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MATRIX PAVINGS AND LAURENT OPERATORS

H. HALPERN, V. KAFTAL, G. WEISS

{. INTRODUCTION

Let D < B(H) be the algebra of diagonal operators relative to a fixed basis
of a Hilbert space H, then a long standing open question is whether the following
equivalent properties hold [1,2,3,9, 10, 11].

The extension property . every pure state of D has a unique extension to a pure
state of B(H). '

The relative Dixmier property: for every x € B(H) the set K(x) = co{wxw* |
|we D, w unitary} has nonempty intersection with D.

" The paving property : for every x € B(H) and ¢ > 0, there is a diagonal decom-
position of the identity (a decomposition of the identity into finitely many mutually
orthogonal diagonal projections p(j)) such that ||p(j}(x — E(x))p(j)|l < & for every
J, where E(x) denotes the diagonal of x.

The relative Dixmier property can be formulated in the more general setting
of the embedding of two C*-algebras A = B and was first proven to hold true by J.
Dixmier for the case that 4 = B is a von Neumann algebra [5]. We study this
property further in [8, 9, 10]. {

In this paper we investigate a related problem: if {u,,t€[0,1)} is the one
parameter group of diagonal unitaries that implements the dual action in the
decomposition of B(H) as the crossed product of D by Z, [4, 10, 13] and if
Ky(x) +: co{uxu} |t € Qni0,1)}, then for which x € B(H) does Ky(x) have a
nonempty intersection with D? We call such an x uniformly paveable because of its
characterization obtained in terms of “‘uniform decompositions of the identity”,
i.e. decompositions of the identity into diagonal projections which correspond to
infinite arithmetic progressions under the natural identification of diagonal pro-
Jections with subsets of the integers (Definition 2.1).

It is well known that K(x) 0 D+ @iff E(x) € K(x), so the distance a(x) (resp.
a(x)) from E(x) to K(x) (resp. to Ky(x)) can be seen as a modulus of paveability
{resp. uniform paveability). We express « and & in terms of decompositions of the
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identity (resp. uniform decompositions of the identity) and in terms of U(D)-inva-
riant (resp. {w, , 1€ Q n[0, 1)}-invariant) functionals (Proposition 2.3).

It was shown in |11, Theorem 2] that the class . of Laurent operators, i.e. the
operators L, of multiplication by functions ¢ in L=(0, 1) acting on L*Q0, 1), does not
have the extension property with respect to B(H). This was achieved by considering
a type of “‘uniform’ decompositions of the identity into Laurent projections and
by constructing a suitable diagonal operator for a counterexample. Thus in the
context of uniform paveability (with respect to D) it is of particular interest (o
study .&.

In §3 we reduce uniform paveability for % to an ergodic property in L*(0. 1)
(Proposition 3.5), and we prove the existence of Laurent operators that arc not
uniformly paveable (Theorem 3.6). -

In §4 we find an upper bound for the modulus of uniform paveability %(1.,)
of a Laurent operator L, in terms of the upper and lower Riemann integrals of ¢,
As a consequence, we obtain that all Laurent operators with symbol in the C*-subal-
gebra of £°(0,1) of Riemann integrable functions are uniformly paveable und
hence are paveable.

Conversely, in Theorem 4.5 we show that a(L,):: 1 — m(V) if ¢ is the
characteristic function of an open dense subset V' of (0,1), hence L, is not uniformly
paveable when 1 -—m{V) > 0.

In Theorem 5.4 we strengthen this result by showing that if V' is an open
dense set with m(¥V) € | — m(V'), then for every diagonal projection p “‘containing’”
an infinite arithmetic progression, we have that ‘Ip(L, — E(L,))p =1 -- m(V).

Moreover, for every such ¥ and 0 < f < 1, there is an integer valued function
fan, B) such that ||p(L, — E(L,)pii > B(1 — m(V)) for every diagonal projection
p which ‘“‘contains’ a f-sufficiently long arithmetic progression, (i.e. an arithmetic
progression of difference n and length at least f(#, §)).

The function f{n, i) is related to the rate of /%-convergencc of the Fourier
coefficients of L°°(0, 1) functions. In Propositions 5.5, 5.6 we compute an upper .znd
a lower bound for f(n, B) (for certain values of ) in terms of the geometry of the
set V. .

These results relate also to the paving problem. The fact that ||p(L,— E(L,)p >
> B(I — m(V)) for the large class of diagonal projections p containing f-sufficiently
long arithmetic progressions, makes L, a natural candidate for a nonpaveable opcr-
ator.

An analysis of the decompositions of the identity containing projections of
this class pertains to combinatorics. The van der Waerden theorem [6, Theorem 2.1]
guarantees that for every finite coloring of the integers (or equivalently, for every
diagonal decomposition of the identity), there are arbitrarily long monochromatic
arithmetic progressions. However, little is known about the connection betwcen
the length r of each such arithmetic progressions and its difference ».
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Thus our results lead to an interplay between combinatorics, operator theory
and Fourier analysis that might shed some light on the paving problem.

2. PRELIMINARY RESULTS

Let H be a separable Hilbert space with basis {1, | k € Z}, let D < B(H) be
the algebra of diagonal operators relative to this basis and let E:B(H) - D be the
canonical faithful normal conditional expectation onto D (“taking the main diago-
nal”). Denote by U(D) the group of the unitary diagonal operators. For every
X € B(H), let K(x) be the norm closure of the convex hull of the diagonal unitary
orbit of x. Tn symbols, '

K(x) = co{wxw* | we U(D)}.

We say that a finite collection {p(j)|j=:1,2, ..., n} of mutually orthogonal

projections p(j) € D for which ﬁ p(j) = lisadiagonal decomposition of the identity.
o1

If furthermore p(j) is the projection on the closure of span{n |k =j + mn,
m e Z}, we call {p(j)} a uniform decomposition of the identity or, more precisely,
the n-uniform decomposition of the identity.

Under the natural identification of diagonal projections and subsets of Z,
an a-uniform decomposition of the identity corresponds to a disjoint partition of
Z (a coloring, in the language of combinatorics) in # infinite arithmetic progressions
with the same difference n. By Remark 2.2 we shall see that there is no gain in
gencrality in considering all the partitions of Z into infinite arithmetic progressions
with arbitrary differences.

DerintTiON 2.1, Let x € B(H), then we define

{

u(x) = inf{ f 3 p()x — EG() | | {p()} is & diagonal
Jj=1 |

decomposition of the identity} s

;z U)o — EC()

'
'

a(x) —= inf{ ‘l

[{p(j)} is a uniform

decomposition of the idenlity} .

If a(x) = 0 (resp. a(x) = 0) we say that x is paveable (resp. uniformly paveable).
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REMARK 2.2, Tt is easy to verify that a(x) coincides with the infimum of

] Y p(j)(x - - E(x))p(j) over the collection of all the diagonal decompositions of
ljs1 i
the identity {p(j)} such that

p(j)H - -span{n, 'k - a; + mn;,me Z} for some a;, n; € N.

In other words, to consider all decompositions of the identity into diagonal! pro-
jections that “‘are infinite arithmetic progressions’ or to consider only uniform
decompositions of the identity is equivalent for computing &.

By the norm continuity of E, it is clear that K(x)nD # @ iff K(x) 2D ==
= [E(x)} iff E(x)e K(x). From {10, Lemma 2.2 and proof of Proposition 2.3]
we see that a(x) is the distance from E(x) (or, equivalently, from D) to the set
K(x).

By the same reasoning and by Lemma 3.1, a(x) is the distance from E(x) to the
norm closed convex set Ky(x) == co{uxuf [ 1€ Qn [0, 1)}, where {u, | € Q (0, 1}
is a rational subgroup of U(D) which will be discussed in the next section.

More generally, for every subgroup G of U(D), define for all x € B(H)

Kg(x) = coluxu™ |ue G},
ag(x) = inf{ly — E(x)] |y € Kg(x)}.

The distance ag(x) can be characterized in terms of G-invariant functionals, where
afunctional f'is said to be G-invariant if f(uxu™) = f(x) for all u € G and x € B(H)
ef. 11, 3).

PROPOSITION 2.3. For every x € B(H) we have
ag(x) == sup{if(x - E(x)) | f€ (B(H)*), and [ is G-invariant).

Proof. Without loss of generality, we can assume that E(x) :=: 0. Since
continuous G-invariant functionals are constant on each set K;(x), we have

sup{|f(x)| | f€ (B(H)*),,f is G-invariant} =
= inf{sup{! f(»)! | f € (B(H)*). [ is G-invariant} |y € Ks(x)} <
< inf{llyll |y € Ko(x)} = ag(x).

Thus if x(x) == 0 we are done. Assume not and let 0 < ¢ < ag(x). Let B be the
open ball of B(H) with radius ag(x) — ¢, then by the Hahn-Banach theorem there
isac e Randa ¢ € B(H)*such thatforall z € B andy € K;(x), we have Re(¢(z)) <
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< ¢ < Relo(y) < lo()]. Since sup{Re(v(2) |z € B} = |oll(@s(x) — &) < ¢, we
have that y = ¢/|lel| € (B(H)*), and [Y()| = ag(x) — & for every y € Kg(x). Let
F::co{yoadu |u € G} where the closure is in the weak*-topology of B(H)*;
then for all fe F we have |f(x)| > ag(x) — &. By the Alaoglu-Bourbaki theorem,
F is a weak*-compact convex subset of (B(H)*),. For every u € G, the map T,:
B(H)* — B(H)*, given by T,(f) = foadu is a weak®-continuous linear contraction
that maps F onto F. Since G is abelian, all the maps T, commute and thus, by
the Markov-Kakutani fixed point theorem, there is an f'€ F which is fixed under
all T, or, in other words, is G-invariant. Thus f € (B(H)*), is a G-invariant functional
for which [f(x)| = ag(x) — ¢. Since ¢ was arbitrary, we obtain the thesis. Q.E.D.

‘REMARK 2.4. a) By using the same ideas as in [3, Proof of Theorem 2.4,
(i) = (iii)} we can show that .
ag(x) < 4 sup{|f(x — E(x))| | fis a G-invariant state of B(H)}.
If x = x* (resp. x = 0), instead of 4 we can substitute 2 (resp. 1) in the above
inequality.
b) As a consequence of a), E(x) € Kg(x) iff f(x) == f(E(x)) for all G-invariant
states f of B(H) cf. [3, Theorem 2.4)].

Let us denote by A the abelian C*-subalgebra of D generated by G. It is easy
to see that a continuous functional f of B(H) (and in particular a state) is G-inva-
riant iff for all x € B(H) we have f(ax) =: f(xa) for all & in the span of G and hence
for all a € A4, iff f(uxu®) = f(x) for all unitary u € U(A), i.e. Hff f is U(A)-invariant
cf. [3, §2]. Thus we have:

COROLLARY 2.5, Let G be a subgroup of U(D) and let A be the abelian C*-subal-
gebra of D generated by G, then oy 4(x) = 25(x) for every x € B(H).

In particular, Ky(4(x) n D # @iff Ko(x) n D # @. Notice that unless A -= D,
i.e. A is maximal abelian, an application of the Stone-Weierstrass theorem shows
that A cannot have the extension property relative to B(H) [11, § 1]. This is equivalent
to the existence of an operator x € B(H) for which Ko(x)nD = @.

Let us return to the case when G is U(D) or {u, | te Qnio, 1}. Clearly,
o(x) € &(x) for all x € B(H). We have studied in [10, Proposition 2.4, Corollary
2.5], the class N of the paveable operators and we have seen that N is a selfad-
joint Banach space and a two sided D-module cf. [I1, Remark 6].

The same proof, with only minor modifications, shows that the class NcnN
of the uniformly paveable operators is also a selfadjoint Banach space and a two
sided D-module. Thus we have:

PROPOSITION 2.6. Let u € B(H) be the bilateral shift, then the C*-algebra gener-

ated by D and u is contained in N. In particular, every compact operator is uniformly
paveable.
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Proof. Let ne N and let {p(j) , Jj=1,...,n+ 1} be the (n + 1)-uniform
decomposition of the identity. It is easy to verify that p(j)u"p(j)=: 0 for all j and
hence &(u"): - 0. Thus " € N and hence au" € N for all a,€eDand ne Z as N is
a scifadjoint D-module. But linear combinations of q,u” are dense in the C*-algebra

generated by D and v and N is a Banach space. Q.E.D.

In [10, Proposition 5.6] we have seen that the C*-algebra generated by D and
u is a proper subalgebra of the C*-algebra generated by D and the permutation
matrices. By [10, Theorem 4.1] (cf. [11, Theorem 5]) the elements of this latter C*-al-
gebra are all paveable. Moreover all the matrices having only 0 and 1 entries, but
with at most one 1 per row and column, are also paveable, i.e. are in N [9, Proposi-

tion 3.4]. It is natural to ask whether they are also in M.
The following is a counterexample, which shows at the same time that N # N.

ExampLE 2.7. Let x € B(H) be the matrix with 1 in the (i, 2/) position for all
ie€Z and O elsewhere. Let {p(}) |j =1, ...,n} be the uniform n-decomposition
of the identity, then we have p(j)xp(j) = 0 for all j +# n but [p(n)xp(n),. - - 1. Thus

" on

W EE E(x))p(j)K == ] for all #n and hence a(x) == I.
i

It is however quite non-trivial to show that there are Laurent (or equiva-
lently, Toeplitz) operators that are not uniformly paveable. This will be the task
of Theorem 3.6 and of Theorem 4.5.

The following lemma will be used in §4.

Lrmma 2.8 (The .Squeeze Principle). Let xy, Xo and v be selfadjoint operators
such that x, < y < x5. Then
a) a(y) < max{a(xy) + [[E(x; = )i, 2xp) + [ECr — I

<
b) &(1) < max{a(x,) + [ ECx, — ) L 4(xg) + L E(xp — M)}

Proof. We shall prove b). The proof of a) is essentially identicai. Let s > 0,
let {p(j)ij= 1,2,....m),i:~1,2 be two uniform decompositions of the identity
such that

; Z, PiliNx; - - E(x)pi(j) . < a(xp) + e for i -1,2.
S je1 .

Let {p(}) |j =1,2,....n} be the n-uniform decomposition of the identity which
is the refinement of the two partitions, i.e. p(j) - : p,(k)py(m) for some k, m and
where # is the least common multiple of i1, and n,. Then it is easy to verify that

%, P~ EC(): < () + e fori- 1,2

ciTa .
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Let
a= Y r(HO — EGp(),

J

then E(x;) < E(») < E(x,) and

j=1

a <Y, PG — EOW() = ¥, P(j)xe = EGE() + Elxy —3) €

d

Similarly

'S: PO — ECop() “ + 11 ECey — 7) n)l < (@xp) + & + [ EGxy — ML

=1

—r

a3 ¥ p()x — EG)PU) + Ery — 3) > — @) + ¢ + || vy — D IDL.

/=1
These two inequalities give
llall < max{&(x,) + [|ECGx — W, &(x) + | E(xy — I} + &

Since %(») < |la|| and ¢ is arbitrary, we obtain the thesis. ' Q.E.D.

We leave the proof of the following lemma to the reader. An analogous ver-
sion holds for o.

LemMA 2.9. a) a(x + ») < a(x) + a&(y) for every x,y € B(H).
b) &(x + y) = &(x) for every x € B(H) and y € N.
In particular a(x) = a(1 — x).

3. UNIFORM PAVEABILITY AND LAURENT OPERATORS

Let us identify H with L0, 1) and {n,} with {exp2niks}. Then a Laurent
operator L, € B(H) is the operator of multiplication by the function ¢ € L*(0, 1)
acting on L0, 1).

The algebra . of the Laurent operators is the von Neumann algebra (masa)
generated by the bilateral shift ¥ on H. The map L: ¢ — L, from L=(0, 1) onto &
is an isomorphism of von Neumann algebras and hence an isometry, ie. ||L,|| =
= [|¢lle for all @ € L=, 1).

The matricial representation of L, relative to the basis {,} is given by (L), ;=

= ¢(i —J), where @(m) =\ o(t)exp(— 2mims)dt [7, Problem 241]. Thus E(L,) =

Sl ™ 3

= @(0) and @(m)I = E(L,u~™). Equivalently, L, = Y @(m)u™ where the series

m=—oo

11 - 2321
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converges in the Bures topology [12]. Recall that B(H) can be identified with the
crossed product of D by the action 0 = adw of Z. Then the dual action 0 of
the dual of Z, which we identify here with the interval [0, 1), is given by ()A, = adu,,
where u, —: d*" has for its generator the (unbounded) diagonal operator d
defined by dn, = expl-- k)n, . In other words, un, — exp(— 2nikt)y, for all k € Z

[4, Part T, §4]. In particular, (f,(a) g for all a€ D, (IA,(u) = exp(- 2mit ) and

1
E(x) - Sé,(.\') dr for all x € B(H) (where the convergence of this integral is in the
U

g-weak topology). The action f has been further studied in this context in
a general setting in [10].

The connection between the dual action ?), (or equivalently between the unitary
operators u,) for 7 rational and the uniform decompositions of the identity is given
by the following lemma, which strengthens {10, Lemma 2]; see also [3, remarks
after Corollary 2.3]. ‘

Lemma 3.1, Let {p(j)] J=1,...,n} be the n-uniform decomposition of the

identity, then (1/n) Y, Uy XUy, Z p(xp(j) for every x € B(H).
K1 I

n

Proof. Tt is easy to verify that u,, — Y exp(— 2xij/mp(j). Thus

Jot

(1/n) Z Ui, = (1/n) Z Z Z exp(— 2ri(m — jYk/n)p(m)xp(j) —

~1m=1jol

Z Z (1/n) Z exp(— 2mi(m — jk/n)p(m)xp(j) = Z PGIxp),

m—:1 j.=1 j=1
n
since Y’ exp(— 2ni(m — j)k/n) = 0 unless (n1 -~ j)/n € Z, i.e. unless m =~ j. Q.E.D.
K1

‘The C*-algebra B(H), of the continuous elements relative to 0 N4, 7.5} (i.e.
the elements x for which t-»b,(x) is norm continuous) coincides with the
C*-algebra generated by D and by the bilateral shift « [10, 13]. The algebra B(H). n &
is then precisely the algebra of Laurent operators with continuous symbol
[10, Section 5]. Thus B(H).n & < N by Proposition 2.6.

The action § operates on L, as a translation on the symbol ¢. Indeed
extend by periodicity all the functions on (0, 1) to functions on R with period 1
and thus embed L*(0, 1) in.L*(R). Denote by A(s) the translation by s on L®(R)
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{and hence on L*(0, 1)), i.c. (As)p)(t) = @(t — s) for almost all +€ R. Then we
have:

LeMMA 3.2. O(L,) = Ly, for all ¢ € L2(0,1) and s € (0,1).

Proof. Rcasoning in parvt as in the proof of [10, Lemma 4.4] we have
for all meZ: o

E@L)u=) — E@(L,exp(— 2nimsyu=")) = cxp(— 2mims)E(L,u~") =
= exp(— 2rims)e(m)I = (A(s)p) " (m)I = E(L,5ou™™),
where we have used the fact that £ = E oés for ali s. Q.E.D.

Let Q, == (1/n) Y, A(j/n), then it is easy to verify that @, is a fait_hful normal

Jj=1
conditional cxpectation of L0, 1) onto the algebra of (1/n)-periodic functions
of L*(0,1).

The following proposition shows that the paving of a Laurent operator

induced by a uniform decomposition of the identity corresponds to the Q, averaging
process for the symbol.

PROPOSITION 3.3. Let {p(j)|j=1,...,n} be the n-uniform decomposition of

the identity and let ¢ € L*(0, 1), then Y, PULp(j) = Lgnw.

i=1
Proof.
Y pDLp () = (1) Y, sl = "~ (Lemma 3.1)
J=1 J=1
= (1)) ¥ 0,(Ly) = (1)) Y, Lime = Loo. (Lemma 3.2)
ji=1 Jel

Q.E.D.

We shall necd the following characterization of Q,. We leave the proof to
the reader. :

LeMMA 3.4, For every ¢ € L*(0,1) and n€ N we have that

Qo)™ (k) = o(k)y if n divides k
i 0  if n does not divide k.
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It is easy to verify that K(L,) = co{wL,w* | w € U(D)} = £ iff ¢ is constant
a.e.. However, by Lemma 3.2, for every ¢ € L*(0, 1) we have that col{u,L u} |
jt€(, 1)} £ In particular

Ko(L,) = co{u,Lu} |te Qn[0,1)} = &.
Let us define for all ¢ € L=(0, 1)

Ko(p) = co{M)e | 1€ Q [0, D},

where the closure is in the L®-norm.

The operator L: ¢ — L, maps Ky(¢) onto Ky(L,) and hence Ky(¢) N CI onto
KoL) nCI=K(L,)nD. Thus 9(0)! € K(p) iff E(L,)€ K,(L,). From Propo-
sition 3.3 we have

| » " A A .
! Y p(ILy — E(LNp() = Lo o — @O = [|Qup — 9(0)] .
i1 M

]
Thus we obtain:

ProrosiTION 3.5. For every ¢ € L*0,1) we have
a) &(L,) =0 iff Ky(p)nCI # O;
b) «(L,) = inf{|Q,0 — ¢(0)l{lco -

- This reduces uniform paveability of Laurent operators to an ergodic property
of L=(0,1). We deal with it in the following theorem.

THEOREM 3.6. There is a ¢ € L=(0, 1) such that a(L,) # 0.

Proof. Consider the group Ur= {i(s)|7€[0,1)} and its subgroup
Ug=={i(t) | t € [0, 1) n Q}. By [15, Corollary 22.4], there are two distinct Ug-invariant
means on L*®(0, 1), i.e. two states y; and u, on L*(0, 1) which are invariant under
all the elements of Ugr and hence under all the elements of Ug. Therefore there is
an element ¢ € L=(0, 1) such that u,(¢) # ps(¢). Then for every ¢ € Ky(p) we
have u, () = u(p), i = 1, 2. Thus &(L,) # 0 since otherwise, by Proposition 3.5 a),
@(0)I € K,(p), which yields the contradiction:

(@) = (@O = ¢(0) = u[GOM) = ps(p).
Q.E.D.

REMARK 3.7. a) We have actually proven that there is a ¢ € L®(0, 1) such

that
co{it)p |te(0,)}nCI=@.

Thus by Corollary 2.5, E(L,) ¢ co{uL u* |ue A} where A is the C*-subalgebra
of D generated by {u, |t € [0, 1)}.
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b) Note that this argument is nonconstructive and it does not yield an evalua-
tion of a(L,).

4. THE MODULUS OF UNIFORM PAVEABILITY OF LAURENT OPERATORS

In the previous section we have seen in Theorem 3.6 (see also Remark 3.7)
that there exist Laurent operators that are not uniformly paveable. In this section
we shall provide concrete examples of Laurent projections that are not uniformly
paveable and evaluate their modulus of uniform paveability «.

Firstly, we can obtain an upper bound for &(L,) for a selfadjoint Laurent
operator L, in terms of the upper and lower Riemann integrals of its symbol ¢.

Let M=(0,1) be the algebra of real-valued everywhere bounded Lebesgue

1

measurable functions on (0, 1) and let £ € M*(0, 1), then we denote by Rf, RY, Sfdt

. 0
the upper and lower Riemann integrals and the Lebesguc integral of f over (0, 1)
respectively.

PROPOSITION 4.1. Let L, be a selfadjoint Laurent operator, then

1
a(L,) < inf{max (Tzf— o de, S odr — Bf) I./'e M>=0,1) and f= ¢ a.e.} .

N

S I

Proof. Let fe M2, 1), f= ¢ a.c. and let ¢ > 0, then there are two real-

-valued, continuous functions g; such that g, < f € g, (and hence Ly < L, < Ly)
1 1

and ng de £ k-f + &, Sg, dr= RS — e We havc alrcady noticed in § 3 that by Propo-

0
sition 2.6 all Laurent operators with continuous symbol are uniformly paveable.
Thus %(Lg) = 0 and by the squeeze principle (Lemma 2.8)

%(Ly) < max{[[E(Lg, — L), [EWL, - Lg )i} =

1
= max {S(g2 — @) dt,
[}

Sl e?™™ ) 1

1 1

(p — g) dt} < max {Rf— \(pdt,S(p dr — ,Iif} + ¢,
o
1) 0

But ¢ > 0 and /= ¢ a.c. are arbitrary. Q.E.D.

Let Z be the C*-subalgebra of % of the Laurent operators with Riemann
integrable symbol (or more precisely, with symbol almost everywherc cqual to
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a Riemann integrable function). Then as an immediate consequence of Proposi-
tion 4.1 and Lemma 2.9 (for the nonselfadjoint case) we have:

COROLLARY 4.2. Every element of R is uniformly paveable.

We shall henceforth consider Laurent projections, i.c. operators L, with
symbol ¢ =: y,, the characteristic function of a measurablc set E < (0,1). Let

us denote by E, E°, E~ and 0E = EN\E the closure, the interior, the complement
in (0, 1) and the boundary of the sct E respectively and let m be the Lebesguc

measure on (0, 1). Then Ry = m(E), Rp — m(E®) and thus Proposition 4.1 can he
reformulated as follows:

COROLLARY 4.3, Let ¢ = i, for a measurable set E < (0,1). Then
4(L,) < inf{max(m(F - F), m(F — F°) L1y = rpac).

We can cxhibit cases where the upper bound is attained (Theorem 4,5).
The following lemma is a routine mcasure theory result.

Lemma 4.4, If E < (0, 1) is either a closed or an open set, then
m(E) == inf {max(m(F — F),m(F - F%) | zp = 1z a.c.}.

THEOREM 4.5. If V < (0, 1) is an open dense set and ¢ = yy, then &(L,) -
~m(dVy > 0. If furthermore m(V) <1/2, then for every uniform decomposition
of the identity {p(j)|j=1,...,n} we have

= m(@V).

}E pGNL, - E(Lw’))pU)l
j=1 i

Proof. Because of Corollary 4.3 and Lemma 4.4 we know that
&(L,) <inf{max(m(F — F), m(F -- F%) | e = 2v ae} = m@y).

In order to prove the reverse inequality, by Proposition 3.5 b), it suffices to show
that for every n € N we have Q,¢ — @(0)] | = m(@V). Fix n € N, and let J, « :
- ¥'n(0, 1/m), then J, # O because V is dense in (0, 1). Let .72 = VnJ/y+ In),

then we also have .72 # 0. Let Jy = J, — 1/n, then J, < J;. Iterating we find a
nested sequence J, < J,., < ... = J, of open nonempty sets such that J; +
+ (k- Dn < V. In particular J, + k/n = V for k =0,1,...,n — 1. Thus

V= \J{U, + k)| k=0,1,...,n—1} < V.
Let ¢, 7, , then ¢, is (I/n)-periodic and @ > ¢,. But then Q.0 > Qu0, =+ @,

and thus we have:

0,0 — m(NI =z @, (V) = (1 - m(V))g, — m(V)1 - ¢@,).
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Therefore

(0,0 — m(VYDe, =(1 —m(V))e, 20
and hence, since d(0) = m(¥), we have

10a0 — POV ||oo = 1 — mi(V) = m(@V).

Assume furthermore that m(V) <1/2, hence m(V) < m(dV). Since Q, is a
contraction, Q,1 — I and ¢ is a characteristic function, we have

19np — MM [loo = }Qu( — m(¥ ) <
<l — m(P) |l = || — (¥ — m(V)(I - P — MAV).

Thus, by Proposition 3.3 and remarks before Proposition 3.5, we have for all n

that f; PGXL, — EL)p()| = m@V). Q.E.D.
J=1

We shall see in Corollary 5.4 that we actually have more:
lp(GYL, — EWL P = m(@V)  for each j.

We wish to point out for later use (Propositions 5.5, 5.6) a special set that
possesses the essential properties used in the proof of Theorem 4.5,

oo
ExAMPLE 4.6. Let a, > 0 be a sequence of real numbers such that ¥; na, <

n=1

< 172, let
Vn=U{(0,an) +_]/I'l I J—_0> ]’" = l}

=]
and let ¥ == |_J V,. Then V is an open dense set and
1

[~]

m(V) < Y, m(V,) = E na, <1/2.

ne=i

Then the sets ¥, coincide with the “periodic’” subsets constructed in the proof of
Theorem 4.5.

The following example will show that if an open set ¥ is not dense in (0, 1)
the inequality in Corollary 4.3 could be strict. We thank A. Sourour for the idea
that led to this construction.
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ExampLE 4.7, Let 1/6<f<1/2 and let K < (0, 1/2) be the Cantor set of measure
fi, so that its complement K~ in (0, 1) is the union of disjoint open intervals J,
with length 3-”8 for some n. Split each interval J, into the union of two disjoint

o0
nonempty open intervals J} and J7 and the division point. Let W, — (J J{, then
1

it is easy to verify that W, == [0, 1/2]\W, and, similarly, that W, = [0, 1/2]\W¥;.

Let ¥y o W, < (0,1/2), Vo= Wa+ 1/2 < (1/2, 1) and let ¥ -~ V,u Vo, V= (Vi 4
+ 1/2)U(V, - 1/2). Then ¥ and ¥ are disjoint and

m(V) = m(Vy = m(W, u Wy =m(K™)=1/2 — .

V is not dense in (0, 1), actually V = [0, IV, so that m(?): 1 —m(V)=
~: 12+ f. Let ¢ — 7, then §(0) — 1/2 — B and ;(1/2)p — X . Hence

050 = (1/2)(¢ + 2(1/2)e) = (1/2)(X,;3)
and since § > 1/6, we have
1020 — GOM {loo = (/2% 5) — (1/2 = B oo =
= B0 — (12 = B — X, i)lleo = max(B, 1/2 — B) < 2B = m(dV).

Therefore a(L,) < m(@V).

5. UNIFORM PAVINGS AND FINITE ARITHMETIC PROGRESSIONS

The techniques developed for dealing with uniform pavings can be used to
shed some light on a larger class of pavings. Let us introduce some further notations.

Define an operator 0, on L*(0, 1) by setting (Q,0)(t) = (Q,@)(t/n) for all
¢ € L=(0, 1) and for almost all 7 € (0, 1). An equivalent characterization is given

by property a) in the following lemma.

LEMMA 5.1. a) (Q,9)" (k) = @(kn) for all ¢ € L*(0,1) and k€ Z,
b) 12:0llw = 1Qu0llee for all ¢ € L*(0, 1),

c) Q, is a positive identity-preserving linear contraction on L=(0, 1),
d) QnQn = Qn’

e)if 0 < no <1, then nénx(o,,) = X(o,na) -
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Proof. a). From the |/n-periodicity of Q,¢ we have:

(0,0)" (k) = \ (Q,0)t/n)exp(— 2mik)dt =

L H2

w S(Q,,(p)(t)exp(— 2niknt)dr = (Q,0) " (kn) - p(kn)  (Lemma 3.4).

b) and c) are obvious and d) follows from the fact that Q, is idempotent.
e). From a) we have for every ne Z,

(10, X0,0)" () == (nleo,2)" (k) = (Xeo,m)" (K. Q.E.D.

Let p(n, t, a), r and r(t) be the (diagonal) projections on span{r, | k=a+ jn,
J- 1,...,1},span{n |k € N}and span{n, |k = 1,.. ., ¢} respectively. Then r — sup ().

The next proposition enables us to compute the norm of certain compressions
of laurent operators.

~ ProposiTION 5.2. Let ¢ € L™(0, 1), then 'for all n,t € N and a € Z the oper-
ators p(n, t, a)L,p(n, t, a) and r(r)Lé wr('r) are unitarily cquivalent. In particular we

have that

llp(n, 1, a)(Ly — EL )P, 1, )| = fir() (L , -~ ELNr (@i

Proof. Let x = p(n, ¢, a)L,p(n, t, a), and let [x;;] be the matricial representation
of x relative to the basis {n,}. If i==a + iyn and j-=a + jyu for some 1 < iy,
Jo < t, then we have

X;j == pn, t, a)ii(L(p)ijp(ns t, L‘l)j."
= (i — ) = ()" (g -~ Jo) = by Lemma 5.1 a)

=Ly i, = (O Jr{): s,

and x;; = 0 elsewhere. Therefore x is unitarily equivalent to "(t)Lb,,J(t)' Since

Q.1 = I and E(L,) = 9(0), by applying the result obtained above to ¢ — G(0)/

we see that p(n, t, a)(L, — E(L,)p(n, t,a) and r(t)}(L 8,0 E(L,))r(t) are unitarily

equivalent and hence have the same norm. Q.E.D.
By the continuity of the norm in the S.O.T. we can define:

- DeFmiTION 5.3, Assume that x € B(H) and rxr # 0. For each 0 < f <1
we define v(x, f) to be the minimal integer & such that [\r(k) xr(k)]| > Bljrxr]l.
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Thus the integer valuced function v(x, B) measures the rate of norm convergence
of the finite blocks r(k)xr(k) to the infinite matrix rxr. As we shall see in Prope-
sitions 5.5 and 5.6, if x is a Laurent operator with symbol ¢, this rate is related
to the rate of convergence of the series of the Fourier coefficients of ¢, which is
easier to estimate.

THEOREM 5.4. Let V be an open dense set in (0,1) with m(V)<m(dV),
let @ be the characteristic function of V and let p be a diagonal projection. Let
fln, B) - v(L?2 0" E(L,),B) for 0 < B < | and ne N; then

a) If p contains in its range {n, |k =a + jn, j€ N} for some n€ N and
acZ, then ||p(L, — E(L,))pll = m(@V).

b) If p = p(n,t,a) for some t = f(n,B) and some 0 < f <1, neN and
a€Z, then \|\p(L, — E(L))p|| > Bm(0V).

Proof. a) Since p 2 p(n, 1, a) for every 1, we have from Proposition 5.2 that
p(L, — EL )P = lp(n, 1, a)(L, — E(L)p(n, 1, @] ==
= ()L , — EL Nl

Since r(t)(Léo-— E(L,)r(t) converges in the S.O.T. to the Toeplitz operator
r(Lé o E(L,)r with symbol Q,,(q) — @O0) (which has the same norm as the

Laurent operator with the same symbol), we have that
Ly, , — ELIOI T L, - EL =
1L, — ELI = 110 — 4O lleo = from Lemma 5.1 b),
= |Que — @) |l = m(@V)  from the proof of Theorem 4.4.
Thus ||p(L, — E(L)pll > m@V). On the other hand,
L, — B = llo — #(0) ]l = m(3V)

which proves the equality.
b) By the definition of f(n, f) = v(Lj . E(L,), ) and by the above com-

putation, for all 7> f(n, f) we have
WL , — ELNON > BlirLg , — ELerl = pm(9V).

Therefore if p > p(n, ¢, @) for some t>f(n, f), by Proposition 5.2 we obtain the
inequality. Q.E.D.
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In particular for all projections p belonging to any uniform decomposition
of the identity we have that

lp(L, — E(L))p|l = m(@V).
Under the identification of diagonal projections with subsets of Z, we say that

a projection p contains a f-sufficiently long arithmetic progression (for L) if
p = p(n, t,a) for some ¢t > f(n, f). Thus, by Theorem 5.4 b), we have that

k
Y pGXL, — ELDP()| > pm(9V)

for the large class of diagonal decompositions of the identity for which one of the
projections contains a f-sufficiently long arithmetic progression.

This fact makes L, a natural candidate for a counterexample to the paving
problem.

A characterization of the decompositions of the identity or, equivalently,
of the colorings of Z that contain f-sufficiently long monochromatic arithmetic
progressions, pertains to combinatorics and is dependent on an estimate of the
function f(n, p).

As an example of the techniques involved in such an estimate, for the remainder
of this section we shall consider the characteristic function ¢ of the open dense
subset ¥V =\JV, < (0, 1) given in Example 4.6 and exhibit an upper and lower
bound for f(n, f) = v(Lé o E(L,), ).

n

Let ¢, be the characteristic function of ¥, and let 6 = m(¥V), so that E(L,) =
~= 8. Choose a, so that na, < 1/4 for all ne N. Define g(t) = 2(z — (n/3)2t%)

for ¢ € (0, [/3/x); then g is monotone increasing and has maximum 4/}/3z. Choose 8
small enough to insure that y = B(1 — 8) + & < g(J/3/n — 1/4). Then we have:

PROPOSITION 5.5. f(n, B) < 2 + 2g-*(y)/na, for all n€ N.

n
Proof. By definition, ¢, = ¥, 4(j/n)X.a) = nQyX(0,e) - Then by Lemma 5.1 d)

J=1
and ¢), we have that

Qn(Pn = ”QnQuX(o_a") = nan(o,an) = x(o.nan) .

Thus Lz, is a Laurent projection and r(Lé 0 )r is the corresponding Toe-
nn nn

plitz operator, so [|r‘(L(~2”W")r|] = ”Lén ¢”|| =1 and

(L, — 3Dl = ILg,, — 61| =1 — 6.



372 H, HALPERN, V. KAFTAL, G. WEISS

. e
)ni(t)' =

Since 0 < ¢,< ¢ and hence 0< Ly,

s Ly Ur(t)f’. Let t= wLg

LM

. < 1‘5,,0’ we have for all r that j;r(t')L@n(

,7) then
ey , = 6Drll 2 [r(OLy r(f ~d 2

= ;;r(!)l.é o )i — o > v;[r(Lé o Yrji—8d:

4

pit —8): - ,BHr(Lé"D -— 0|
Therefore by Definition 5.3, f(n, ) - \'(Lé - oI B) < ¢, e,
f By < WLy, B~ 8) + &),

This inequality holds true under the milder condition y-:f(1 - 8) + d < 1.
Sets - = na, and & = Y, € L0, 1), then ¢ isinthe range of Ly ., 1% (& ) s

and for j # 0 we have

(& )i = (2~ -1 -~ cos 2mjs).

Denote by g(r) the projection on s_;;afl{i;k | —¢ < &k <t). Then it is easy 1o see
(cf. proof of Proposition 5.2), that for ail Laurent operators L,

fIrt + DLor(2t + Dfi == q(DLya(8)'.
Thus we have forall k = 0
@k + DLy, r@k + DI = gLy , g®) = Ly, oLy >

> e~y o 9®)L5 , & &) = IElI~Hla®yci -

J

& %
— ] {1(5, P+ 25 I, n,-);ﬂ} aeget {s (i coszwm} >
in =1

> 51 {sz et S D — (1A ) } -

i=1

AT
J T
1

=525 5, (1= (D@D == (2 + Ds — Q)s(nsy?

o Ok + 1)s — @9)s(as)h(e + 1)k + 1)2) > 2(k + 1/2)s — 2(n/3)2(k + 1/2)s - -
= g((k + 1/2)s).

[
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Therefore, if k satisfies the inequality g=X(y) < (k + 1/2)s < l/g/n, then by the
monotonicity of the function g(z) we have g((k + 1/2)s) > y and hence

Ir2k + DLy, r(2k + D) >y = ylr(Ly w")rll.

In particular, the inequality holds for the smallest integer k such that 2g='(y)/s<
< 2k + 1. Therefore, by Definition 5.3 we have v(Lg , ,¥) < 2k + 1, hence we

obtain that v(Lz  ,7) < 2+ 2g~!(y)/s. Thus we conclude that

S, Py < vLg, 1 <2+ 2g-Y(y)/na,. Q.E.D.

Thus we have an upper bound on the growth of f{n, §) with n. The following
proposition shows that indeed f(n, f) - oo for n » co. Here ¢ is seen also as a
vector in A : - L30, 1) and thus

oo N 1/2 )

{ Y [(p(j)nz} = [[(r — r(m)e] ~ 0.
Jiengl

PrOPOSITION 5.6.

Fo, By > (112)BU - R|(r — rin — D@)|=2  for all 0<B<1 and n> 1.
Proof. Let t -~ f(n, B) and let || ||, denote the Hilbert-Schmidt norm, then we
have:
(Bl — 0)) == f2lLg , — OL|F < [ir()(Lg , — SDr(IF <
< ULy, — oDrDl) = ¥ {I(Lg , — oDy [ 1 < i,j < 1) =
= Y Q0 — D G —NE|L<ij< )=

Y (= DDy — D )R | 0 < k] <1 — 1)<

<tY 0. )P | 1 < k<t~ 1} = as (Q,0)"(0) =5
2N 0,0 R | V< kst—1) < as 0,¢ is real valued
<2ty {lomlR | 1 < k<r— 1) < by Lemma 5.1 a)

< 2 Y APDE | jzn} = 2ll(r — r(n — D]l QE.D.

Part of this research was done while the second author
was a member of MSRI at Berkeley.
Research of the third author was partially supported by NSF grant DM S 8503390.
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