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SEMIGROUPS OF ISOMETRIES WITH COMMUTING
RANGE PROJECTIONS

HECTOR N. SALAS

1. INTRODUCTION

Let H denote an infinite dimensional complex Hilbert space and let Z(H)
denote the algebra of all bounded linear operators on H. Let K(H) denote the algebra
of compact operators on H. An isometry U on H is a linear operator satisfying
§U()]] = ljx[i for x in H. Let m be a natural number and let {V(n):n € Z7} be a
semigroup of isometries acting on H, i.e., assume that {¥(n)} satisfies V(n -+ [) =
= V(mV(l) for all n, I € Z}. We will restrict our attention to those semigroups of
isometries that have commuting range projections, ie., {V(mV*@m):ne Z"} is a
commuting family. In this paper we will investigate some of the properties of the
C*-algebra C*(V(n)) generated by {V(n):n € Z7).

Examples of isometries with commuting range projections are the following. Let
E be a subset of Z™ that satisfies £ + 2} < E (we call such a set a module over Z%).
Let {e,: p € E} be an orthonormal basis for /2(E), where e, is defined by e,(g) = 0p g
for g € E. Let {U(n) : n € 277} acting on /%(E) be defined by the formula U(n)(e,)=
= C,4,, for p€ Eandne Z%. Then {U(n):n € Z7} is a semigroup of isometries
with commuting range projections. Let C*(E) be the C*-algebra generated by
{U(n) : n € Z7}. Our basic structure theorem, Theorem 4.4, asserts that from the
point of view of C¥-algebras, these are the only examples. Specifically, we shall
prove that if {V(n):ne Z7} is an irreducible semigroup of isometries, on the
Hilbert space H, with commuting range projections {V(n)V*(n):n € Z7}, and if
VEm¥(l)is different from a multiple of the identity for all n, l € Z7} with |n — I|=
= |n| -+ {{| > 0, then there is a Z7-module E such that C*(V(n)) is isomorphic to
C*(E). An essential ingredient in the proof of this theorem is the theory of grou-
poid C*-algebras. The condition on the commutativity of the range projections is
provided precisely to make use of this theory.

The idea of using groupoids to analyse the structure of concretely given C*-al-
gebras is not new. In [7], Cuntz studied C*-algebras generated by isometries 73, ...

n
.., T,, n =2, with the property [ == ¥ T.TF, by representing them as a crossed
i1
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product. (The isometries 7y, T,, ..., 7, do not commute since their ranges are pair-
wise orthogonal.) In [20], Renauft realized the Cuntz algebras as groupoid C*-ai-
gebras. Muhly and Renault used the groupoid theory in their study of C%-algebras
of generalized Weiner-Hopf operators [17]. The same tool is used by Curto and
Muhly in their analysis of C*-algebras of commutative weighted shifts [8]. A fore-
runner of this circle of ideas is O’Donovan’s use of covariance algebras in his study
of C*-algebras of weighted shifts [18].

Another large class of abelian semigroups of isometries with commuting
range projections is given by subsemigroups of the non-negative additive reals (see
Douglas [11]). The intersection of this class with ours is non-empty, in fact its mem-
bers are the finitely generated one-parameter semigroups of isometries.

We now describe the contents of the sections ahead. In the next section we
investigate the relation between the boundary of a module E, JE, and the algebraic
properties of C*(E). Lemma 2.i7 asserts that the algebra of compact operators,
K(¢*(E)), is contained in C*(E) if and only if there is a “‘segment” of GE which is
unique, 1.e., it is not a translate of any other segment of JE. We answer the ques-
tion of when, for given modules £ and F, C*(E) and C*(F) are algebraically equi-
valent, i.e., the map U(n) — U(n) (U(n) acting on £2(E) and /*(F), respectively,
n € Z') can be extended to an isomorphism of the algebras C*(£) and C*(F). The
answer is, again, phrased in terms of the gecometry of 0F and 0F. We say that F
is locally representable in £ if, roughly, each segment of F is a translate of a segment
of E. Theorem 2.20 asserts that C*(E) and C*(F) are algebraically equivalent if
and only if £ is locally representable in # and viceversa. We say that a module E is a
universal module if each module E is locally representable in E. Our last result
shows that there exist universal modules and that every C*(E) is a quotient of C*(£y).

In Section 3 we realize, for a given module E, C¥(E) as a groupoid C*-algebra.
The examples there show how the structure of C*(E)is putin evidence through the
groupoid approach. Section 4 is devoted primarily to the proof of the structure
theorem mentioned before. Section 5 is specialized to Z%-modules. We determine
when C*(E)is G.C.R.. (A C*-algebrais G.C.R., also called type 1, if all of its irre-
ducible representations contain the underlying compact operators.) One ingredient
is a corollary of the structure theorem that allows us to restrict our attention to the
modules that are locally representable in E. Then we associate to E a family of
weighted shifts that act on a subspace of /%(0F). It turns out that C*(£) is G.C.R.
if and only if each weighted shift generates 2 G.C.R. C*#-algebra. We then appeal
to O’Donovan’s study {18] in which G.C.R. weighted shifts are characterized.

The last section is very brief. We present some possible generalizations of
our results and point out some problems that require further research. In the appen-
dix we give our proofs of the theorems of O’Donovan that we need. We also extend
these results to a family of (noncommutative) weighted shifts acting on £2(E).
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2. MODULES

The Z%-modules £ and the C#-algebras C*(E) are fairly representative of
the general case, (i.e., Z”-modules). They motivate more of the subsequent con-
cepts and results, and provide a good source of examples. For the last reason and
with an eye toward Section 5 we intersperse the case m = 2 along the way. In par-
ticular, for a Z2-module £, we shall use a sequence to describe J£. For a Z-module
F it is possible to describe ¢ F in a similar way. We will not do it, however, since it
is too cumbersome and does not seem worthwhile.

DEeFINITIONS 2.1. a) Given a Z7-module E and p € E, the diamond centered
ot p of radius n, DE(p), is defined by the equation Di(p) = {{€ E:{l —p <n}.

b) For F aZ7module and g € F, the diamonds Di(p) and D}(q) are equiva-
lent, denoted by DE(p) ~ DE(g), if DE(p) = p — q * DJ(9).

REMARKS 2.2. 1) For a given n € N, there are only a finite number of classes
of equivalent diamonds (because the set {/ € Z7 :|l] < n} is finite). Each equiva-
lence class will be called an abstract n-diamond and it will be identified with the dia-
mond in the equivalence class that is centered at the origin.

2) Assume that p is a polynomial of degree n in z;, Z;, i € {1, ..., m}. We do
not assume that these indeterminates commute. Let ¢; € Z'7 have the j-th coordinate
equal to I for j = i and 0 for j # i. For a given Z"7-module E the operator obtained
from evaluating p in U(g;), U*(e;), via the map z; - U(e), Z; » U*(g;), is denoted
by P. If F is another module the polynomial p evaluated in the same way, but now
with U(e;) € C*(F), is also denoted by P. There is no risk of confusion as long as
we specify the C*-algebra to which P belongs. The following observations are some
of the reasons why diamonds play a key role in our work. If g € £ then P(e)) =
= Y. /e, Thus P(e,) is supported in D(q), and P may be viewed as smooth-

renk
ing or spreading out ¢,. Moreover, if F is a module (F may be E) and s€ F is
such that DE(g) ~ D[(s), then the operator P, P € C*(F), is such that P(ey) =
= Y e, Inother words the action of a polynomial P, of degree n, on ¢,
re nEig)
depends only on the equivalence class of DE(q).

3) Let S be a monomial in the 2m generators of C*(E). We may view S as
induced by a partial transformation ¢ on E. Let k € Z and let 7 be an operator.
The symbol T means T*if k € Z.., and T*¥if —k € Z,. Without loss of gene-
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rality we may assume that

S = Ve rd Ve rmaind |y ety

where Y. A = »nis the degree of S. Let F be

s=1

En(E—ke)n (E~ (ke — ko) 0 ... 1 (E— (;‘: (ii.lkli-sm)sl))
1.1 B

R

and let ¢ be the partial transformation on £, with domain F, such that oy =1+
m i-1

- Y, (Z k,+s,,,)a,. Then S is induced by ¢ since S(e,) =: ey, if 1€ F and
t=1

$=2=0 i
Se)=01if [ e ENF.
Let £ be a Z%-module and let Y be a subset of E. Let Iy denote the projec-
tion in /%(E) defined by the formula

e, fpeY,
Irey) = {0 ifpe EXY.

PROPOSITION 2.3. Let E be a module and let P € C*(E) be a compact operator.
If P is a polynomial in the generators of C*(E), then P =: 1,P 1, for some finite
subset Y of E.

Proof. Let n be the degree of P. The following facts are easily checked (see
Remark 2.2.2).

1) If g € E, then P(e,)) €/ (DE(g).

2) If DE(g) n Di(s) = O, then P(e,) is orthogonal to P(e,).

3) If DE(q) ~ DE(s), then [P(e,); = P(e)l-
Let Q== {qe £:P(e) #0}. Then Q is a finite set becausc if it were infinite,
we could find a subset L, also infinite, with the property that if ¢, s € L and g # s,
then DE(q) ~ DE(s) and DE(g) n DE(s) == ©. But the existence of this L, together
with the facts established above, contradict the compactness of P. To conclude the
proof, choose Y = Uy D¥g), g€ Q. %

DerINITION 2.4. Let £ be a Z7-module. The boundary of E, OE, consists of

those points p of E with p — Y} & not in E.
i=1

If E'is a Z%-module with p == (p,, ps), 9 = (q;. g2) € OE such that p; <g, and
gs > p,, then the segment [p, q) is {(hy, hs) € OF:p, < hy < g, and p, = hy 2 o).

For a family of Z7-modules E;, j € J, we denote by C*(@JEJ-) the C*-algebra

i€
generated by {U(n) : n € Z"7} acting on @ E;. The commutative subalgebra generated
jer
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pv S¢S, where S is a mounomial in Ufg,), ..., U(e,), U%(e), ..., U%(e,,) is called
the diagonal subalgebra of C*(g E)).
jer
Lemma 2.6, although very simple, will be fundamental in what follows. The
example below illustrates particular cases of it. namely, when the index J consists
of only one element and the abstract diamond has radius one. Observe that the
way the polynomials are defined is independent of E.

ExampLE 2.5. Let E be a Z%-module.

1) The projection (I — U(e))U%(e)) (I — U(e)Ues)) = 1, with V= {ge
€ F:Di(q) = g ~ {0, &, &)}).

2) The projection (I — U(e,)U*(e,))Ul(ex)U™(e5)==1,, with W=- {qg € E: D¥(gq)=
=g+ 10, &, &, — &}}.

3) The projection (I — U(e,)U*(e))U(e)U*(e,) = 15 with S = {g € E:D¥g)=
=g+ {0, &, &, —&}.

Theset V .y W y § < JEF is the exposed boundary. A point in V js a vertex,
2 point of S is south-exposed while a point in W is west-exposed. A point in dEN\ (V' U

J S UN)is a joint. Observe that any of the four disjoint sets that form dE could
be empty.

Lemma 2.6, Let D, « Z™ be an abstract n-diamond. There exists a polyno-

milal p(zy, .. .3 2y Z1s -2 o5 Zy), depending only on D, such that given a family of
Z}-modules E;, j € J, the operator P (the evaluation of p in the generators) is equal

o ® le, where F; == {q € E;: Dfi(q) = q + D,}. Moreover P is in the diagonal
jelt

subaigebra of C*(@® E’).
jer
Proof. For /e Z™ write | = /+ — |- where I*, [~ € Z" and I' == [I¥] = [I-).
For /i< n, define polynomials P, according to the formulas, P, —= U(I*)*U(i~)-
SU()*U*) it Te D, and P, = [~ U{+=UI-)UQ-)*U(+) if 1¢D,. It is
easy to verify the P == [[{P,:|/| < n} has the required properties.

Note. The order in which the P,’s are multiplied is immaierial. In particular,
we have shown that |z, 0 is in C*(E), for every k € Z™.

COROLLARY 2.7. Let F be a subset of a Z'-module E. Then 1, € C*(E) if and
only if F belongs to the Boolean algebru generated by (E + p) 0 E, p € Z™. Moreover
1p € C*(E) if and only if 1, belongs to the diagonal subalgebra of C*(E).

Proof. Let 1z € C*(E), F < E. Then there exists a polynomial T in the gene-
rators of C*(E) such that |IT — 1,}| < 1/4. Let n be the degree of T. As noted in
Remark 2.2.2 we see that T(e,) = Y./, €p4,, p -+ 1 € DE(p), Where 7, , = 7, ,if
DX(p) ~ D5(qg). In particular for p € F, |4, q—1i<1/4and for p ¢ F, |1,,/<1/4.
This means that if we partition £ according to the different classes DE(p),
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then £ is the union of some classes and E'\F is the union of the remaining ones.
Let Fi,iefl, ..., k}, be the different classes in which we have partitioned F. By
Lemma 2.6 and the subsequent note, each F; belongs to the Boolean algebra gene-
rated by (£ - p) 0 E, p € Z™, and so therefore does F. In particular, 15 belongs to
the diagonal subalgebra of C*(£). The converse is immediate because Veipnr€

e C*(E) for every p € 2™ %

DeriNtTION 2.8. Let £ be a Z-module. The boundary of E, JE, is periodic if
there exists p € Z™, p # 0, so that £= E -~ p.

The following somewhat technical result will be used in Section 4 in the proof
of Theorem 4.4. The proposition says that if, for a module E, there is a point p € 3£
such that certain small translates of sufficiently large diamonds centered at p are
equivalent, then dE is periodic, i.e., £ = E -+ ¢ for a non-zero ¢, and ‘¢ is small.

PROPOSITIGN 2.9. Let k be a natural number. Let E be a module whose boun-
dary, OE, is either not periodic or if E = E -~ p with p non-zero then p! > 2k. For
each p € OE and for each q € DE(p) form the diamond DE(q). Then there exists a j,
(depending on p), such that for each n > j the diamonds DE(g), (g €DE(p)), are
pairwise inequivalent.

Proof. Assume that the conclusion is faise. Then there exists a sequence {i;}

and ¢q, r € DE(p), g # r, so that Df,:i(q) ~ D,[,’;(r). Let s € E and let n; > max {|s—

— g, 's—r) Since s€ D,,Ei(q) n Df.-(") we have that s+¢g—re€ D,’fi(q) and
s+-r—gqe D,‘,‘:(r). Therefore s - (r—¢q) and s--(g—r)e E, ie., E=FE-+

+ (g — r). This is impossible since ¢ — r # 0 and ‘g — r] < 2k. It is clear that
Df(r) ~ Df(q) implies that DE(r) and DE(g) are inequivalent of »n > ;. %

For each ¢ € OF and each n, we may apply Lemma 2.6 to find a projection
Q,. in the diagonal subalgebra of C*(E) with range /%({r € E: DE(r) ~ D(gq)}).
Therefore Proposition 2.9 assures us that exists j so that if » > j then the product
of Q,,and Q,, is zero whenever ¢, r € DE(p) and q # r.

Zron

ProrpasitioN 2.10. For a given module E, the C*-algebra C*(E) is reducible if
and only if JE is periodic.

Proof. Assume that JE is not periodic. For each p e E we observe that
Y¢py € C*(E)" (the von Neumann algebra generated by C*(E)). Indeed, Loy =
=infQ,,, n€N, where Q,, is the projection defined above. Since Q,, € C*(E)
for all », their infimum 1is in C*(E)’. If T e C*(EY (commutant of C*(E)), then,
in particular, 7' commutes with the operators in the m.as.a. generated by
{lipy: p € E}. Therefore T= Y, 2,11,3, p € E. Since T commutes with U(e,) it
follows that /, = /ZMF‘.. In turn this implies that 7, is constant, i.e., T is a multiple
of the identity. Consequently C*(E) is irreducible.
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Conversely, assume that F -: E — p for some non-zero p. The operator
U'3p~)U(p+) is unitary and commutes with each Ufe;). Therefore U%(p~)U(p*)e
e C*(EY and, since it is not 2 multiple of the identity, C¥(£) is reducible. 17}

With arguments similar to the ones used in Corollary 2.7 we obfain the next
coroilary.

CoROLLARY 2.11. If E is a module with nonperiodic boundary, then the diagonal
subalgebra of C*(E) is a maximal commutative subalgebra of C*(E).

Notice that the diagonal subalgebra is separable and therefore cannot be
the m.as.a. {1y, :pe E}’, which is non-separable.

For a given Z2-module E, we will describe #F using a sequence. In Section
5 it will be seen that this sequence plays a role in the study of C*(E) that is similar
to the role played by a weight sequence in the study of the C*-algebra generated by
a weighted shift. It is necessary first to introduce the concept of configurations. They
will allow us to describe dF locally. Let i denote an i-tuple (¢_;, ..., t_;) of non-nega-
tive integers, such that 7_, is positive for k # 1. Likewise m isaj < l-tuple (1,, .. .,
... 1)) of non-negative integers, with 7, positive for ¥ # 0. In particularﬁ = (1_y}
with 7_, = 0 and 0 = (1,) with 1, = 0. The lengths of # and 71, namely i and j + I,

1
can vary. The absolute value of i, 7', is Y while the absolute value of »i, m!,
k=1

j
5 Recall that, when ¢, &, € Z2%, &, = (1.0) and & == (0,1).
k-0

Derintrion 212, Given 7 = (f_;, ..., 7_y)and m == (1, ..., ), the confi-
guration C(7, 77) is the subset of Z* which is the union of the following sets.

a) {le:0 €1< 1),

by {ree, —leyr 1 <1< 1),
& k

) {(Z fi,}aln— (Z fgsﬂ) el 02k <j—-2and | /< IZHQ},
5-=0

K k-1
d) {(Z fzs)'?l‘“ (2 f.zsﬂ)f::——!sz:} KU <€j—tandl €71 IQHI}?

e) {ley:0 <1<ty

£y {toygo—legn L <<y},

K k
2) {(~ by 1—2s} & - (E !_25+1}82~-If:3 (2<2k<i—1andl i[gt_gk_l},

% A1
h) {{— 5 I_gs)el (g 1_33*1)5.3~~181:3<2k<i—-2 andlé/gt«r_,k_g}.
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If 7 =- 0 then C(ﬁ, m) is the union of sets obtained from a), b), ¢) and d).
Likewise if 77 = 0 then C(n, 6) is the union of sets obtained from e), f), g} and h).

DeriNitiox 2.13. Given a Z%-module E, its boundary is described by (.. .,

oy, Pty ) If0E —\ gp — C(n;, m;). where the configurations C(r;. 1) sa-
i=1

tisfy conditions 1), 2) and 3) listed below.

1) C(n;, m) = C(A; 4y, ;) foralli

A= (1og ooty 0 1o # 00 or = (1, ..),
with ;j: i, if t_; = oo and j < i If the last alternative holds then there are only
J terms to left of p.

3) Similarly 7, = (o ..., t;_,) if t;_y # 00 O My == (..., {;_y), with £,_; = i,
if t;_, = oo and j < /. If the last alternative holds then there are only j terms to
right of p.

Observe that 0F is periodic if either

1) for a vertex p € JE the double sequence (...,7_,.%. 1. ...) is periodic,
where 0F is described by (...,1_y, p. 1y 1, ...), Or

2) the module is a translate of Z. > Z or Z % Z..

In either case there is a fixed configuration C(7, 0) (or c(o, 7)) and a ke Z2 so

that 0F — ) p + th+ C(n, 0), re., the boundary of £ is the union of translates
1€Z

of a fixed segment.

ExampLE 2.14. 1) If £ -~ Z7, then dE is described by (o0, 0, o).

2) f E=Z,Z, then dE is described by (oo, 0, 0, oo).

NI E=(Z,xZ) U (ZxZ,). then JF is described by (co, 0.0, 0, co).
Finally,

4 if E= k}7(Z‘i + I(—=7,7) v (Z5 - {(—7,7) 4- (—2,1)). then JF is des-
cribed by (... 1,156,6,2.1.9,5.6,2,1,5. ...). The boundary is periodic and the period
of the sequence is 4.

DeFmNiTiON 2.15. Let E be a Z7-module and let p € dE. The point p has
infinite multiplicity if given a natural number » there exists ¢ € OF, g # p, depending
upon n, such that DE(p) ~ DEgq). The point p € O has finite multiplicity if it does
not have infinite multiplicity.

REMARKS 2.16. 1) If 9F is periodic, then the points of @E have infinite multi-
plicity.
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23 If p € oE has infinite multiplicity then for each n there are infinitely many
soints g € OF so that DE(p) ~ DE(g).
33 If p € JE has infinite multiplicity then each ¢ £ 6£ has infinite multiplicity.

Lemuma 2.17. Let E be a Z7-module. Then:

1) The intersection of the ideal of compact operators K{({*(E)) and C*(E)is
0} if and only if the poinis of JE have infinite multiplicity.

2) K(CHE)) < CHE)if and only if the points of OE have finite nudtiplicity.

Moreover in case 2) every non-zero ideal of C*(E) contains K(/*(E)).

Proof. Let p € F have infinite multiplicity and let T e K(/*(E)) r. C*(E).
Fix ¢ > 0 and let P € C*(E) be a polynomial of degree n with T — P < ¢ Let
iefYDE(p)), "f, =1, and .P(f) > P —e. Since T is compact, it is the norm
limit of the finite rank operators TlDf(p), s € N. Choose i so that | T'] < &

E\DE ).
Using Remark 2.16.2 choose g € E with DE, (p) ~ DE,_(q) and DE(g) n DE(p)=0.
Let W be U*((q— p)~){q —p)*). From the fact that P(f) :: PW(f) <
< .(T— PYWC(), + . TW(f); it follows that | P; < 3¢ and so {|T| < 4¢. Since ¢
is arbitrary this implies that 7 == 0.

If p € OE has finite multiplicity then, applying Lemma 2.6, 1y,, € C*(E). It
is also clear that 0 F cannot be periodic and so C*(E) is irreducible. From (1, Coroi-
lary 2 in page 18] it follows that K({*E)) = C*(E).

The remaining implications follow from those already proved and Remark
2.16.3. If K(/*(E)) = C*(E) and I is a non-zero ideal of C*(E) then an argument in
15, 1, Theorem 1] proves that K(/*(E)) < 1. %

The next examples illustrate Lemma 2.17. In each case we need only verify
that p has finite multiplicity.

ExampLES 2.18. Let p be in the Zi-module £ and let 0£ be described by
(oo, f_g, T4, Py dy, 1y, ...), 1 # oo for all i. Then:

k-1 —(h--D

1) If there exists an /€ Z, such that Y 1= and Y 4 — > when
ik i

i
i —k

& — oo then K{(/Y(E)) <« CH(E).

—(k+1)
2) If just Y, i — o0 when k — co, but either there is an m so that
k=i

fys tmsrs ...) is periodic or OE is described by (..., 1_1. P, to, ..., t,, OO,
then the same conclusion holds.

DeriniTion 2.19. The Z7-module E is locally representable in the Z7-module
Fif and only if for each p € E and n € N there is a ¢ € dE such that DE(p) ~ DX(g).
This relation is denoted by £ < F.

Notice that < is a pre-order. It is easy to see that if £ < F< Eand pedE
has finite multiplicity then E is a translate of F. We recall that C*(E) is algebrai-
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cally equivalent to C*(F) if the map U(n) = U(n), n € Z7, extends to a C*-isomor-
phism beiween the two algebras.

THEOREM 2.20. Let E and F be Z7-modules, then:

1) There exists a representation w from C%(F) onto C*(E) such that n(U(n))=
= U(n), n € 27, if and only if E < F.

2) The representation = in 1) is isometric, i.e., C¥(E) and C*(F) are algebrai-
cally equivalent, if and only if E < Fand F < E.

Proof. 1) Assume that E < F. For each polynomial p(z,, ..., z,, Z;, ..., T}

let Pe C*(E)and P e C*(F) be the corresponding polynomials when p is evaluated
in the canonical generators of C*(E) and C*(F) respectively. We shall show that

the mapping P - P is contractive and therefore can be extended to all of C*(F).
The conclusion will follow from [1, Theorem 1.3.2],and the fact that the polynomials.

are dense in C*(E) and C*(F). Let P and P be polynomials as above of degree n.
Let f=Y /.. re 0,0 afinite subset of £, and let p € dE and k be large enough
so that {r — /e E:re Q and / <n} is contained in DE(p). By hypothesis there
exists ¢ € JF with D{(p) ~ Di(q). Let g €/*(F) be equalto ¥ /e, ,, r€ O, so
If| = ig'. By Remark 2.2.2 | P = |Pg,, and since these /s are dense in /%(E) it
follows that P! < ﬁﬁ". For the converse, use Lemma 2.6 to produce a polyno-
mial p(z,, ..., Zy. Z;. ..., Z,) such that the corresponding P € C*(E) is non-zerc
while P e C*(F) is zero.

2) The proof just given shows that under the additional hypothesis that
F < E, the restriction of the mapping to polynomials is isometric and therefore
the extension to C*(E) and C*(F) is also isometric. 2

The first part of the proof of the preceding theorem sﬁggests the following
easily verifiable fact.

PROPOSITION 2.21. Ler H and R be real Hilbert spaces. Let A be a subalgebra of
L(H) and let @ be an additive map from A into L(R). Let P,,, w e W, W a directed
set, be orthogonal finite-dimensional projections that converge strongly to the identity
I e L(R). Assume that for every T € @w(A), for every S € @='(T) and for every P,
there exists an orthogonal projection Q. € L(H) such that the operators Q SO ..
and P TP, are unitarily equivalent. Then ¢ can be extended to a linear operator
of norm at must 1 from A= (norm closure of A) into o(A4)~.

DEerFNITION 2.22. A Z%-module E, is a universal module if for each Z%-mo-
dule E there exists a representation np from C*(E,) onto C*(E) with n (U(n)) =
= U(n) for ne 7.

Theorem 2.20 guarantees the existence of universal Z%-modules. It is enough
to construct a Z%-module £ so that for each # € N and each abstract #-diamond D,



SEMIGROUPS OF ISOMETRIES 321

there is a p € E with D, — p = DE(p). For m = 2 there are universal modules £,
and F,, whose boundaries are described by (..., t_;, p. 1, ...), with all ¢; # oo,
and (oo, p, sy, 5. ...) respectively. Therefore £, < F., and F, < E, but E_

is neither a rotation nor a translate of F_,. ie., local representability is really a
Iocal property.

3. GROUPOIDS

For the basic properties of groupoid C#-algebras the reader is refered to
117, Section 2], from which we have adopted the terminology, or to [20]. The way
in which C*(E) is realized as a groupoid C*%-algebra is almost exactly the same as
the way in which the C*-algebra of Wiener-Hopf operators is so realized in [17].
Although our modules do not satisfy 3.1.i in [17], this is balanced by the fact that
Z™ has a nice structure.

Let £ be a Z'}-module and let W(n) € £({*(Z"™)) be defined by W(n)e, = ¢,,,
for all p, ne Z™ Thus {W(n):ne€ Z”} is the minimal unitary extension of our
emigroup of isometries {U(n) € L(/¥E)): ne Z7}. Let Pe L(¢*(Z™)) be the orthogo-
sal projection onto /%(E). The C*-algebra generated by {W(n)PW(—n)=P(n): ne Z™},
C*(P(n)), is commutative. Let Y be its maximal ideal space. Then Y is Hausdorft
and locally compact and, by Gelfand’s theorem, Co(Y) (the complex-valued conti-
nuous functions that vanish at infinity) is isometrically isomorphic to C*(P(n)).
The group Z™ acts on Y naturally: for y € ¥, y + n is defined by the formula
f"(_l' 4+ n)=W(—n)fWn)" (), for all jA'e Co(Y), n € Z™. (As usual " denotes the
Gelfand transform.) It is immediate that the action of Z™ on Y is continuous
und so (Y, Z™) is a transformation group. The set Y X Z™ becomes a groupoid when
we define {[(y, n), (x,m)]: x =y — n} as the set of composable pairs, defining
the product of such a pair to be (y,n 4 m), and when we define the involution
{v,n)"1tobe (¥ +n,—n). The maps d and r (domain and range, respectively) satisfy
the equations d(x, n) = (x 41, —n)(x, n) = (x-+n, 0) and r(x, n) = (x, n)(x+n, —n) =
= (x,0). Thus the unit space of YXZ" ie, {d(y,n): (nne¥YXZ"} =
= {r(y, n): (y, n) € Y X Z"™}, may be identified with Y.

Let X be {yeY: ﬁ(y) = 1} and observe that C(X) is isomorphic to the C*-al-
gebra generated by {P(m)PIE:ne Z™} = {lpqg+m 11 € Z™}. By Corollary 2.7
C(X) is isomorphic to the diagonal subalgebra of C*(E). The set X is compact
because 1 = TE € C(X). Therefore Y is o-compact since ¥ =U X + n),ne Z™
The family of clopen sets {X + n:n e Z™} form a subbasis for the topology of Y.
Thus Y is metrizable. The set Z™ may be seen as dense in Y. To be precise, define a
map from Z" into ¥, p — y,, by the formula fA(y,,) = {fe,, e,y for all fAe Co(Y).
It is clear that {y,:p e Z™} separates functions in Co(Y) and therefore is dense.
Likewise {y,:p € E} is dense in X. Since 3, + n == y,4, for all p,n € Z, the set
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{yp:pe€ Z7) is an orbit in Y. The points y, and y, are equal if and only if
{P(n)e,. e,y = {P(n)e,, e,> for all n € Z™. in other words, if and only if p —n
and g — n belong simultaneously to £ or to Z"\\E for all n € Z™. When p.qe E
this is equivalent to the condition DE(p) ~ DE(g) for all k € N. Thus themap p — ¥,
is one-to-one if and only if JE is not periodic. The sequence {v,,;,: /€ N} is convergent
if and only if there exists an n € Z™ so that the sequence is eventually in £ —
and, for each k € N, DE**(p(l)) = DE+"(p(s)) whenever /, s are large enough. As a
consequence we see that if we fix an x € X, the set {ne Z” :x-—ne X} is a Z7-
-module.

The groupoid in which we are interested is the reduction (or contraction) of
YXZ™to X, ie, == YRZ" X=={(x,n)e YXZ":xe X and x —~ne X}. The
unit space of B may be identified with X. Let C.(f) be the space of compactly support-
ed, continuous, complex-valued functions defined on f. Let C.(8) be endowed with
the inductive limit topology. A Haar system {i“:u € X} on f is obtained if we
define /“ as counting measure on {(x,n) € f:x =-u}. A multiplication on C (£}
is defined by h#g(x,1) ==Y, h(x, -+ 5)g(x -+ 1+ s, s)lx(x + | + 5), and an invo-

sez™
Tution is defined by A*(x, n) == h(x -+ n, —n), for all h,g e C(B) and (x,n) e f.
With these operations C () becomes a topological =x-algebra. Equipped with the
norm

neX ue

ifll, = max { sup S H(x, n)d"(x, n), supS J(x =+ n, —n) d24(x, n)} , feCp),
X

C.(B) is a normed =-algebra with completion L'(8). The enveloping C*-algebra of
12(B) is denoted by C*(f). Let u be a positive Radon measure on X. Then u induces
two measures v and v~! on according to these formulas:

Sfd v == ggf(x, n)dA*(x, n) dufu)
X

and

gf(.\‘, n)dv-x, n) = Sf(vc + n, —n) dv(x, n),

for all fe C.(B) [17, 2.11]. The Hilbert space L*(v~!) carries a representation
of C*(B) which is called the representation induced off the unit space by p and is
denoted by Ind,. It is defined by the formula
Ind (e, D)= 3 fix.]+s)glx +1+s —9)lx(x+1+5),
SEZ’"
for fe C(B), & € L¥A(v~1Y). Since {Ind,(/)I<]ifll;, Ind,(f) extends to all C*(f) [17,
2.12].

We have paved the way then for the main result of this section.
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LemMA 3.1. Let E be a Z%-module. The C*-algebra C5(E) may be realized as
the groupoid C*-algebra C*(B), where C*(f) is the enveloping C*-algebra of the grou-
poid B defined above.

Proof. Let i be a positive Radon measure on X (X the unit space of §) such
that the minimal invariant (under the equivalence relation on X defined by x ~ ¥
if and only if x -— n == » for some n € Z™) set that contains supp i is dense in X.
Then, according to [17, Proposition 2.17], the induced representation Ind, faith-
fully represents C*(f) on L2(v~'), where v is the measure induced by u. Assume,
without loss of generality, that 0 € E, and let §, be the measure with mass 1 con-
centrated in y,. Since {y,: p € E} is a dense orbit, and hence invariant, we find that

Ind% is faithful. The corresponding L*(v-Y)is {¢:f - C: Y, E(v,, —n)2 < oo}.
nekE

The Hilbert spaces L*(v-1) and £%(E) may be identified via the unitary operator
¥, from L2(v~1) onto (2(E), defined by (V&) (n) = (y,, —n).
Let ﬁi € C(B), ie{l, ..., m}, be defined by the formula

if ne—g

féi(.\’, n) - [1 i

]0 otherwise.

It is not difficult to check that these functions generate C.(f) as a topological *-al-
gebra. To conclude the proof we observe that Vl'nd(;o(f;i)!/—1 - Ulg;), where Ufg;)

are the canonical generators of C*(E). %z

REMARKS 3.2. 1) When E is a Z)-module there are only two cases. If £ = Z
then C*(Z) is the C*-algebra generated by a bilateral shift. The space Y consists of
a single point. If £ = Z, then C*(Z,) is the C*-algebra generated by a unilateral
shift. The space ¥ may be identified with Z y {oo}, where a subbasis for the topo-
logy of Y is given by the intervals {(», m) and (n, 0] : n, m € Z}. The action of Z
on Y is the usual addition on Z and oo is fixed, i.e., the isotropy group of cois Z.
The space X may be identified with Z, U {oo}.

2) In Lemma 3.1 the subalgebra {f € C(B): f(x, n) = 0 if n # 0} of C.(B)
may be identified with C(X).

3) The method used in the proof of the above lemma will be applied again
in the first step of Theorem 4.4.

We keep the notation used so far.

PROPOSITION 3.3. Let E be a Z-module and let X be the maximal ideal space.
of the diagonal subalgebra of C*(E). The topological space X may be seen as the:
closure of {y,:p € E} in the metric p defined by

2=k if k is the first natural number so that DE(p). ~ DE(g),

0 otherwise.

Py ¥y) = {
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Moreover, if C*(E) is irreducible then the map p — v, is one-to-one and pipEE;
is open in X if and only if K(fYE)) = CHE).

Proof. The first part of the proposition is clear from what we already know
about X.

If K(/*(E)) = C*(E) then i, € C*(E) and therefore the singleton {y,} ==
={xeX: f(,,,(x):l} is an open set. If C¥(E)is irreducible but K(£2(E)) n CH(E)=(0),
then we shall see that {),: p € E} is dense in itself. Thus X is a perfect metric space.
Since {y,:p € E} is an infinite denumerable dense subset of X, X has the power
of the continuum. Each non-empty ball of X has this same cardinality, and so
{y,:p € E} is not open.

To see that {y,:p e E} is dense in itself take pe E and k e N, since
i) ¢ C*(E) the set {g e £: Df(p) ~ Df(g)} consists of more than one point.
Choosing g # p in it, we have p(y,, ¥,) < 2-*. On the other hand thereisa j > k
such that Df(p) ~ Df(g) and so y,#y,. (f DF(p) ~ DF(q) for all j, then E = EL
+p — q and C*(£) would be reducible by Proposition 2.10.) Z

For a Z%-module E with C*(E) reducible we still have that {y,:pe E} is
open in X. In general it could be either way. As an example, let F be a Z%-module
and let F = () Fx{z}. Thus C*(F) is reducible. The sets Ve qe F}and Pppe F)

zeZ

may be identified via the map y,xq:y - 3,, all p € F, ze€ Z. Likewise the correspond-
ing X and X, Y and ¥ may be identified as topological spaces. Observe, however,
that if the isotropy group of y,, p € 22, is G, then the isotropy group of y,xi:; is
GxXZ.

Let E be a module. Let the groupoid B, with unit space X and Haar system
{A“:u € X}, be as before. In the sequel we shall use [20, Chapter II, Proposition 4.4]
combined with {17, 2.15]. That is, the map V — fy is a one-to-one order preserving
map from the lattice of open invariant subsets of X into the two-sided ideals in
C*(B). For each such set ¥, I, is canonically isomorphic to C*(f/V) and the quo-
tient C*(B)|I, is canonically isomorphic to C*(B/F) where F = X\ V. (The Haar
systems on /¥ and B/F are lg,, / and 1;,; 2 respectively. Recall that C*(B) is iso-
morphic to C*(E).) We shall identify some subsets of Z™ with open sets of X.

ExampLes 3.4. 1) Let £ be Z, X Z. The unit space X is Z, U {oo}. The
open invariant set ¥ = Z, corresponds to the ideal 7, in C*(E) generated by
I—U(e)U*(e,). The quotient C*(E)i/, is isomorphic to C(rx7) (the continuous
functions on the torus). Thus the length of the canonical composition series [1,
Theorem 1.5.5} is 2.

2) Let Ebe Z,XZ,. To the open invariant set Z, X Z, =V of X it
corresponds the ideal 1, = K(/*(E)). The quotient C*(E)|K (¢%(E)) is isomorphic to
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C*Z./ZL)® (LxXZ.)). The C*algebra C*(E) was first analyzed by Douglas
and Howe in [i12]; and from the groupoid point of view by Muhiy and Renanit
in [17].

3y Likewise for F=(Z. K2} g (Z<Z.). the quotient C*(F)K(/*(F)) is
isomorphic to C*(Z_ xZ) & (Z < Z.)). Thus the canonical composition series
of C*(F) (and C*(Z. X Z.)) has length 3. In fact, for every module F with 0F not
periodic and with a finite numbsr of vertices the length of the canonical composi-
tion series is 3.

4) Let 8 bz a Z3-module whose boundary is described by a sequence
(s tors Pty 1 ...) with ¢, # oo and lim #,=o0. In Example 2.18.1 we saw

that K(/%0)) = C*(0). The quotient C*(0) K(Z(0)) is isomorphic to CHE @F),
where £ and F are the modules in 2) and 3). The canonical composition series of
C*(0) has length 4.

A complete description of the unit spaces corresponding to several Z%-mo-
dules is don= in [21]. Among them is the module £, = ((m,n)€ Z2: m — nx > 0},
% irrational. The semigroup I'] = {m -~ nx > 0} determines a C*-algebra isomor-
phic to C*(£,) (see Douglas [L1, page 148]). The groupoid approach is an observa-

tion of Muhly and Renault.

PROPOSITION 3.5. Let j be a natural number. There exists a Z5i-module E;
such that C*(Ej) has its canonical composition series of length j, so, in particular,
C*(E;) is G.C.R.. Moreover, if j= 5 then CXEMNK{{YE;)) is isomorphic to C*(E;_y).

Proof. For j =1 let £, = Z* Examples 3.3 provide us with modules E,, £;,
and E;. Letj > 5 and assume that we have E;_, with the required properties. Assume
also that 0E;_, is described by a sequence (..., 7.y, p, 1, ...) with 7, and 7_, non-
zero and 1; # oo for all i € Z. Since E; < E;_,, 0E;_, has horizontal and vertical
segments of large length. Morcover, there are increasing sequences, {s;: /€ N} and
iri - i€ N}, of odd and even numbers respectively, such that lims_, = lim#, = oo.

We shall construct E; with the property that £; be open in the corresponding
unit space X;; and X \\E; may be topologically and algebraically identified with
the unit space X;_,. This will be obtained if E;_, < E; and, if F < E;but E; £ F
then F < E;_,. We ask 0E; to satisfy that:

1) OE; has a segment that is not a translate of any segment of JE;_,, say
C(m, imy with W= (h_;, ..., h-y) and i = (hy, ..., hq)

2) OE; is the union of this segment and translate of infinite nested segments of
JE;_, whose union is 9E;_,. The segments that glue together the translates of two
segments of 9E;_, are segments of Z, X Z, .(So no new segments are added, since
Z,XZ, <E_)

8§ — 1305
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Let /in 1) be even and define /, - /. while /; = (Elrk - sk) ~Il—i—1ir
i> 1. Let {h_::z € Z} be a sequence such that: i
1y h isasinl)for -/ <z < I,
ii) h, id =1 7 q for0<d<r,—s;andi > 1
1i) /1_1 -4 =1-r_q for0<d<r,~s;and i > 1.

Define £; with 9E; described by (..., h_,, 0, hy, hy, ...). Applying [20, Chapter II,
Proposition 4.4] we complete the proof. 24

If m > 2, then there are Z"-modules 1::, whose canonical composition series
has length j. Simply define E} = E; X Z"~?, where E; are the modules of the above
proposition. Then C*(l::j) is isomorphic to C¥(E;) ® C*(Z™-3).

4. THE MAIN THEOREM

Let {V(n) :n € Z7} be a semigroup of isometries acting on the Hilbert space H.
Let {W(n) :n€ Z™} be its minimal unitary extension acting on the Hilbert space K.
That is, for each n € Z7, H is invariant under W(n) and there is no proper subspace
of K that reduces {W(n) :n € Z7'}. The existence of the minimal unitary extension
is a classical result due to fto and Brehmer (see [10] for references and additional
material). Let P e #(K) be the orthogonal projection onto H and let {P(n) =
= W(n)PW(—n): n € Z™}. If we know that {P(n): n € Z™} is a commuting family
of projections, then we could proceed to build a groupmd as in the discussion
previous to Lemma 3.1. For this reason we prove:

PROPOSITION 4.1. The family of projections {P(n):n € Z™} is commutative if and
only if the ranges of the semigroup of isometries {V(n):ne Z7}, {(V(n)V*(n) :n€ Z7}.
Jorm a commutative family.

Proof. Since, for ne Z7, V(n)= PWnP|H it follows V(m)V*(@n) =
= P P(n)P|H. Moreover, P(n) < P because W(— n)H* < H* and therefore
V(myV=(n) = P(n)|H. Thus {V(n)V*(@m):n € Z7}is a commuting family if and only
if {P(n):n € Z%} is commutative.

From the definition P(k) = W(—k)P(k+)W (k). Computing P(k)P(h) and
assuming that {P(n):n € Z7} is commutative we obtain:

PUP(H) = W(—k=)P(k W (kW (—~h=)P(h+)W(h=) =
= W(—k W (~h-)P(k* — h~)P(h+ — k=W (H- W (k=) =
— W(—k=)W(—h-)P(h* + k=)P(k* + h-W(h-W(k-) = PWPK). @
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DeriNiTiON 4.2, Let (V(n):n € Z7} be a semigroup of isometries on H,
with commuting range projections. The C*-algebra generated by

(PP H:ine 27} = (V@ )Wn+)V*(n=)V(n-):n € 27},

C(P(mP H) is called the diagonal subalgebra of C*(V(n)).

ReMARK 4.3. Notice that the diagonal subalgebra contains all the monomials
V(g )V (g—y) ... V¥a)V(ny), nje Z7 for all je {1, ..., 2k}, such that

ke k
nr)l'.. — )32,» = 0. In fact
VE3ry)V (g y) ... V)V () ==
=z PW{(—ng) PW(ngy_)P ... PW(n)P H=

= PW(—ny ) PW (i W (toy ., — )P ... PW(m)P|H =

-

2 f -
== P P(—ng)P(ngy—y — Ny - - P(  [ok-n-y — Maw-i] — ”2)‘
<o

(34

k k k
(So, if ¥, e = ¥ #2i-1, then V* ( Yy 7:2,-)!/( ¥ m_,i) = I.) Thus each mono-
Fasl i1 i:=1 i

i1
mial is a partial isometry,

We are prepared to prove our basic structure theorem. The proof is divided
in four steps. The first step is, using a technique similar to the one used in Lemma
3.1, to associate to C*(V(n)) a groupoid f. The enveloping C*-algebra C*(f8) turns

out to be isomorphic, for suitable Z4-modules E;, i€ J, to C¥( @ E;). The
iet
second step is to show that the map U(n) — V(n), n € Z", extends to a representation ©
from C*( @ E;) onto C*(V(n)). In the third step the full hypotheses are used to prove
ied

that n is faithful. Finally, in the last step, we construct a module E with the pro-
perties:

) £, < Eforall jeJ and

(i1) for each p € £ and k € N there is a module E; and a point ¢ € E; so that

Di(p) ~ DLig).
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THEOREM 4.4. Let (V(n):n € Z7) be a semigroup of isometries acting on H
and assume that (V(n)V*(@n):n € L™} is a commuting family. Then:

1) There exists a countable collection of Z7-imodules (E;: je J!. and a repre-
sentation w from the C*-algebra C*(@ E)), acting on @ (*(E}), onto the C*-algebre
jied jed :

generated by {[V(n) :n € Z7}, C*(V(n)).

2) If C¥(V{(n)) is irreducible and it V*(k YW (k*)is not a multiple of the iden-
tity for all non-zero k € 2™, then the representation = is faithful. Moreover, in this
case it is possible 10 choose just one Z"-module E such that C*(E) is algebraically
equivalent to C*(V(n})).

2') When m = 2, the conditions in 2} could be replaced by the equivalent con-
ditions: C*(V{m)) is irreducible and either I — V(e,)V*(e)) or I — V(es)V"*(es) has
infinite rank.

Proof. Step 1. Let {W(n):n e Z™) be the minimal unitary extension of
V(n): n € Z'} acting on a Hilbert space K. Let P denote the orthogonal projeciion
of K onto H. By Proposition 4.1, the family {P(n) - W(n)PW(—n) :n € Z"} is com-
mutative. Let C*(P(n)) be the C*-algebra generated by {P(n):ne Z™} and let ¥
be the maximal ideal space of C*(P(n)). The group Z™ acts continuously on Y if
we define y 4-n, y € ¥ and n € Z™, by the formula _/A'(.,r =) = W(—n)fW(n)()),
for allfe Co(Y) where " is, as usual, the Gelfand transform. If X' == {re V: P(y) - 1,
then X is a compact set and C(X) is isomorphic to the C¥-algebra generated
by {P(n)P|H:n € 2"}, i.e., the diagonal subalgebra of C*(¥(n)). Form the groupoid
B=YXZ"X:=[(x,n)e YxZ": xe€ X, x — ne X}. The set of composable pairs
is {[(x,m), (b, D}: x =-n -= ¥} and a composition of such a pair is (x, n — /), the
involution is given by (x, 7)1 = (x = n, —n). The unit space of f§ is identified with
X. A Haar system on fis {2“: u € X'} where /¥ is counting measure on {(x,n):.x = u}.
The space C{(f), equipped with the inductive limii topology, is a topological =-al-
gebra when a multiplication is defined by

hsglx,n)="Y h(x.n = s)glx + n = 5. =) p(xv-+n--5)
sez™
and an involution is defined by /%(x, n) -~ h{(x-n, /}). Thus the subalgebra of C.(f),
{f:f(x,n) = 0 if n+# 0} is commutative and may be identified with C(X). The func-
tions on C.(B) are finite sum of functions b, defined by: b (x, n) -0 if n # —k
and b,(x, —k) = b(x), where b is some function of C(X). (We may assume that b
is zero outside X n (X + k).) Let f, € C(f) be defined by

it n== —k,

0 otherwise.

1) filx, n) = {
Let
b(x) ifn--0,

0 otherwise.

()] By, n) = {
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It is easy to verify that:
Whosf b, 1€ Z® and ke 2™,

i) b, =b=f,, where b,. b and b arz as above. As a consequence it follows
that ﬂ’;* .. .,_f;m generates C )

Let C*(B) be the enveloping C#-algebra of # {with respect to the Haar system
{7%:u e X}). in order to find a faithful induced representation of C*(f), we observe
that X is a HausdorlT. compact, secoend countable space and thus is metrizable and
second countable. Let [v.: & € /] be dense in X {/ a countable set) and from each
orbit O(y,) - {re X:yv -3 —n for some n € Z”} choose a point x;. Therefore
fx;:j € J) satisfies:

i) x, and x, arc not in the same orbit if & # [,

i) 1 O(x;) is dense in X.

J€J
Let u be the positive Radon measure on X that is concentrated in {J {x,}

KeJd
and p({x.}) = k-2 The measure v induced by i satisfies

r ~
§l1dvr - S gh(_,x‘. ay M () ==
7 X %

-
= S E h(u, n)ydpu) = E E h(xy, n),

Y{n:(u, nye 2} LeJ {n:{.rk,n)e,u’)

for all i € Cf). The measure v~! is defined by

Sh(x +n, —mdv(x, n) =}, ‘

keld {n:(s‘k ,nyE N}

(x, +n, —n)k™2
B

(See [17, Section 2].) Then the representation induced off g, Ind,, is faithful
on L% v-1)[17, Proposition 2.15 and 2.16}. For each x € X the subset of Z", {n:x -+
+ 1 € X}, is a module. (Since P < P(—/) for / € Z7 it follows that P éP’Zf«!) and
therefore for y € X, ?’(y 1y = ﬁ(—»l)(y) =1, ie., y+ 7€ X)) Let E, denote the
module {n: x, +ne X}, ke J. Wecan write L¥v-Y) = {{: B - C:k}gj H‘e\_‘_,gié(xk -+
+ n, —n)|? < oo}. For each ¢ € LAv-1) let V£ be defined by ¥,i(n) = /c“lié(xk +
+ n, —n) for n e E,. Let V be a unitary operator from L% v-1!) onto kE@JZB(Ek)

defined by V¢ = @V, &, & € L¥v~1). A computation shows that VInd“(f,:I)V"1 =
ked

= U(e,) for [, defined as in (1) and i € {1, ...,m}. Thus VInd, V-1 is a faithful
representation of C*(B) onto C*( & E,). {Recall that U(g,) are the canonical gener-
kel

ators of C*(@® E,) and {f, :i € {1, ..., m}} generates C(f).)
ked i
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Step 2. We show that if we define ISU;‘_) cx Vg, i€ fl, ..., m}, then -
extends to a representation of C%(fj onto C*(V(n)). Observe that, by construction,
7 extends to a faithful representation of {f'e C{B):f{x, n) = 0 if n # 0} onto the
diagonal subalgebra of C*(V(n)).

Since Z™ is discrete, X is an open set of S (to be precise X x [0} is open in fi).
Thus B is an r-discrete groupoid in the sense of [20], so, by [20, Chapter I, Exampie
3.28 b; and Chapter 1, Theorem 1.2} and Coroliary 1.22] we need only verify that
7 restricted to C(f) is a =-representation. We recall that = is a representation in
this sense if 7 is s-homomorphism of the involutive algebra C.(8) and it is conti-
nuous when C.(f) has the inductive limit topology while C*(¥(n)) has the weak
operator topology.

First we show that the map = is a homomorphism from the involutive algebra
{polynomials in fef_,f: .ie{l....,m}} onto the involutive algebra {polynomials
inV(e), V*(e), ie {l.....m}} (notopology yet). It suffices to verify that a polynomial
evaluated in V(g,), V*(s,) is zero whenever it yields zero when evaluated in j;i , f;:

Using Remark 4.3 for monomials in C%(V(n)) and C‘i’(@jEj) and that

i€

Vind, V-1 is faithful we obtain that, for {m;:ie {l,....2k}} < Zwa;Zk ® ..

k
o % fa =D, f,, where n == ¥ ny_y — ny and b, € the CP) h{x, ky=10if
=1

k0, and that n(b, =f,) == n(b)V¥(n)V(n*). Let lxacxsn be defined by

I if xe Xn(X ~ n) and k=:0,

1;\’ X n(-\‘a ]‘) —=
e 0 otherwise.

Then n(lxnxem)=V* @)W u*W*n+)V(n-) and so allxq@xem)V 0 IV n*) =
= V¥n-)V(n*). If a function ¥, b, =f, is zero, where each b, is a polynomial

n] <k
in {lxnen:s€ Z™}, then b, = Ixgxem =0, and so b, == b, * (lx — Ixn@em)
Thus Tr(I ;k by fy = % n(b) [ — n(lxnxsnln(f,) = 0.
nl<k

We now prove simultaneously that = can be extended to the whole algebra
CAp) and that it is continuous. For g€ C(B), g= Y, d,f,, where d, € {d e
Inj<k

€ C(f):supp d ¢ X x {0}}, we have that

ligll = max ||d, = Ixaxamll
<k

In fact we may write g = ¥, d, * lxaqrsm *f;. Assume that {g’: /e N}, con-

ILES

tained in the =-algebra generated by fes 1€ {1, ..., m}, goes to zero in the induc-
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.ive limit topology. That is, there exists &, such that \_Jsupp g’} = {(x, m) e
IEN

ep:n <kjyand g’ -0 where/ 5 00.Ifg! == Y, dlsf,,then d\2lx:x., -0

n <k
when! — 00. Since ‘dh#lxyx—ny = 7d} = lxex.n) = nldi#lxcxsnxf,) , Wesee
shat 7(g’) goes to zero not only in the weak operator topology but also in the
norm topology of #(H). By Step | we may think of n as a representation of
(‘*(@, E;) onto C*#(V(n)), with =(U(n)) = ¥(n) for all n € Z7.
j€

Step 3. In this step we will see that = is faithful whenever C*(V(w)) is irredu-
cible and V#(k—)V(k*) is not a multiple of the identity for all k € Z" ™\ {0}.

1t is enough to prove that “P. == a(P); whenever P is a polyncmial. Given
such a P there exists /i € Jand f € /3(E') satisfying f =1, f=Y J,e, with Fa
finite subset of E’, such that | Pfi" almost attains the norm of . P:. LqeetFl be the degree
of P. Let r € E;, and let k be large enough so that {4 —n:ge F,q + ne E; and
a <1+ l}ch"(r). What we are going to do, roughly, is to find a finite-dimen-
sional subspace, H,, of H with the property that the action of P on /A(F)({¥F) <
< IZ(Dfi(r))) is exactly the same that the action of n(P) on H,. There are two cases
1o consider, in the first we use Proposition 2.9.

Case 1. There exists j such that £; contains a point p with fo(p) ~ Df"(r) and
such that either 0E; is not periodic or JE; is periodic but if # € Z™\ {0} and
E; +n = E; then |nj > 2k.

By Proposition 2.9 there exists /1, i > 2k, so that s # 5', 5,5"€ ij(p) implies

that Dth(s) -~ fo(s'). Let Q € C*(® E;) be the projection (given by Lemma 2.6)
jes

equal to @ lr, where F, = {g € E, :Dfik(q) ~ Df_{k(p)}. For # such that
ted '

pEne fo(p) define Q(n) = U*(n-)Um+)QU*(n*)U(n~). (Notice that (0 = Q
and Q(n) would be zero if jn; < kand p+n ¢ Dfi(p).) Since Q(n) < @ 1z
teJ

where L,(n) = {g € E,: Di(g) ~ D,i(p -- m)}, we have that Q(m)Q(n') = 0 when-
ever n # n'.
Let x be a unit vector in 7(Q)H (n(Q) is not zero since Q # 0 and = is faithful

restricted to the diagonal subalgebra of C*(@ E))). For nsuch that p +n € Dfi(p)
ted

et x, = V*(n-)V(n*)x.

Assertion. a) x, € n(Q(n))H and ||x,| = 1; and so {x,} forms an orthonormal
sef.

b) If jn} < k — 1 then V(e)x, = Xnse,.

¢) If [n{<k—1 then V*(e,)x,=xn_. When p--n—¢; € Di(p) and V*(e)x, = 0
when p +n — ¢ ¢Df1’(p).
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From U%(n*)Un 3" (n =)0~ (n)Q=-O follows a). From U(e)U%(n " )U(n~}Q -
= U'*(n~ )+ — )0 follows b). Finally, if p —n — ¢ éfo(p) then U%(n- .
— g }{(n-)Q = 0, this implies c).

To complete the proof of Case | define /' = Y /,..x, where r —n € F and
where 7,., is the cocfficient of e, ., in the definition of the function £, Then f” has
been constructed in such a way that f*:==1 and =(P)’ = Pf . This concludes
Case 1.

Case 2. Let L == {j € J:E; contains a point p; with Dfi(pj) ~ Dii(r)}. Ifjel,
then JE; is periodic and there is an s5; € 27\ {0}, 5; < 2k, with E; —5; = E}.

We would like to find a j € L that satisfies:

(t) There is an i, h > k and possibly very large, such that if fo(pj) ~ fo(p)

then £, -+ s;:+ E,. Assume that we have obtained such a j. Let Q=& 1A3E
’ ted

€ C*(®E), where 4, = {ne E,: fo{n) ~ fo(pj)}. Since n is faithful restricted
1ed

to the diagonal subalgebra 7(Q) # 0. Let x € n(Q)H and x # 0. The span of {Mx:

where M is a monomial in V(g;), ¥*(,), ie{l,...,m}} is H because C*(V(i))

is irreducible. Let I = {teJ:E,= E, - s;}, the operator U*(sy)U(s/) e C*( @ E))
el

is unitary and commutes with U(g)), 7 € {I, ..., m}, which implies V*(sj‘)V(sji) €
€ C*(V(n))'. By hypothesis ¥*(s; )¥(s;*) is not a multiple of the identity, but this
contradicts the irreducibility of C*(V{n)). Thus only Case 1 can occur.

We then need to consider only the following possibility. (By our assumption
L [‘s is non-empty, p; may be chosen as r.) For each je€ L 0 [S," h e N, and

fo(p) there 1s 2 j' € L\Ist_ and a g € E; so that Dfi'(q) ~ Dfi(p). Arguing as in

Theorem 2.20 it follows that C*(@® E)is algebraically equivalent to C¥( &  E)).
Jjer JeINU N L)

Since {s;:j € L} is afinite set we can obtain a j € L that satisfies ().

We now prove statement 2'). Let m = 2, we will see that Case 2 cannot occur.
Without loss of generality we may assume that if j, /' € J, j # j', then either E; £ Ej
or E. £ . Letrand E; be as inCase 2. Let Q € C*(j@gﬁ-) be such that Q|¢XE;) =
=1 g g, and QI/XE)=0 if j # i For each n e Z? let Qn) =

{a: Dy5 | @~ Dis ()}
= Ut U(nHYQU*(n~)YU(r*) and notice that for n # »’ either Q(n) = Q(n") or
O(m)C(n') = 0. (We discard the n’s with Q(n) = 0.) There exist n,, b€ {l,...,d}
and d < |s;| that satisfy:

D Q(ny) # Qn,) if b+ D,
1)) i Oy MQ = (I — Ule,) U*(e)U(e,)U*(e,)) MQ for each monomial in
=

C¥® E).

jer
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As before if we let x € =(Q)H and x # 0. then the span of {=(M)x: M mono-
d

mialj is H. Therefore } x(an):i— Ve iV =(e)) V(e V¥ (es) and so there is a 7 Q)
b -1

that has infinite rank. For each Q(n) and for each monomial M we have that MQ(i)
is either equal to (UP(s7)U(s7)!Q(n) for some te€ Z or Q(m)MQ(n) =0. If
e (QmNH, » # 0, then [[V¥(s7)V(si)“y:re Z} spans n(Q(n,))H. Thus
V(s )W (s;) is not 2 multiple of the identity. As before V*(s7}¥(s7) e C*(V(n)y
fand is & unitary operator). This contradicts the irreducibility of C*(¥(n)) and so
we conclude that = is faithful.

Step 4. Assume that C*(V(n)) is irreducible and that = is a faithful represen-
sation of C*(@JEJ-) onto C*(V(n)), where a(U(n)} = V(n) for n € Z27.

jes -

Let J - {1,2,...,n} if J is finite and J == N if J infinity. The cardinality of J
is | in case one of the points chosen from X in Step 1 has a dense orbit. Let 7~ =

= p = @ p, and observe that p, (C*%(V(n))) acts on /2(E,}. It is convenient to con-
ket

sider two cases.

Case I. p = @ p,, i.e., J is a finite set. The faithfulness of p implies that
k=1

®

(0) = Kerp == (M Kerp, and by [9, Lemma 2.11.4], there is one k such that
k=1

Kerp, = (0). (To apply this lemma, we notice that the zero ideal of C*(V(n)) is
primitive because the identity representation of C*(V(n)) is irreducible.)

Case 2. J - = N. For each I = N we write p = p! @ p!%, where p! = @ p*.

kel

As before we see that either Ker (p’) = (0) or Ker (p/“) = (0). The following assertion
says that for each pair of diamonds that appear in {E,: k € N} there is a particular
£, such that both diamonds appear in £,. This will allow us to construct
an E such that the diamonds in E are exactly the diamonds that appear in
{E,: ke N}.

Assertion. For each pair of points p;, p;, with p,;e E;, p;e E;, and for each
neN there exists k and p;, p;€ E, such that Dfi(p,-) ~ .ka (p;)) and

E. E, ~

D,,"(pj) ~ D,,k(Pj)~

To prove the assertion, assume it is not true, i.e., assume that there exists a

pair i, j, p; € E;, p; € E;, and an n € N such that no E, exists so that Dfi(pi) ~
~ ka(ﬁi) and fo(pj) ~ ka(}}j). Let I be the set {/:there exists ¢, € E, with
Df'(q,) ~ Df"(p,.)}. Notice that i€ I and je I°. Let p and ¢ be the polynomials

given by Lemma 2.6 such that when evaluated in the generators of C*(U(n)) acting

on/*(E), p and q are 1 g, and | g. . Call P and @ the
{r;DE(r)~Dn'(pi)) (r:Df(r)—wD,,"(P,-)t‘

operators C*(V(n)) that are the polynomials p and q evaluated in V(g,), V*(e),
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s€{l,...,m}. Then p!(P) # 0 but p!(P) =0, and p/(Q) -= 0 but p/(Q) # 0
Consequently, neither p! nor p!* is faithful, contradicting the observation made
just before the assertion.

Now we construct an £ such that E; < E for all i € N and such that for any
given p € F and n € N there exists / € N and ¢ € E; such that Df(p) ~ D”E"(q). This
implies that C*(£) is algebraically equivalent to C*(® E)).

ieN
Let p; € E; be fixed for all j € J and let f: N — N be a surjective function such

that f~(n) is an infinite set for ail # € N. We shall write £ = {_J B,, where the sets
ieEN

B;’s satisfy the following properties.
n B - Dfi"i(h,.) — k.
) BnfkeZ" ki<l }=B_, for i>2
UI) For i <n, (ke Z": k <iand r;=ke B} - DIF0(p..)—p.

The points r; , #1; will be chosen inductively, as well as the radii /;’s and the indexes
j's. We shall ask also for {/;} to be increasing and I, > ir; + n for all pairs i, n
with i < n.

Let B, = fo(l)(l’ju,) —Prays e, i=f(1), ppyy=1Iy — 1 and I, = I.
Assume that we have, for i < n, B;’s satisfying I, II and III. By the assertion

. E.
there is a module Ej_ _,, containing points /,,, and g,,,, such that le"(h,,) ~
n
E. Efiye E.
~ D, Invith, 1), D,"f( ‘ 1)(pf(n+1)) ~ Dln’"+1(g,,+1). Choose 1,4y = 2(1, 41 — gnsal + 1)

E. ..
It we set B,y = D1”J+"1+1(hn+1) — hyyy and 1oy = g, — Iy, it is clear that

1, II and ILI are satisfied for i < n -+ 1.

The set E==|_) B; is a module that satisfies all the required properties. This
iEN

completes the proof of the last step of the theorem. 2

REMARK 4.5. Let A be a C*-algebra and let I be a primitive ideal. If the lemma

“if  o( 1, then { o I, for some #"* extends to the case when J is countable, then
nel
it would not be necessary to analyse two cases in Step 4 of Theorem 4.4. The next
example shows that the lemma is not true when J = N.
Let E; < E;,, be an strictly increasing sequence of Z%-modules. Let £ be
the least upper bound of {E;:i € N} for the preorder <. Since dE is not periodic,

C*(E) is irreducible. The representation n = @ n; from C*(E) onto C¥(@® E))
ieJ iel
is faithful, i.e., Ker m = (M Kerm; = (0), but {Kerm,} is a strictly decreasing chain
iel
of ideals.
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The foliowing coroliary will be fundamental for the problem of deciding
when C%(E) is G.C.R. for a given Z%-module.

COROLLARY 4.5. Let E be a Z2-module. Then the C*(E)is G.C.R. if and only
if every module F, F < E, has periodic boundary or K(/3(F)) = C*(F).

Proof. Assume that C*(£) is G.C.R., that F < E and dF is not periodic. By
Proposition 2.10, C*(F) is irreducible and, by Theorem 2.20, C*(F) is a quotient
of C*(E). Thus C*(F)is G.C.R. and K(7*(F))c C%(F). To prove the converse assume
that for each module F < E, G F is periodic or K(/3(F)) = C*(F), but C#(E) is not
G.C.R. . Then there exists a representation = of C*(E), on some Hilbert space H, such
that n(C*(£)) is irreducible but a(C*(E)) n K(H)=(0). Therefore I — n(U(e;)U%(e,)),
ie{l,2},are infinite-dimensional projections. By Theorem 4.4 n(C*(E)) is algebraically
equivalent to C*(F),for some Z?-module . By Theorem 2.20 F< E. Since K(Z3(F)) n
n C*(F)=(0), it follows, by hypothesis, that 0F is periodic. This implies that
=(C*(E)) is reducible. This contradiction completes the proof of the proposition.

5. WEIGHTED SHIFTS .

In this section we focus on Z%-modules. Our main objective is to determine
‘when, for a module E, C*(E) is G.C.R. . It turns out that each C*(E) has a natu-
rally associated family of weighted shifts that act on a subspace of /2(E). Theorem
5.8 asserts that C*(E) is G.C.R. if and only if each of its associated weighted shifts
is G.C.R. . Since, as we have already observed in the introduction, O’Donovan
determined when a weighted shift is G.C.R. {18], our theorem completely deter-
mines when C*(E) is G.C.R. . Along the way we present several results that show
that the relation between weighted shifts and the algebras C*(E) is very closed
indeed. In general, similar concepts can be found in both settings. For instance we
shall show that there are also universal shifts. Another example is that both G.C.R.
bilateral weighted shifts, with weight sequences bounded away from zero, and
G.C.R. C*(E) have representations that are periodic. This means, roughly, that
the weight sequence of a G.C.R. bilateral weighted shift is ““made up’’ of periodic
sequences. Likewise if C*(E) is G.C.R., then 0 is locally periodic.

DerINtTION 5.1. 1) Let 1. = [0,1] and let Q = X I, be endowed with the pro-
zeZ

duct topology. A word (a;, ..., a;+,) of (a;), (a;) € Q, is a finite sequence of conse-
cutive numbers in (a;).
2) For two sequences (a;) and (b;) we write (a;)<(b;) if and only if for every
word (a;, ..., a,4,) of (a;) and for every ¢ > 0 there exists a word of (b,), o, ...
- > bj41), with the same length, such that |a,,, — b;, | < eforse {0,1, ..., k}.
{Observe that < is a pre-order.)
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3) The sequence a=(a;) of Q contains a unique word (a;, ...,a;.,) i
k
there exists ¢ > 0 such that for every j, j # /. we have ¥V a;.,~a;., > &
s 8

4) As usual (a;} is periodic if there is an integer i such that a; == a,., for all ;

The definition of diagcnal spectrum for weighied shifts is in [18]. Here w.
express this concept in terms of the elements in Q.

DEFINITION 3.2, Let ¢ be the shift transformation acting on Q, i.e., ¥(a;) ~
= (a;_;),(a;) = a € Q. The diagonal spectrum of a,Q,, is defined to be the minim.’
closed set invariant under y and g ~! containing the element a.

REMARK 5.3. An equivalent definition is Q, = {be Q: b < al. Also we find
that b < a if and only if Q, = Q,. Since Q, is closed and @ is compact, the set 2,
1s also compact.

LemMa 5.4, Let e be av element of Q with the property that if b < e thex
either b contains a unique word or b is periodic. Then there exists ¢ < e such that ¢
is periodic.

Proof. Let F be the family {Q,:6 < e}, ordered by inclusion. Then F i,
non-empty because 2, € F: also, each set in F is non-empty. Applying Hausdorff’s
Maximality theorem, we find a maximal chain. This chain satisfies the finite inter-
section property and so the intersection, call it C, is not empty. Let ¢ € C and so
Q. = C. By maximality of the chain we see that Q_ == C. Assume ¢ is not periodic.
Then ¢ contains a unique word (¢;, ..., ¢;4;). Let ¢ be the shift transformation
acting on Q and consider the sequence {§"(c): n € N}. By compactness of 2, some
subsequence y"i(c) converges to d € Q.. Then c¢ ¢ Q, because the word (c;, ...

. .. €;4) cannot be approximated by a word in d (the unique word is shifted to infi-
nity). But Q, € F, contradicting the fact that the chain is maximal. Therefore we
find that ¢ is periodic and the cardinality of £, is the period of c. Z

Let (X, d) be a compact metric space, and let M be the set of closed subsets
of X. We recall that the Hausdorff metric d is defined on M by the formula

Q(A, B)=inf{e:Bc A, and 4 < B,},
where for a subset Y < X, Y, = {x:there exists ye Y with d(x, y) < €.
We regard Q as a metric space (2, d) with metric d(a.b)= Y, Ia,-—b,-l/ZM.
ieZ
It is known that the metric topology is equivalent to the product topology.

PROPOSITION 5.5. Let M be the set of closed subsets of Q and let d be the Haus-

dorff metric. Then the map f from (Q, d) into (M, (?) given by f(b) = Q, is not conti-
nuous, but for every b€ Q and for every ¢ > 0 there exists a 6, depending on b
and ¢; such, that if d(b, ¢) < 6 then Q, < (Q,),; i.¢., f is lower semicontinuous.
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Proof. To show that [ is not continuous it suffices to consider a € Q such that
svery word with rational numbers is in 4. It is clear that Qun =Q for all neZ;

tay

ond that there exists a subsequence {#;}< N such that g’/?‘{‘ - (0) or 1,9('”’;1 = (0).
To prove the szcond part suppose that & and € > 0 are fixed. Let n € N be

i € . . .
such that |y — < e Since theset {{b;, ..., by.s,) :k € Z} is dense in the com-
i -n

~actset {(@_,.....a,):a < b} there is an m € N such that {(b;.....b; 5,): —m <
ci<m—2n} ,=2a_,, ..., a)a < b} It is immediate to verify that if we
sgt & =2 (2% m - 3), then (Q.), o Q, whenever d(b, ¢j < 6. 2

The transformation ¥ is ergodic if Q is endowed with the product measure
whose factors are Lebesgue measure. By a result of Halmos [14, page 26], for almost
wvery a € Q, Q, = Q. A simple argument shows that fea e Q : Q = Q,} is a dense G,
subset of Q.

Assume that {e¢,:n € Z} is a fixed orthonormal basis of a Hilbert space .
Consider the set B consisting of the bilateral weighted shifts with weights in [0,1] and
with polar decomposition U Diag(a;), where Ue, = e, ., and Diag(a;)e, = a,e,, and
define a map ¢ from B onto Q by @(UDiag(a;)) = (g;). We define a measure v
en B induced by u (the product of Lebesgue measure on each factor of Q) and the
map ¢, by the formula v(¢~'(R)) == u(R) for all measurable subset R of Q. Then
we may say that almost every (with respect to v) bilateral weighted shift UDiag(a,)
has the property that Q) — Q. Likewise, for each finite set {7, ....7,} < [0,1],

nf

consider the set B(t,, ....1,):= {UDiag(a) € B:a; € {t,. ..., t,} for ieN and
o] co

Q, =X {t;, ..., 1,}}. Give X {f;..... 1,5 ~ p the measure y which is the product
—o0

of counting measure on each factor. Let n be the measure on B(7y, ..., r,) induced
by 7 and the map ¢, defined by the formuia 5(p ~'(R)) = y(R) for all measurable
subset R of B. Then we may say that the bilaterai weighted shifts ¥ with weights
i1 {t;. ..., 1,} have the property that almost all (with respect to n) satisfy Q) == .
{This is [18, Corollary of 2.4.1].)

Let S .= UDiag(e;) and 7 == UDiag(h;) be in B. In [18] is implicit the fol-
Towing observation (a direct proof of it could be given using arguments similar to
the ones used in Theorem 2.20). There exists a representation n from C*(7T) onto
C*(S) with n(T) = S if (a;) < (b))

The above comment implies the amusing result that there exists a universal
bilateral weighted shift 7 e B. (In the sense that for every bilateral weighted shift
R e B there exists a representation  from C*(T) onto C*(R) with n(T)= R.) More-
over, almost all bilateral weighted shifts are universal.

PropPosITION 5.6. 1) Let T be a G.C.R. weighted shift with positive weights

oounded away from zero. Then there exists a representation n of C*(T) such that
(T = (=(T*T))? = Diag(c;) with (¢} periodic.
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2) If E is a module such that C*(E) is G.C.R., then there exists a module F.
with F < E, and JF periodic.

Proof. 1) Let UDiag(a;) be the polar decomposition of S. it is known that
C*(S) is reducible if either some a; = 0 or (a;) is periodic. Let T = UDiag(b,)
and let (a;) < (d;). Since C*(T) is G.C.R. and C%(S) is a representation of C*(T})
either C*(S) is reducible (i.e., (a;) periodic) or K(H) = C%(S). In the last case, [18.
Theorem 2.5.1] asserts that (a;) has a unique word. But these are precisely the alter-
natives in the hypothesis of Lemma 5.4. Therefore there exists a periodic sequence
{cd), (¢;) < (b;). Thus C*(UDiag(c,)) is the required representation of C*(T).

2) It suffices to analyse the case when dE is described by (..., t_,.p, 1o, 1,,...)
with sup{r,: n € Z} < oco. Otherwise we can choose either Z, ¥ Z or Z X Z, as F.
We may assume that ¢, and r_, are non-zero, i.e., that p is a vertex. Let Q be the
family {F:p € OF and dF is described by {..., s_,, p, 5,, ...} with 5, and s_,
non-zero and supfs,:n € Z} < sup{s,:n € Z}}. Define a one-to-one function f
from Q into Q by f(F)=1,(2'%3"%-1) where J F is described by (..., s_,, p, Sy, ...).
The following facts are easily verified. :

i) From Proposition 2.10, it follows that C*(F) is reducible if and only if
(F) is periodic.

ii) From Lemma 2.17, it follows that K(/%(F)) € C*(F) if and only if f(F)
contains a unique word.

jiii) From Theorem 2.20, it follows that if F and G € Q, then G < F if and
only if f(G) < J(F).

iv) Qpp = {f(G):G < F}.

Let d € Q be (1/(2%3"27+1)), then since C*(E) is G.C.R.. we see that for every
(a;) € Q,, either (a;) is periodic or (a;) contains a unique word. Lemma 5.4 tells us
that there is a periodic (c;) € Q,. So f~' ((¢,)) < E and df~X((c;)) is periodic. %

Our next result shows that the converse of Proposition 5.6 is not true. Pro-
position 5.7 answers negatively Question 6 in [21].

PROPOSITION 5.7. Let F be a finite subset of (0,1). There is a sequence d € Q,
with d, € F for n € Z, which does not have a unique word but every b € Q, admits:
a c € Q, such that c is periodic.

Proof. 1t suffices to consider that F has only two elements, s and r. We will
construct 4 in an inductive way.

Step 1 is to define d, = 5. Assume that after the (2n — 1)-th step we have
defined a word / (centered at the O-slot) of length 327-2. The 2n-th step is to form
the word ///, i.e., we add the same word at both sides of /. Step 2n -+ 1 is to form the
word allla, where a = (t;, ..., 1,2,1) and 1 =1, for i€ {1, ..., 321},

With the even steps we guarantee that « does not contain a unique word.
We will show that ¢ = (¢,) with ¢, =t for all n satisfies the relation ¢ < b for
every b < d.
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Assume not, i.e., there exists & < & and k € N such that the word with length
k, (t, ..., 1), does not appear in b. Choose p € N with k < (2p~—1);27 and con-
sider the word of b equal to (b_,.....by. .. .. b,). Assume that the word constructed
in the i-th step is the first one such that (b_ . ..., b,) is a subword of it. If i=2n
then the word obtained in the i-th is /Il (where [ has been obtained in the 2n—1I-th
step).

Since the word /// has length 32°-1 we have that 2p — 1 <3*-!. Thus k<3%~4.
The word / has a subword (1, .. ., #) of length 32°-3_ and so / cannot be a subword
of (b_,, ..., b,). Therefore the word (b_,, ....b,) muststart in the first / and finish
in the second / or start in the second / and finish in the third one. (Here the order is
from left to right and the ““second’ /s in the center.) Since there isani € {—p,....0}
so that b; = s it follows that (b_,, ..., b,) contains a word (t, ..., 1) of length
327-3_ This contradiction shows that j must be an odd number 2a —+ 1.

The word (b_,, ....b,) must contain a word (¢, .... 1) of length 327-3. (Other-
wise (b_,, ..., b,)=(t,1,...,1).) Since 2p 1 < 32 it follows that k <32°-%,
This contradiction concludes the proof of the proposition. 7

We now associate to each module E with infinitely many vertices a family of
weighted shifts, bilateral or unilateral. These operators act on the Hilbert space
¢2(V), where V is the set of vertices in £ and the orthonormal basis associated with
cach shift is {e,:g € V}. Using Lemma 2.6 we can construct projections Q(», m)
C*(E), (n, m) € N2, such that Q(n, m)¢*(E) is the span of {e,: the segment [p, p-+
+ (n, —m)] contains only the vertices p and p -+ (n, —m)}. Then U*(me,)U(ne,)-
-Q(n, m)|£3(V) is a weighted shift with weights 0 or 1. To see this, let {eqi} =V
be an enumeration of the vertices when JFE is traversed in the positive sense.
We have that

(4
94y

U*(meg)U(ne )O(n, mye, = it O(n, meq, == ¢q;
: ! 0 otherwise.

Let p € OF be a vertex and let JE be described by (...,1_;, P, ty, 1, ...). Then
Q(n, m) is different from zero if and only if (n, m) = (t5, ts4,) for some k € Z.
Let {a,,, . (n, m) € N2} be a double sequence of positive numbers such that a,, ,, #

#a,, if (n,m)#(,s), and lim a, , =0. It is easy to verify that
T—= Y au Ut(me)U(ne)Q(n, m) belongs to C*(E). The operator T'/(*(V) is
(n, m)EN':

a weighted shift. (If the sequence that describes JE contains oo on the left, then
T|/3(V) is a forward shift. If co appears on the right, then T|/%(V) is a backward
shift. Otherwise 7|¢%(V) is a bilateral weighted shift.) Since we can choose the
sequence {a(,,,,,,):(n, m) € N2} in many different ways we talk about the family of
weighted shifts associated to the module E.
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THEOREM 5.8. Let E be a module with infinitely many vertices. Let R be a
weighted shift associated to E. Then:

1) CHE) & K(FAE)) = (0} if and only if CHR) ¢ K(£3(V)) == (0).
2) C*(E) is G.C.R. if and only if C*(R) is G.C.R. .

Proof. Let R-= Y. a,,U%me)U(ne,)Q(n, my £4(V) for some double

(n,myeN*

sequence {a,, .,: (n, m) e N?.
1) Assume first that R is a bilateral weighted shift. Let {g,: ke Z} be an
enumeration of the vertices of E and let #£ be described by (..., t_,. gp, %5, .. .).
Let UDiag(d;) be the polar decomposition of R (where UDiag(d;)e, = diey, .

and d, = aq, .+, ). The following facts are equivalent:

i) CH(E) n K(/AE))- - (0).

ii) ¢, has infinite multiplicity.

iii) There exists a sequence {n;:ie N} such that the segments of ¢F, [¢g_;, g,]
and [g.._i. gn..i), are a translate of each other for all i € N. (limn; may be either
+o0 (;r —oo’.)

V) limdk+,,i = d, ; in fact (/;;_-..,1‘, =d. ifiz kK + 1

v) CHR)NK(/V)) = (0}

The equivalence of i) and ii) follows from Lemma 2.17. The equivalence of
i) and 1ii) follows from the definition of infinite multiplicity. The equivalence of
iii) and iv) follows from inspection of the weight sequence. The equivalence of iv)
and v) is {18, Theorem 2.5.1].

If R is a unilateral weighted shift, then 0E is described by (co, gq, tos 135 -+ +)

(where the set of vertices is {g;:i€ Z.,}). We still can have the five equivalences
if we change iii) to iit') and iv) to iv') as follows.
iii") There exists a sequence {a;:i € N} with limn; :== +-co. such that the seg-

i-so0
ments of JF, [q, + ie,. ¢;] and [q,,l_ 4 g, q,,i...f]. are a translate of each other for
all ieN.
. i, if k=0,
iv') lim d, = {‘*

0 if k— —L

In fact d""”i =d, ifizk-—-1and &k 2 0.
The equivalence of iv') and v) is {18, Theorem 3.2.1]. (See the correct statement
in Appendix.) If R is the adjoint of a unilateral shift we argue in a similar way.
2) If C*(E) is G.C.R., then so is C*{R), since subalgebras of G.C.R. C*-alge-
bras are G.C.R. [9]. To prove the converse, assume that C*(E)is not G.C.R. . By
Corollary 4.5 there is a module F < E, such that C*(F) is irreducible and C*(F) n
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= K(/*(F)) = (0). The module F has infinitely many vertices (see Example 3.4.3).
Usmg the sequence {a, ,,: (n m) € N?} which defines R, form the weighted shift
R associated to F. Then C* (R) is irreducible and does not contain the underlying
compact operators. Thus C¥ (R) is not G.C.R.; and so, since C* (R) is a representa-
tion of C*(R), C*(R) is not G.C.R. . %

COROLLARY 5.9. Let the boundary of a module E be described by (..., t_,,

ty. ...) and let the boundary of a module E’ be described by (..., (t_,), p.f(t,),...)

where [ is a one to one function from N G {oc} into N U {00} with f(co)=oco. Then

CH(E) ~ K(¢¥(E)) = (0) if and only if C*E’) n K(/AE")) = (0); and C*(E) is
G.C.R. if and only if C*(E’) is G.C.R. .

Proof. If E and E’ have a finite number of vertices there is nothing to prove.
Otherwise we shall construct unitarily equivalent weighted shifts R and R’, asso-
ciated to E and E’ respectively. Use a suitable sequence {a, ,.: (1, m) € N?} to
define R. Let {a(; ;,:(i,]) € N2} be another suitable sequence such that a( ; () =
= @i m for all (n, m) e N2 (Observe that there could be (i,!)¢f(N)Xf(N).)
Let R’ be the weighted shift associated to E’ defined using a(’, ni(i, 1) e Nx N}
If (d) and (df) are the weight sequences of .R and R’ respectively then
di= g, 1, . a(f(r_k) Sty + N = dy.. By using Theorem 5.8 we complete the proof

DeriNITION 5.10. The boundaries of the modules E and E’ are a finite pertur-
bation of each other if thereexistp, g e 0Eandp’, ¢’ € 0E' such that p — C(n,, 0)c
c 0E, q + C(O m) < 0E, p' + C(n,, 0) < 9E' and q + - C(0, m;) < JE, where
lim {7 = lim !7;} = oo.

Notice that if 6F is a finite perturbation of dE’, there need not be an r e Z2
such that (E+ r \NE) U (E'\\E -+ r) is a finite set. It is evident that if AE is
periodic and JE’ is a non-trivial finite perturbation, then K(/2(E")) < C*(E").

ProrosiTION 5.11. Let E and E’ be modules such that OE' is a finite perturba-
tion of OE. Then:

1) C*(E) is G.C.R. if and only if C*(E') is G.C.R. . Moreover, the length
of the canonical composition series for C*(E) differs at most one from the length of
the composition series for C*(E").

2) If E is a universal module, so is E’.

3) It is possible for C*(E) to contain K({*(E)) while C*(E") n K({3E’)) = (0)
and C*(E") is irreducible. In particular C*(E) need not be isomorphic to C*(E").

Proof. Assume that C*(E) is G.C.R. and that neither 0 nor 0E’ is periodic.
Then by Proposition 2.10 C*(E) and C*(E’) are irreducible. Therefore K(£%(E))c
< C*(E); we shall prove that K(¢2(E")) = C*(E"). If not, Lemma 2.17 asserts that
every t € JE' has infinite multiplicity. Let p, g € 0E and p’, ¢’ € OE’ be such that

9 - 1305
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p -~ C(1;.0) < JE, p’ — C(A,. 0) = 9E", g = C(0, i) = dE and ¢’ - C(0, m,) =
< JE'. with lim ‘n; = lim #; = oc. Since p’ has infinite multiplicity, for each
n € N there is p(n) € 0E' with DE(p’) ~ DE(p(n)) and D,fl(p(ﬂ)) N JE’ is contained
in either p* -~ C(if,-,ﬁ) orqg —C (f)—, m;) for some i sufficiently large. Consequently
Dﬁg(p(n)) is equivalent to DZ(p) for some p e JE, so E' < E. By Theorem 2.20 C*(E")
is a representation of the G.C.R. algebra C*(E). This is a contradiction and hencs
K(£X(E'))= C*(E’). We will show that C*(E) K(/*(E))is isomorphic to C*(E') K(¢*(E")):
and so the canonical composition series of C*(E) and C*(E’) have the same length.
Let B(B’) be the groupoid corresponding to C*(E)(C*(E’)). By Lemma 3.3 E(E’')
may be seen as an open set of the unit space X (X’). The groupoids (8.X \ E, ;) and
(B':X'\\E', /) are topologically isomorphic in the sense of [17, 2.9], where the
Haar systems Z; and /, are {}{ is counting measure on {(x, n)€ X" \E}: x € X\ E}
and {/§ is counting measure on {(x,n) € ' X'\ E'}: x € X'~ E'}. First we define
a homeomorphism ¢ from X\ Eonto X' E’. Let x = lims, € X\ E, with {s,} c F
and sst

lims, + p' — p  if the first coordinate of s, goes to —oc»

e or the second one goes to oo,

() =
lims, -+ ¢" —- ¢ if the first coordinate of s, goes to co,
noee or the second one goes to --oco.

Since ¢ is equivariant (@(x + n) == @(x)+n and @y -+ n) = @-Yp) + n),
we can extend ¢ to an algebraic isomorphism of BIX ™\ E onto §'|X’\ £’ which is
a homeomorphism carrying iy to ¢4, By [17, Proposition 2.15], {20, Chapter II,
Proposition 4.4] and Lemma 2.17, the ideal K(£2(E)) is isomorphic to C*(B|E),
K(£¥(E")) is isomorphic to C*(8"E"), C*(E)|K(/¥E)) is isomorphic to C*(BiX\ E)
and C*(E")K({¥(E")) is isomorphic to C*(f'iX'\ E"). By {17, Proposition 2.10] we
see that C*(E)|K(¢%(E)) and C*(E")|K(¢%(E")) are isomorphic. Tofinish Part 1) we ob-
serve that if OF is periodic and £ is a non-trivial perturbation of 0E, then the length
of the canonical composition series of C*(F) and C*(E’) is 2 and 3, respectively

Parts 2) and 3) are easily verified. %

If OE and OF’ are finite perturbation of the boundary of Z2%, then in [3] it
was shown that C*(E) and C*(E") are spatially isomorphic.

6. CONCLUDING REMARKS
Let E be a Z7-module.
1) It would be desirable to have a version of Cerollary 4.5 in the general case.

CONJECTURE. C*(E) is G.C.R. if and only if for each F<E either K({*(F))
< C*(F) or C*(F) is reducible and a G.C.R. algebra.



SENMIGRCUPS OF ISOMETRIES

2
>
L]

2) What 1s the structure of a C¥-algebra generated by non-commutative weight-
ed shifts 7y, ..., T, € L(/YE)), where the polar decomposition of T; is U{e;)D,?
This might be useful in an extension of Theorem 5.8. In the appendix we charac-
terize those algebras that contain K(/%(E)).

3) When C*#(F) and C*#(E') are spatially isomorphic? When C*(Ej and C*(E’)
are isomorphic as C*-aigebras?

Let C*(E) and C*(E’) be algebraically isomorphic. If C*(E)is G.C.R. then
the canonical map implements a spatial isomorphism. This is simply because E’ is
2 translate of E.

4) Let G be a locally compact abelian group and let G. be a subsemigroup
of G that is the closure of its interior and satisfies G, — G, == G. A module over
G . is a closed subset £ < G such that £-- G, < £. It follows that E has positive

Haar measure and so w2 may form L%(E). For f'e LY(G) define the operator U(f)
by the formula

U &Gs) - Sf(t)t.’(s — D)lls — 1yds

G

-

for &€ L*G). s € E. These operators might be called generalized Wiener Hopf
operators (see {17]). In a subsequent paper we plan to investigate the C*-algebra
generated by {U(f): f € LNG)}.

7. APPENDIX

Here we present our proofs of the O’Donovan’s theorems that determine when
the ideal of compact operators are contained in the C#*-algebra generated by a
weighted shift. (There is a minor error in his original statement in the case of unila-
teral weighted shifts.) The method used also applies in a more general context.

THeorREM. [I8, Theoremn 2.5.11. Ler V = UDiag(d,) € ¥(H) be a bilateral
weighted shift with d, > @ for allk € Z. Then C*(V) n K(H) = (0) if and only if
there exists n; — -+ co with d"i+k —d,, for all ke Z.

Proof. Assume that n; — oo satisfy the hypothesis. That is, for each word
(dos s dy)sthe im(domsn, - . o5 duyn)existsandis (d-,, ..., d,,). Let {e,:keZ}

be the {'orthonorm‘al basis such that Diag(d,)e, = die, and let H, be the sub-
space spanned by {e,: lk| < n}. The first ingredient of the proof is that given a
polynomial p(V, V*) in V and V¥, its action on each H, can be approximated as
closely as we want by U™ p(V, V*)U" if n, is large enough. The second ingredient
is that for a compact operator F the lim IFIH} || is zero. Assume that there is a

=00
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compact Fin C*(V) with F = 1. Let ¢ be positive and let p(V, ¥*)bea polynomial
so that ;p(V, V%) — F <& Let fe H, be a unit vector with p(V. V*)f >
> 'p(V, V®) —e. Let [ € N be such that F Hj < & Choose n; that satisfies

“p(V, VU = p(V, V¥)f —e¢ and n; > 2 max{/, n = degree p).
Then
g2 (p(V,V)—F)U"if. > p(V, VU f — FU"f >
> tp(V, Vi — 262 p(V, V) —3e > 1 — 4.

This is a contradiction since ¢ is arbitrary.
For the converse we use the contrapositive to obtain a finite rank operator in
C*(V). Assume that the conclusion is not valid, i.e., that (d,) contains a unique

2m 2m }
s

H d—m+s - H dH-s
50 5s=0

then & > 0. Consider the diagonal operators V* with ke {l,..., 2m -+ 15.
Take continuous real functions {fi:ke{l,...,2m +1}} with range [0, 1],

k-1 k-1 k-1
AT dpis) = 1, suppfi < [T s =0 T s+ > and 7o) =o. (rhis
s=0 5s=0 s=0

last condition is necessary if the weight sequence is not bounded away of zero.)

word (d_, .-, dy). If & is inf max {.d,,, —d, ...,

{£-m

2m+1

Let R= Y 1.(V%). Then R € C*(V) since f; is the uniform limit of polynomials
fram
with constant terms equal to zero. Furthermore R is diagonal and (Re_,,, e_,) =

—2m <1 while 0 < {(Re;, e;> < 2mfor I[#m. If gis a continuous increasing
positive function with g(2m) = 0 and g(2m + 1) =1 then g(R) is the projection
onto the span of {e_,}. Since g(0) = 0 we obtain again that g(R) € C*(V). This is
a contradiction since we have assumed that there is a non-zero compact operator
in C*(V). %,

THEOREM. [18, Theorem 3.2.1). Let V = UDiag(d,) € £(H) be a unilateral
weighted shift with d, > 0 for all k € Z.. Then: Cx(¥V) n K(H) = (0) if and only
if there exists n; — o0 with d"i+k —d,, forallkeZ.,, and d",-‘l — 0.

Proof. If the condition on (d,) is satisfied, then we can prove that there is no
non-zero compact operator in C¥(V) just by copying the argument in the bilateral
case. The converse is also very similar, the only variant is the necessity of using

|V

With the same arguments we can prove the following two propositions. In
general the weighted shifts are not commutative. The weights are always positive.

PropoSITION 7.1. Let E be a Z7-module and let {T; € Z(¢¥(E)): i€ {1, .. .;i;z}}
be weighted shifts with polar decomposition T; = U(g;)D;, D;e, = a, ;e, for all
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neE Let CHTy,....T,) be the C*-algebra generated by {T;:ie {1, ..., m}}.
Thein: CHTy, ..., T, )0 K(/E)) = (0) if and onlv if for each p € E, k € N, and
e > O there exists an | € E, | # p such that

1) Gpen; — @iy <e if p—n, I =-nek and n <Kk,

2) ay.y; <e if p—né¢E but l—n, p+~n-¢gek and n <k

ProposiTiON 7.2, Ler {T;, i‘,- € LHL™):ie{l,...,m}; be weighted
shifts with polar decomposition T, = U(e))D, and T, = U(g;))D;, where Die,—=

= a, ¢, and De,= a, e, for n € Z"™. The map T; —» T, extends to a representation

!

from C¥(Ty, ..., T,)onto Ty, ..., f’m) if and only if for each qe Z™, ke N

and ¢ > 0 there exists a p € 2™ such that a,.,; — G,.,; < € for all n' < k.

We were interested in extending [18, Theorem 2.1.1] to our setting. Thus
we have the following simple and very general proposition.

PROPOSITION 7.3. Let Ac #(H) and let {e;:ie I} be an orthonormal basis
for H. Assume that the C*-algebra generated by A is irreducible. If {f;: i € I} is another
orthonormal basis for H such that for every T € A the matrices of T with respect
ofle;riel}and {f;:iel} are equal, then f, = ) e for all i € I, where /. is complex
number of absolute value 1.

Proof. 1t is clear that for every S in 8, the =-algebra generated by A, the
matrices of S with respect to {e;} and {f;} are the same. Let S, € f be a net that
converges weakly toe, ® e,,. ((¢, ® e,)x = {x, ¢, e, for all x € H.) 1t is immediate
that §, also converges weakly to f, ® f,,, and so the conclusion holds. %

CoRrOLLARY 7.4. 1) Let T € £(H) and let {e,: n € N} be an orthonormal basis
Sfor H. If T is irreducible then the only bases for which T have the same matrix that
T has with respect to {e,:n € Z} are {’e,:n € 1}, |}| = 1. In particular, if T is an
irreducible shift this was obtained in [18, Theorem 2.1.1].

2) Let E be a Z{-module. If OF is not periodic then the basis {e,:p € E} is
the only one for which Ule;), i€ {l,...,m}, have these shift form.
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