is
trivial. In this case @ is a two-sided inner function, i.e. ©% = I, and both sides
of the inclusion are zero spaces.

If p > n then the subspace of vectors y, y € R, such that E] = H; © O, H: (i.c.
@, is a two-sided inner function) has non zero codimension in R. (Such vector func-
tions y are called pseudocontinuable: for everyAcoordinate function y; there exists
a pair u;, v; of analytic functions bounded in C™\ clos D such that u,({) = y,({) x
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X v;(¢) for almost all { € T.) Indeed, K is the span of a finite set of subspaces Ej
(e.g. y runs over a basisin R), but the span of a finite set of subspaces of the form
H: © OH: is of the same form and cannot coincide with K.

So for almost all y ¢ R we have E, = H; © O H}, where r < p. Since E,c K,
the inclusion @ H? > @H? is valid, hence there exists an inner function 0 such
that ® = 0,0. The following decomposition

K=E, @ E} = (H: © 0,H?) ® O,(H! © 0HY)

shows that the factor-operator T’ = P, T'|Ej is unitarily equivalent to S} |(H?©
y

©0H?). Now we use the induction hypothesis, namely, that lemma holds for
every r < p, i.e. for almost all (r — n)-dimensional subspaces R < P, R
y

the inclusion
E;,, > O, (H? © 05HY)

is valid. Therefore (see Propositions 2.5 and 2.6) for almost all ( -+ 1 — »)-dimen-
sional subspaces R’ =« R we have

ET > E] @ O (H: © 0%H}) = H; © O,05H..

Since 0%, is a right-hand divisor of @i, 6% is a left-hand divisor of @ 0%, i.e.
0,0%H} < O%H}, hence
E;, > H: © O%H?

for almost all (» + 1 — n)-dimensional subspaces R’ « R and consequently for
almost all (p — n)-dimensional subspaces R’ < R. 77

7
21. CoROLLARY. The operator S, has many cyclic subspaces and disc Sy = P.
Proof. Put n =0 in Lemma 20 and use Lemma 8 with yy = p=0. %
22. COROLLARY. Let T€ L(H) be a Cy-contraction. Then the operator S @ T
has many cyclic subspaces and disc(Sy @ T) = max{k, ur}.

Proof. Let R e Cyc(Si @ T). By the preceeding corollary the following
equality

(10) span{S,ﬁ‘"PHiR’:n > 0} = H}
holds for almost all R’ € G,(R). Therefore for the same R’ we have
Eg > my(A) Eg = my(S}H} @ {0} =
= P,my(z2)H; ® {O} = H; ® {0},

where 4 = S§ ® T and my is the minimal function of 7.
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By Lemma 12 for almost all R e G ,,T(R) the equality

(11) span{T"PyR':n > 0} = H

holds. Hence for almost all R’ € Gy(R), where [ - max{k, ur}, we have both (10)
and (11) simultaneously, i.e. R’ < Cyc A, thercfore discA < max{k, u;}. The
opposite inequality is trivial (see Proposition 2.2). oo

The following lemma completes the proof of the theorem.

23. LeMMA. Let U be a unitary operator with an absolutely continuous spec-
rral measure, T be a Co-contraction, A = S X U x S, x T Y, d~=n -} max{l, ur
k 4 uy - n}, R e CycA. Then almost all R’ ¢ G,(R) are A-cyclic.

Proof. We shall suppose that A is defined in the following Hilbert space 5 :

H = H*, X Hy X H: X Hy

UcI(Hy), T e L(Hy), the backward shift S; is defined in H2, o L © Hi as
follows Sy - : P_¥, H,. We can assume

H < L X Hy x L x Hy
and

)
Lix Hy X L= S(C" X H(t) x C")dv(s),
T

dimH(z) == r(¢t) v-a.e., r(t) being local spectral multiplicity of U. Let us note that
if & -4-n > 0 or if U is nonreductive then v is the Lebesgue measure.

Let j(z) be (so as in Lemma 5) the family of evaluation mappings from L7 X
X Hy X LY into C* x H(t) X C" : j()h == h(t) ae. Vh If ReCycA then
J) PﬁvagR = H(t) X C"v-a.e. and by Lemma 5 for almost all R, € G”‘-""u(R)
the equality
(12) O Py 2Ry = H(1) x C"

holds v-a.e. . Fixing such a subspace R, put
L = closm(4) span{4°R,:s > 0}.

For the sake of convenience we write sometimes, for example, H, X H? instead
of {0} X Hy X H;, H(t) x C"instead of {0} x H(t) X C" and so on.

1) We write here and below the direct product instead of the orthogonal sum to distinguish
it from orthogonal decompositions occuring in the proof.
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Let us introduce the following auxiliary space
#H' =L X Hy X H?
and the operator

A= xUXxS,
further put

L' = my(A")span{A’Py-R, :s > 0}.

We shall denote, when it will be convenient, the elements of a direct product as
a column. For example we can write the following evident equality

H} e

0 i { —dﬂ 173 r
L® o = span{L, | O X [O}HT——L XIO}HT-

o o

Since L' is invariant under multiplication by the independent variable, it has
the form

(]3) L'lz@le@MP

where @ is a measurable operator-valued function isometrical almost everywhere
on T, M, is a reducing subspace of the multiplication operator; p(t) is the local
spectral multiplicity of the unitary operator being a part of multiplication operator
in M,.
The equality (12) yields
J@) L' = Ck x H(1) x C".
On the other hand
JO) L' = j(t) OH} @ j(t) M,

dimjt) L' =k +r(t) + n=14 p(t) v-ae.
o

hence

and therefore

' 'dlo |=0Ld M,
HE

Since (Mz"s¢' = L} X Hy, we have M, = L} x Hy. This inclusion implies that
L} c OL}, i.e. ©* is isometrical on L}. Putting 0 = P, 2 © we can write
n

0
06* = | o

I
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and
o

' e L' = @H2_1 e (0] — @[HE[ e G:I:H‘Z_"] _d:e_f OK.
e,

Note that 0H} < HE because OH} < #’, hence 0 € H*(C!, C") i.e. 0 is *-inner.
Let us return now to the operator 4 and show that the operator

Alz L.LA'LJ-

is unitarily equivalent to (S;'Kz) X T, where 0 is the inner function defined by
the formula 6(z) = 0(z)*. For the orthogonal complement L+ we have:

L H;
Li=# oL = Ho elre o1_

H? o

Hy o

=[#"©L"] X Hr == OK X Hy.
Letting now

KEk;=H © 0H?

A= 4, 0K

def —
J:LXE) > IXE), (NHO =T,
we obtain for f e OK
Asf = PogAlf == O(Pr & K) O%f =
= OJ(P;S; K) JO*f = OJ(S}  K)JO*.
Since Py R € Cyc 4,, by Lemma 20 we have for almost all R, € G,_,(R) the fol-
lowing inclusion
span{A3P R, :s > 0} > OJ[H} © ()% H2 =
= OJ[H} © B=H}]= O[H2, © (69 H2,) =
= OK © O[(6°)* H2, © 0*H2,] = OK ©O0*[0'H, © HZ,] =

0] (0]
=0Ko| O |[H:00H) = 6Ko| O
I K,

Now we put R’ =span{R,, R,}. Since R, varies in a set of full measure in
Gy uy (R) and R, varies in a set of full measure in G,_,(R), by Proposition 2.5 R’
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fills a set of full measure in G, “y (R). Let us show that all these subspaces have the
following property:
14) E{, > H®, X Hy.

It is sufficient to verify that
closmp(A)Ef. > H?, X Hy
or an equivalent inclusion
H} Ly,
span¢ | O |, mp(A)APxR :520 221 H,
o 0]
However the left side of this inclusion contains the subspace
mH} ]
span 0 | m(A)A*PpR :520 =
o |
Hi
= mq(A’) span O |, A"P4xR :5s 20} o
o
H}
> myp(A’) span O L, A°Px.Ry:5s 20} =
0]
= mp(A’) [L" ® span {A5P R, : s20}] o
o
sm{(A)|L'® OKS| O =

Koi
L} L L:
=mp(A)| H, |= H, |>|H,
0iH2 mpBiH? 10)

Thus (14) is valid for almost all R’ € G/, ”U(R) and therefore it is valid for
almost all R’ € G,(R), because | =rank @(t) < k + r(t) +n v-ae., ie. I<k +
+p4nandl4pu, <k +p+ntp,<d
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By Lemma 17 for almost all subspaces R’ < R, dimR': : n -;- max {1, ),
the following cquality

(15) span {(S, X T)’ P R :s >0} == H; X Hy

nHyp
is valid. Consequently, it is valid for almost all R’ € GR) because d = i1 -*
max{l, yy}. Therefore for almost all R'€Gy,(R) we have simultaneously the inclu-

sion (14) and the equality (15), that is for these subspaces E%, = « .

24. CONCLUDING REMARKS. We have considered only the orthogonal sum
of operators. It was mentioned, however, that orthogonality does not matter,
because similarities preserve the lattice of invariant subspaces. It is unknown {see[3])
whether disc is invariant under quasi-similarities. This is anyway true for quasi-
-similarities preserving the lattice of invariant subspaces. This secems to be the case
for quasi-similarities of weak contractions and their Jordan models (sce [12]).
Jordan operators are a particular case of operators considered above. We are going
to return to this question elsewhere.
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