J. OPERAg')ORSlTlI(l)EﬁORY © Copyright by INCREST, 1938
20(1988), 91 -

SHIFTS ON THE HYPERFINITE FACTOR OF TYPE II,

DONALD BURES and HONG-SHENG YIN

0. INTRODUCTION

Following Powers, we call a shift on the hyperfinite IT;,-factor R a unit-pre-

0
serving +-endomorphism ¢ of R such that (M) ¢*(R) = C. We introduce a class
k=1
of shifts, which we call group shifts, constructed by realizing R as a twisted group
von Neumann algebra on a discrete abelian group. We obtain an intrinsic charac-
terization of such shifts, and, for those satisfying 6(R)' n R = C, a classification up

to conjugacy. We then examine in detail the special case of the group 5 Z§) with
. i=0

the canonical shift, thereby unifying and generalizing results of R. Powers, G. Price

and M. Choda.

In Szction 1 we give the details of the construction of a group shift given a
discrete abzlian group G, a shift s on G, and an s-invariant 2-cocycle w on G. In
Section 2 we give first an intrinsic characterization of group shifts (Proposition 2.1);
secondly, when o(R)’ n R = C, we determine the normalizer of o (Proposition 2.2);
finally we classify such ¢ (up to conjugacy) in terms of G, s, w (Proposition 2.5).

In Sections 3 and 4 we study n-shifts: group shifts with G = @ Z{? and

s the canonical shift on G. Forn = 2 these are the binary shifts of [5] almgl [6]; for
general n these include the z-unitary shifts of [1]. In Section 3 we obtain a necessary
and sufficient condition for W*(G, ), the twisted group von Neumann algebra deter-
mined by the group G and cocycle w, to bs a factor (Proposition 3.1). This result
was proved for n = 2 in [6]. Aad in {7], a preprint which we received during the final
preparations of this pip:r, G. Prics provas a rzsult equivalent to our Proposition
3.1 by som:zwhat different mzthods. In Section 4 we obtain an intrinsic characteri-
zation for n-shifts (Proposition 4.1) and we find an explicit conjugacy invariant when
n 18 square-free (Proposition 4.4). In Section 5 we conclude with some simple exam-
ples of shifts with integer index which are not group shifts, and of group shifts of
finite index n» which are not n-shifts.
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1. GROUP SHIFTS

In this section we construct certain shifts of the hyperfinite II,-factor R by

realizing R as a twisted group von Neumann algebra. First let us recall some defi-
nitions.

DeriNtTioN 1.1. ([5]). A shift o of a unital C*¥-algebra 4 is a #-endomorphism

of A such that o(1) = 1 and () 6*(4) = C
kel

DLF;:\'mO\‘ 1.2. A shift s of a group G is an_ one-to-one endomorphism of

G such that (M) s%(G) = {¢}.
fis 1
. In the following let G be a discrete abelian group, @ a normalized Z-cocycle

of G with values in the unit circle T and s a shift of G. Assume s is compatible with
o, that is e(s(g), s()) = (g, k), for g, h e G. The (reduced) twisted group C#-al-
gebra of G, C*(G, w). is the C*-algebra generated by the left regular projectise
representation of G, g — U, , associated with w on £%(G). These unitaries U, satisfy
the relation

(1.1) U U, = w(g, MU, g heG.

The weak closure of C#(G, w) is the (reduced) twisted group von Neumann algebra
of G, W*(G, w). The shift s of G induces a =x-endomorphism ¢ of W*(G, w). as
well as of C*(G, w), by a(U,) = Uy, g€ G. If H is a subgroup of G, W*(H, wGH)
can be identified in a natural way with the von Neumann subalgebra of W*(G, o)
gencrated by {U, :ge H}.

ProrosITION 1.1. ¢ is a shift of W*(G, ©) as well as of C*(G, w).

Proof. It is obvious that ¢"(W*(G, w)) = W*(MG), w). If {H;}, iel, is &
family of subgroups of G, then (Y W*(H;, w) = W*((1) H;, ») which follows from
(N F3(H,) = £2( ( H)). Hence (4 o*(W*(G, ©)) = W* ( A $G), w)=C. QED.

i i k0 k=0

The 2-cocycle w of G gives rise to a character p of the second exterior product
GAG via

(1.2) plg A B) = wlg, Wolh, g), gheG.
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ProrosITION 1.2. If H is a subgioup of G, then
W H, w) n WHG, o) = W*(Dy, o),

where Dy, is the subgroup {ge G :p(gAH) =1} of G.

Proof. From (1.1), U, U, = p(g AW)U,U,. Hence W*Dy, w) is the relative
commutant of W*(H, w). For the reverse inclusion, let 7'e W*(H, o) (M W*(G, o)
and let {f; : g€ G} be the canonical orthonormal basis of £%(G), so] that U(f;) =
= o(g, h) fo,. Assume Tf, = ZGcgfg, where e is the identity of G, ¢, €C,

P4 °

EG lc,|? < co. For any h e H, we have
g€

(UhT)f;z = Z' ng(h’ g)ﬁa;;y
(TUll)fe = T(Rh—lf;) = Rh—1(Tf;) = Z ng(g7 h)f:gl.-y

where & — R, is the right regular w-representation of G: R.(f)) = w(g, k'l)fk_1
g8

with R, commuting with the U,. Since U, T = TU,, we get ¥, c,o(h, iz =
g
==Y c,o(g, My, Therefore c,w(g, ) = c.w(h, g), g€ G, he H. If ¢, # 0, then
s

p(g\/\h) =1. This shows that T is supported on D;. It follows that
T e WHDy, ). Q.E.D.

CoroLLary 1.3. (i) WH(G, w) is a factor if and only if p(g AG) =1 implies
g =c
- () (@WH(G, @)Y N WHG, w) = C if and only if plg AsKG)) =1 implies
g=e

When o (resp. p) satisfies the condition of Corollary 1.3(i), we say it is non-
degenerate.

ProrosiTION 1.4. Suppose that G is a countable discrete abelian group, that w
is a nondegenerate 2-cocycle of G and that s is a shift of G compatible with w. Let ¢
be the shift of W*(G, ) induced by s. Then

(i) W*(G, w) = R, the hyperfinite M -factor;

(ii) The Jones index [R: 6(R)] = [G:5(G)],

(iii) e(R) n R = C provided [G: s(G)] is a prime number.

Proof. (i) The nondegeneracy of w implies that W*(G, w) is a (finite) factor
and that s is one-to-one on G. Then (M) s%(G) = {¢} implies that G is an infinite

. k
group. Hence W*(G, w) is a 11,-factor. The dual group of G, G, acts on W*(G, w)

via 0(U,) = 0(g)U,, 0 € é, g € G. It is a standard result that this action is ergodic.
Thus by [4; 5.13], W*(G, w) = R, the unique hyperfinite I-factor.
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(1) This follows from [2; 2.32]. In fact, we can replace the crossed products
there by twisted crossed products and the proof still works.

(iii) By Corollary 1.3 (ii), it is enough to show that p(g A s(G)) = 1 implics
g = e. Assume the contrary. Then the subgroup E = {ge G: p(g as(G)) =1} is
nontrivial. We have E n s(G) = {e}. For, if s(g) € E, then p(g A G) = p(s(g) ~
AS(G)) =1 by the compatibility. Since @ is nondegenerate, we get g = e and so
s(g) = e. Therefore the restriction of the quotient map n: G — G/s(G) to E is one-tv-
-one. Since G/s(G) has order [G: s(G)] a prime number, it follows that E is a cyciic
group of order the same prime, and that G = E @ s(G). Let g be a generator of I:
then p(gAG) = p(gAE)p(g As(G)) = p(g A E) = 1. The nondegeneracy of
implies that g = e¢. A contradiction. Q.LE.D.

The shift ¢ of R constructed in Proposition 1.4 will be called a group shift
and denoted by o(G, 5, ) when there is need to indicate the data G, s, w. Note that
for a group shift o(G. s. @), @ is always nondegenerate by assumption.

We record the following result for future reference.

ProrosiTION 1.5, The following are equivalent :
(i) C*(G, w) is simple;

(ii) C*(G, w) has trivial centre ;

(i) C*(G, w) has unique tracial state;

(iv) o is nondegenerate ;

V) WG, w) is a factor.

This proposition is essentially proved in [8]. Thé proof given in [5) can be

(o]
viewed as an alternative proof in the case G = @ Z,.
Finally we remark that some results in this section are also true for non-abe-
lian groups.

2. CHARACTERIZATION AND CLASSIFICATION OF GROUP SHIFTS

In this section we first determine when a given shift ¢ of R is conjugétc to
a group shift ¢(G, 5, ®) as constructed in Section 1. Secondly, for those group
shifts o of R satisfying 6(R)' 1 R = C. we calculate the normalizer of ¢ and its con-
jugacy class in terms of (G, s, ).

PROPOSITION 2.1. A shift 6 of R is conjugate 10 a group shift o(G. s, ©) if cid
only if there exists a set S of unitaries of R such ihat

(i) (S, a(S), 6%S), ...} = R and

(i) wew*e® € C for ail u, v in {S, 6(S), ¢¥S), Sk

Denote by G,(S) the group of wnitaries generated by (S, 6(S), ¢*(S), ...},
and let ©: G(S) = G(S),G,(S)~ C be the guotient map. Then under conditicis
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(1) and (ii) o is conjugate to a(G, s, w), where:
G = G,(9)/G(S)n C,

s(n(u)) = n(o(u)),
and w is a suitable nondegenerate 2-cocycle.

Proof. If ¢ is a group shift 6(G, s, w), we can take S = {U, : g € G}. For
the converse, assume S satisfying (i) and (ii) is given. By (ii), G is an abelian group.
The map s on G is naturally induced by ¢ and is a shift of G since o is a shift
of R. It is easy to see that s is one-to-one. Define a cross-section § of n as follows:
let 5(0) = 1. For all g € G\ s(G), let § satisfy d(g=1) = 8(g)~*. For any g € s*(G)\
\s¥+3(G), there is a unique element g’ € G\s(G) such that s*(g') = g. Then define
o(g) = o*(6(g")). Write 0(g) = V,, g € G. Our choice of & ensures o(V,) = Vy,,-
Since_n(V,V,) = gh = n(V, ,,), We have V,V, = w(g, 1)V, for some w(g, i) e T.
It is routine to check that o is a normahzed 2-cocycle of G. Applying ¢ to the
both sides of the equation w(g, NV, = V,V,, we obtain

(g, MV s(ghy = Vs(g)V(h) = w(s(g), s()V, s(zh)*

This shows that s is compatible with w. If g € G is such that p(g A G) = 1, then V,
commutes with all ¥, , 1 € G. It follows from (i) that V, is a scalar. So g = 0. This
proves that w is nondegenerate. By the universal property of twisted group C*-al-
gebras, there exists a s-homomorphism f: C*(G, w) — R such that B(U,) =V,

g € G. Since w is nondegenerate, it follows from Proposition 1.5 that f is a *-iso-
morphism onto the C*-subalgebra of R generated by {V,: g € G}, and f extends to
a s:isomorphism of W*(G, w) onto R by the uniqueness of tracial state. Finally
let ¢ be the group shift associated to (G, s, w). We check 6 o 3 = f¢g. So ¢ is con-
jugate to a. Q.E.D.

DermiTioN 2.1. ([51). The normalizer, N(o), of a shift ¢ of R is the group
of unitaries w of R such that wo*(R)w* = ¢*(R), k =1, 2,

ProposiTiON 2.2, Suppose ¢ = o(G,s,w) is a group of R. Then N(o-)
= U, :.€T, ge G} ifand only if (RY n R = C.
Proof. First assume o(R)' n R =C. Since U, ¥ U)U} =, Uk(,)Ug =
= plg A SK)U ki € o*(R), and since {U,:he G}’ = R, we see that U, € N(o).
§ T

Nowlet K = {f e G : 0(s(G)) = 1}. The group K acts on R = W*(G, w) via (U,) =
= (g)U,. 0 € K, g € G. The fixed point subalgebra of K, R¥, is just .

MY W*(ker0, w) = W+ (ﬂ kerd, w) = W*(s(G), w) = a(R)

sex
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(cf. [4], [9]). Assume W € N{o). Since the linear span of {U, : g ¢ G} is weakly dense
in R, we can find some g € G such that t(UFW') # 0, where 7 is the unique normal
normalized trace on R. Write U = I, . Sincc W, € N(o), there is a s-automor-
phism y of R such that Wie(@)W{ = o(;{a)), ae R. Then O )o(a}i(W,)" =
= a(y(@)), 0 € K. It follows thut Wi0(W,)e 6(R) n R = C. Hence O(W,) = i,
for some /e T. Taking the trace, which is K-invariant, we get 0 # 7(W,) =
= 7(0(W)) = 2z(W,). This forces 7 = 1, and so O(W;) = W,. Since 6§ € K is arbi-
trary, we obtain W, € R* = o(R). Let W, = o(W’,). It is easy to see that W, ¢ Nic).
The uniqueness of trace implies (J,) = 1(o(W,)) = () # 0. Repeating the
above argument with W,. we get W, e o(R). Thus W€ ¢*(R). By induction, we
obtain W, e m o*(R) = C. Hence W = jU, for some } e T. This completes the

proof that N(o) = {iU,:7. €T, geG].

For the converse, if 6(RY n R # C, then any unitary in ¢(R) & R is in
N(o). By Proposition 1.2, o(R) ¢ R is the von Neumann algebra of the sub-
group {ge G:p(g A s(G)) = 1}. If this group is nontrivial, o(R)’ r R certainly
contains unitaries which are not of the form il,. Q.E.D.

COROLLARY 2.3. Suppose o is a shift of R. Then the following are cquivalent :
(i) N(o)” = R and N(o)/T is abelian;
(il) o is a group shift with o(R)’' 7 R = C.

Proof. (i) = (ii). Taking S = N(o) in Proposition 2.1, we see that ¢ is some
group shift ¢(G, s, w). Since 6(N(0)) = N(5), the group G = N(0),T. Hence N(c)=
= {AU,: 1eT, ge G}. By Proposition 2.2, we get 6(R)' 7 R = C.

(ii) = (i). By Proposition 2.2 again, N(o) = {AiU, : A€ T, ge G}. Hence (i)
hotids. Q.E.D.

COROLLARY 2.4. If any element in N(c) has square a scalar multiple of the
identity and if N(c)Y’ = R, then ¢ is a group shift with o(R)Y n R = C.

Proof. From the hypothesis, any element in N(¢),T has order two. This im-
plies, as is well-known and elementary in group theory, that N(¢)/T is abelian.
Then Corollary 2.3 applies.

REMARK. By this corollary, the shifts considered in [6; §4] are in fact group
shifts.

For group shifts ¢ = 6(G, s, ©) with o(R)'n R = C, Proposition 2.2 shows
thatthe normalizer is the central extension of G. This enables us {0 obtair a compiete
classification of these shifts up to conjugacy.

PropcsITICN 2.5, Suppose a; = 6(G;, §;, ®;), i =1, 2, are group shifts of R
with 6{R) N R = C. Then ¢, and o, are conjugate if and only if there exist a growp
somorphism y: Gy - Gy and a map +: G, =T such that

@ sy =75
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(i) (g, h) = %)’) 0x(1(8), Yh)), g he Gy;

(i) As,(g)) = X(g), g€ G-

Proof. Assume ¢, and o, are conjugate. Then there is a *-automorphism ¢y of R
suchthato, oy = o ¢,. Thus ¥ restricts to a group isomorphism of the normalizers:
¥: N(oy) = N(s,). By Proposition 2.2, N(o,) = {AU,: 2€ T, g€ G} and N(o,) =
= {iV,:1€T, ge G,}. Then ¥ induces a group isomorphism y : G, —» G, since
G; = N(0))[T. From o,0 ) = o0, , We get sy 9 = yecs,. It is obvious that y(U,) =
= M)W, &€ Gy, for some A(g)eT. Applying ¢ to the equation U,U, =
== wy(g, MHU,,, we obtain :

/l(g)Vy(g) : l(h)Vy(h) = (g, h)lgth(gh)'
SinCC Vy(g)Vy(h) = 502()’(8), Y(ll))Vy(gh) » we get

Mg)Ah)
AMgh)

(g, h) = ws(y(g), v(h)).

Applying o, to Y(U,) = i(g)V,,), we obtain
o2 oy (Uy) = Mg)oo(Vyey) = A(g)Vszar(g) = ;~(8)Vv°s1(g) .

However, 6y~ Y(U,) = ¢ 0 6,(U,) = lﬁ(Usl(g)) = /1(51(g))VV°sl(g) . Therefore A(sy(g)) =
= /(g). This proves the necessity. For the sufficiency, assume y and A satisfying
()—(iii) are given. Then y: C*(Gy, w,) = C¥(Gy, w.), Y(Uy) = MgV (g, isa #-iso-
morphism and extends to a s-isomorphism of W*(G,, w,) onto W*(G,, w,) by the
uniqueness of the trace (Proposition 1.5). It is easy to check that a,0¢y = Yooy,
that is, o, and o, are conjugate shifts. Q.E.D.

REeMARK. The conditions (i)—(iii) of Proposition 2.5 are sufficient for any two
group shifts ¢, = ¢(G, s;, ®;) to be conjugate, without the hypothesis that ¢,(R)' n
n R = C. Moreover, if we replace the map A by 6o 4 for any 0 € G, the condition
(i) remains unchanged, but the condition (iii) now becomes 0(s,(2))A(si(2)) =
= 0(g)/(g), g € G,. For certain groups, we can always find some @ to make this
equation hold. Therefore, the two conditions (i) s,y = yosy and (ii) [w,] = [wa° Y]
in H%G, ; T) will be sufficient for ¢, and ¢, to be conjugate. A direct consequence
of this observation is that we can use the characters p of G A G to replace the co-
cycles w. More precisely, let w, and w, be (nondegenerate) cocycles of G with [w,] =
= [w,]. Let s be a shift of G satisfying w; = w;°s, i = 1, 2. Then s induces two
shifts o, and o, on W*(G, w,) and W*(G, w,) respectively. There is no a priori rea-
son that o, and o, should be conjugate. However, in the circumstances mentioned
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above, we know that ¢, and ¢, are actually conjugate. Thus we only need to specHy
the character p of G A G defined in (1.2), since those characters and cokomology
classes of cocycles are in one-to-one correspondence (cf. [4]).

PROPOSITION 2.6, Suppose G = éo ZY, o, and w, are 2-cocycles of G with
i=0
og, h) = /_,(g)_A(h) (g, h), g, he G, for some map i: G — T. Let s be the shift
ghy °
s(e)) = e;51,1 = 0, where e; is a generator of Z{ . Suppose w;=§s =w;, i =1,2.
Then the shifts o, and o, induced by s on W*(G, ©,) and W*(G, w,) respectively are
conjugate.

A .
Proof. The hypotheses implies that the map ¥(g) = — (g_) ge G, 1s

Xs(g))
character of G. We define a character 8 of G by 8(e,) = 1, 0(e;) = ¥(e;—1)0(e:.-0),
i » 1. This guarantees (s(g))A(s(g)) = 8(g)/(g), g€ G. With G, =G, =G, 8, =
= §, = §, 7 = idg; and 2 being 0 - / in Propositon 2.5, all three conditions are ful-
filled. Hence o, and o, are conjugate. Q.E.D.

a

3. FACTOR CONDITION

o]
Let n > 2 be an integer, let G= @ Z{), let s(e;) = e;,1, Where ¢; is a gener-
i=0

ator of Z{?, and let » be an s-compatible 2-cocycle. Let o be the shift of W*(G. o)
induced by s. In this section we determine all those @ which are nondegenerate, equi-
valently, which make W*(G, w) a factor . By the remark after Theorem 2.5 and Pro-
position 2.6, this is equivalent to determining all nondegenerate s-compatible cha-
racters p of GAG. Herc the s-compatibility means p(g A /L) = p(s(g) A s(h)) for
all g, £ in G. In the case when n = 2, this problem was solved previously by G,
Price [6). However, our approach is different, and we feel, much simpler.

Let 7 = e and let p(ey A ¢;) = y°)), where a(j) € Z,. By defining

(ER)) a(0) =0, a(—j) = —a(),

we obtain a sequence {a(j)}, j € Z, of elements of Z, satisfying

3.2) ple;ne) =760, jk=0,1,2,....

Conversely, each doubly infinite sequence {a(j)} < Z, satisfying (3.1) determines

an s-compatible character p by (3.2). We call {a(j)} the defining sequence of p, as
well as of w.
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ProrOSITION 3.1. The following are equivalent:

() WHG, w) is a factor;

(i) (eW™*(G, w))) n WXG, w) =C;

(ili) For all primes p dividing n, the defining sequence {a(j)} of w fails to be
periodic modp.

Proof. By Corollary 1.3, condition (i) is equivalent to p(g A G) = 1 implying
g = 0, and condition (ii) is equivalent to p(g A s(G)) = 1 implying g = 0. Then
the following lemmas will complete the proof.

Qo
LEMMA 3.2. Suppose g = Y gi¢;» where g;€Z, and g; =0 for all but
=0

finitely many j. Then p(g A s"(G)) = 1 if and only if
3.3) Ygak—j)=0 fork=mm+1,m+2,...
j=0

Proof. s"(G) is generated by {e,:k > m}. Now p(g A s"(G)) =1 if and
ony if p(gpe,) =0 for k > m, the latter being (3.3). Q.E.D.

LeMMA 3.3, Suppose that there exists a prime p dividing n and such that
{a(j)}jez is periodic modulo p. Then there exists g€ G,g # 0 and p(gAG) = 1.

Proof. Assume ¢t is a positive integer such that a(j) = a(j + t) (modp) for
allje Z. Thenput g =-"-(e, — e,). Q.E.D.
p

LemMMA 3.4. Suppose that there exists g€ G with g # 0 and p(g As(G)) = 1.
Then there exists a prime p dividing n such that {a(j)};ez is periodic modulo p.

Proof. Assume first that n is a prime. We show {a(j)};jez is periodic. Let
g+ Y, g;e; # 0 be such that p(g A 5(G)) = 1, so that by Lemma 3.2:
Jj=0

(3.4 Y gatk —j)=0, fork=12,....
o0

Let j, be the smallest and j, the largest j's for which g; # 0. Then we can solve (3.4)
to obtain

atk — j) = elatk — j, — 1), alk —j; — 2), ..., alk — jz))
and

alk — jo) = Y¥((alk — jo + 1), alk — jo + 2), ..., alk — j1))

for k =1,2,3, ..., where ¢ and ¢ are fixed linear functions.
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Let r = j, — j, and assume first that » > 0. Then we have

(3.5  alk) =@l — 1), atk —2),...,alk —r)) forallk >1—j,,
and

B.6) alk)y=dlalk +1),ak +2),...,alk +r)) forallk>1—j.

Since there are only finitely many distinct values for an r-tuple from Z,,, (3.5) implies
that a(k) is ultimately periodic as & — co, that is, there exist positive integers ¢
and N such that a(k + ¢) = a(k) for all &k > N. Then (3.6) implies that alk + )=
= a(k) for all k = 1 — j,. Since a(—j) = —aj) for all je Z, we deduce from (3.5)
that

3.7 alk) = olalle + 1), alk + 2), ...,alk +r)) forall k <j, — 1.

Since (1 — ;) — 1 < j, — 1 always, (3.6) and (3.7) shows that a(k + ¢} = a(k) for
all ke Z.

Suppose now r = 0. Then (3.4) becomes gjla(k —jy=0fork=1,2,...,0r
a(k) =0 for k <1 —j,. Since j, > 0 and a{—k) = —a{k), we obtain a(k) =0
for all ke Z. )

Now consider the general case where n has the prime decomposition

it = pypye ... pos. Under the hypothesis p{g A 5(G)) = 1, we still have (3.4). Since
& #0, one of the primes p; =p must be such that g, #0 (modp%). Write
L ;

g; = p*h; where k is the largest integer such that p* divides all g;. It follows that
k < a; and that not all h; are 0 modp. Then we obtain from (3.4) that

Y falk —j) =0 (modp) for k=1,2,....

As before we now find that {a(k)} is periodic mod p. Q.E.D.
4. n-SHIFTS
0
For each integer # > 2, let G, = @ Z{) and let 5, be the shift defined by
i==0

bl

s,(e;)) = e;., as in Section 3, where e; is a generator of Z.) .

DerFiNtrioN 4.1. A shift ¢ of thz hyperfinite II -factor R is called an n-shift if
o is conjugate to a group shift ¢(G,, s,, ).

In this section we first give a characterization of n-shifts, which shows that
our results about group shifts generalize the results for the binary shifis of Powers
[5] and Price [6] and the n-unitary shifts of Choda [1]. Then we discuss the classifi-
cation problem for n-shifts.
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ProrosiTiON 4.1. A shift 6 of the hyperfinite Yi-factor R is conjugate to an
n-shift if and only if there exists a unitary v in R (which is called a o-generator) such
that the following hold :

Dw=1landu*¢Cfor1 <k<sn—1;
(i) {u, o(u), o%(u), ...} = R;
(iti) w and o'(u) commute up to a scalar for i = 1,2, ... .

When these conditions hold, the conjugacy is given by u — U¢0 .

Proof. If ¢ = 0(G,, s,, w), we can take u = U, - Then ¢'(v) = U., and con-
ditions (i)—(iii) are easily verified. Now assume o is a shift of R with a unitary we R
so that the conditions (i)-—(iii) are satisfied. Taking § = {u} in Proposition 2.1, we
see that o is conjugate to a group shift ¢(G, s, w). By that proposition, G is the quo-
tient group of the group generated by {u, o(u), o*(u), ...} modulo scalars. Denote
the image of o’(v) in G by f;. Then G is the abelian group generated by {f; : i > 0}
and s is defined by s(f;) = f;;, (Proposition 2.1). Note that kf; = 0 if and only
if Kk =0 modn.

We proceed to show that {f;: i > 0} is Z,-linearly independent, which proves

oo N
G = @ Z{ . Assume there exists a relation ¥ ¢;f; =0 with ¢y % 0 (modn) in
i 0 io
Z,. Consider all such relations where N is minimal. Among them choose one so that
¢y is minimal. An Euclidean algorithm argument then shows that ¢y must divide n.

N
Letn = dcy. Thenin d Y cifi =0, since dey =0, all coefficients must be zero:

=0
de; =0 (modn), 0 < i< N— 1. It follows that ¢, divides ¢; for all i. Applying
N N ¢
s to Y ¢ifi =0, we obtain ¥ -c-‘-(cNfiﬂ) =0forallj=0,1,2,.... Now let
i0 i:0 CN

K be the subgroup of G generated by {cxfo. ¢nfis ---» Cxfu-1). The above equa-

tion shows that s(X) « K. Since s is one-to-one (see the proof of Proposition 2.1)
=]

and X is finite, we get s(K) = K. Then (M s*(G) o K # {0} contradicting the fact

k=0

that s is a shift of G. Q.E.D.

Remark 1. The proof of the proposition shows that if G is a group posses-
sing a one-to-one shift s and if ge G is an element of order », then the subgroup
of G generated by {g, s(g), s¥g), ...} is isomorphic to @ Z{ under s'(g) —»e¢;

i=0 .
This shows that n-shifts are the basic blocks of more general group shifts.

REMARK 2. Suppose that a shift g of R satisfies the conditions of Proposition
4.1 except that instead of (i) we assume only (i)’ «" = 1. Then we can proceed as
follows. Let n: be the smallest positive integer such that u” € C. Let v = Zu where 4
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is a scalar chosen so that ¢ = 1. Then {o, ¢} is a pair satisfying the conditions of
Proposition 4.1. Hence ¢ is an m-shift. If »n is a prime, of course (i) and (i)' are
equivalent.

REMARK 3. Suppose that ¢ is an »-shift with generator i and that s is conju-
gate to 0(G,, 5,, »). Thea the defining sequence {a(j)} ez (Section 3) for o is given
by

ual (el (u)* = (e¥inye s,

COROLLARY 4.2. If ¢ is an n-shift of R with generator u, then
() o(R) n R =C.
(1)) The normalizer N(o) = {iw : wis a word in o'(u), . € T}.

Proof. (i) follows from Proposition 3.1; (ii) from Proposition 2.2. Q.E.D.
REMARK. The problem of classifying n-shifts is, of course, completely solved
-]
by Proposition 2.5. Let G = @ Z{) and p a nondegenerate character of G A G with
' i—=0

defining sequence {a(j)};cz. By Proposition 2.5 and Proposition 4.1, to determine
all n-shifts conjugate to the given one associated with p, it is sufficient to determine
all elements g € G such that {g, s(g), s*(g), ...} generates G. These g's are called
generators. Then the defining sequence can be computed in terms of {a(j)} by
p(g A s%(g)) = e2ribl), For example, let n = 4 and g =e, + 2e,. Since g + 25(g) = ¢y,
g is a generator. Using (3.2), we get b(f) =2a(j — 1) + a(j) + 2a(j + 1), j& Z.
Thus {b(j)}jcz defines an n-shift conjugate to the one defined by {a(j)}cz. If
{a(j) :j = 0} is {0,1,0,0,0, ...}, then {b(j) :j > 0} is {0, 1,2,0,0, ...}.

The classification of binary shifts in [5] is achieved by showing that if « and »
are two o-generators of a binary shift ¢, then # = - ¢. It is tempting to try to prove
that, for general n, two o-generators of an n-shift are related as v = Z¢™ for sonie
m with (n, m) = 1. However, as shown in the last paragraph for n = 4, this is no
longer true. We need some condition on n.

PROPOSITION 4.3. Suppose that u and v are o-generators of an n-shift ¢ and that

n is square-free. Then u = iv™ for some LeT with )" =1, and some integer m
with (m, n) = 1.

Proof. By Proposition 4.1, we can assume ¢ = a(G,, §,, @) such that « is
just er. Since v is a generator for ¢, v € N(6). By Proposition 2.2, ¢ = AU, for
some A€ T, g € G. Since v is a generator for o, g must be a generator for G. Hence

A

M N
4.1) e =Y ¢s'(g), cu#0, and g=Y be;, by+#0.
j=0 i=0

Substituting and comparing the coefficients of ey, y, We get bycyy = 0 in Z,, pre-
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vided M +- N > 0.Hence if n is a prime, we must have M = N = 0, so that g = bge,,
or v = u’e. It is obvious that (by, 1) = 1. In the gencral case where s =p,p,... P

o)
with the p,/s distinct primes, we pass (4.1) to the quotient group @ Z¢ for each
i=0

pi = p- The same argument as above gives b; = 0 (mod p) for i > 0. Hence b, = §
(mod#n) for i > 0 and again g = bye, . Q.ED.

ProrosiTiON 4.4. Suppose that oy and o, are n-shifts with defining sequences
{a()}iez and {b(j)} ez respectively, and that n is square-free. Thén 6y and 65 are con-
Jjugate if and only if there exists an integer m, (m, n) = 1, such that a(j) = m?b(j)
Jor all j € Z.

Proof. Assume € Aut(R) implementing the conjugacy. Let v and v be gener
ators of o, and o, respectively. Then Y(u) is a generator of ¢,. By Proposition 4.3,
W() = 2™ for some m, (m, n) = 1. Computing the defining sequences as in Remark
3 following Proposition 4.1, we get a(j) = m®b(j). The converse is obvious: y(e;) =
= me; is an automorphism of @ Z? such that y-s = s=y and that p,(¢; A ¢,)=

= 20(e) A 7(e0)). e QE.D.

5. SOME EXAMPLES

In this section, we first show that for each integer n > 2, there is a group
shift of index » which is not an n-shift. Then we show, by using Jones’ work on
index of subfactors, that there are shifts of R which are not group shifts. We con-
clude with remarks on sequences of projections.

We start with the construction of some group shifts over the group
G = éo Z. The construction is a variant of that in Price [6]. Let ¢; be a

J =00

generator of Z{?, and let s(e;) = e; + e;,,. First we check that s is a shift and

that [G: 5(G)] = n. .

Define a character §: G — T by
g2rifn, if j is even,
e-2xila if j is odd.

) = {

Let H = ker0; then [G: H] =n. A short calculation shows that s(G) = H.
Hence [G: 5(G)] = n.

LemMa S5.1. s is a shift of G.
Proof. Assume ge () s*(G) with g # 0. Let 7y be the automorphism of G
K
defined by y(e;) = e;,. Since yos = soy, we have y(g) € () s*(G) for all [e Z.
k
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N
Therefore, without loss of generality, we may assume g = Y cie; with ey # 0.
o

Note that

sk(e,) = e +{k\e k + + & +
* = + Co € e .
() o 1) 1 (2) o (k—-l) E-1 K

Thus g — cys¥(e,) is a linear combination of ey, e;, ..., ey_,. 1t follows from in-

N ) .
duction that g = Y b;s'(eq) with by = ¢y. Let b, be the first nonzero b;. Then
Jj=-0

g — bs¥(ey) € s*+1(G). Since g € s5+(G) by assumption, we have b,s%(e,) & 5 4G).
It is easy to see that s is one-to-one. Hence b,¢, € 5(G) = kerf, and 1 = #(he,) =
= ®*" Thus b, = 0 (mod n). A contradiction. Q.E.D.

Next we need to define a nondegenerate character p on G A ¢ which is com-
patible withs. Let p(e; A €;) = e ¥ .; where a; ; € Z,. The compatibility condition
plei A e) = p(s(e;) Asle)) is just that

(5.1) ai’j{,] + ai+l,j+l + a,-.;.]'j = 0 for a“ 1,j€ Z.

The a; ; satisfy also ¢; ; = —a; ;and @, ; = 0. Setaq,; =1 and gy, = 0 for k # 1.
Then (5.1) and the skew symmetry determine the g;; completely: Letting 4, be
the 2k > 2k matrix (@;); ;. —g+1, —t+2, ..., k» We see that

A= (o )= o)
Gy Ay --1 0

and in general

Therefore det 4, = =1 for all & > 1. Now we show that p is nondegenerate. For
00 [o]
suppose p(gAG) =1. Then ifg = Y, xje;, we must have Y, ayx; = 0 for all
jo-—occ Jj -c0
iin Z. Choosing & so large that x; =0 for j > k. we get 4, X =0 wheie
X =(X)j - _r+1, —neo, ... Since detd, = = 1, A4, is invertible in the ringof & &
matrices over Z,. This forces X = 0, and so g = 0. With this nondegenerate p,

&

we get a group shift ¢ = 6(G, s, @) of R, of index n.

ProPoSITION 5.2. The group shift 6 = 6(G, s, @) constructed above is a shift
of index 1 of R but is not an n-shift.
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Proof. Assume 6(G, 5, @) is conjugate to an n-shift ¢ = o(G,, s,, w) in the
notation of Section 4. Since g(R)' n R = C, there exists a group isomorphism
y: G, — G such that sy = yo5, (Proposition 2.5). Note that ¢, € G, is a generator
(Section 4), that is, {sk(e;) : k > O} generates G,. Hence y(e,) must be a generator
of G. However, it is easy to see that there is no generator in G. Q.E.D.

REMARK. The example of Price [6; § 5] is in fact a group shift 4(G, s, o),

where G = @ Z{), se;) = e;+,1fi > 0 and s(e;) = ¢; + €;41 if i <O.

Using tensor products, we can get new shifts from old ones. Suppose
g, =0(G;, s;, w),i =1,2, are group shifts. Then o, ® 0, is a group shift
0(G: ® Gy, 51 D 5z, W @ @), Where (51 @ 52) (g1 @ &) = 51(81) D 52(g2) and
(01 ® wo)(g: ® g2, I, ® hy) = wy(g1, M)ws(gs, N1p). Note that w, @ w, is nonde-
generate if and only if w, and w, are both nondegenerate. If ¢,(R) nR = C,
i=1,2, then (6, ® )} R®R)Y n (R®R) = C. In particular, if [G;:5(G)] is a
prime, then 6, ® o, always satisfies this by Proposition 1.4 (iii).

PROPOSITION 5.3. The tensor product ¢ of an ny-shift ¢, and an ny-shift ¢, is
a shift of R of index nyn, . o is an nyny-shift if and only if (m,ny) = 1.

Proof. As in Section 4, let G, = éOOZ,(P and s,(e;) = e;4;. Assume
g =0, ® 0, is an mu,-shift. By Theorem 2.5, there exists an isomorphism
7: G,,1 @ G,,2 — G,,l,,2 such that Sun,© P =V (s,,1 @ s,.z). Hence 7y induces
an isomorphism between G,,1 ® G,,Z_l(s,,l ® s,,z)(G,,1 @ G,,Z) = Z,,l @ Z,,2 and
G nyfSn 0 (Gn n)-=Zn n, 1t follows that (ny, np) = 1. Conversely, if (ny, n,) = 1, fix
an isomorphism 7: Z,,1 (&) Z,,2 - Z,,I,,2 and extend y to G,,1 (23] G,12 - G,,l,,2 in an
obvious way so that Sum oV =70 (s,71 @ s,,ﬁ). Q.E.D.

ProrosiTION 5.4. For each prime n > 4, there is a shift of R of index n which
is not a group shift.

Proof. Let ¢ be an n-shift over G = @ Z{). Denote U,, by U;, and put
ie0 ' ]
pi=Q0/m(1 + U, + U} + ... + Ur~%, which is a spectral projection of ¥;. Since
UU; = 2U;U; for some AeT, an easy computation shows that

1 e -
pipipi=--pi, Hi#1,
n
PiP; =P;P;, if A =1,

{wp,) = —1-1r(w), f wis aword on 1, py, ...,P;,-1.
i n :
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Let M and N be the von Neuman subalgebra of WG, o) generated by {p., po,

Pys ooy and {pa, py, ...} respectively. The shift ¢ restricts to a shift & on M such
that g(p;) = P;sy1. SO a(M) = N. We choose the defining sequence of ) by a{l}) == 1,
a(—1) = —1, and e(l} =0 otherwise. Then !p,, p,, ...} satisfies the conditions
of Jones [2; 4.1.1]. Heace A is the hyperfinite Ii,-factor R and NV is a subfactor of M
with index [M: N1 = n. By [2; §5), 6(M) © M ++ Cifa > 4. Henee by Proposition
1.4 (iii), when n > 4 is a priine, ¢ cannot be a group shift. Q.E.D.

CONCLUDING REMARK. Let S be any nonempty subset of positive integers.
When 5 > 3, we can always find #-shifts so that the procedure in the proof of above
proposition provides o shift given by p; — p;., Where {py, ps, ...} is  sequence of
projections satisfying

. v
G) pipjp; = - -p; i (i —j €S
H
(i) pip; =p;p; if [i—j €S; and
(i) te(wp;) = - tr(w) if w is 2 WOrd 01 1, Py, Payerer Pics -
i

The work of V.F.R. Jones ([2], [3]) suggests that it would be of interest to carry out
further investigations of such sequences of projections, particularly when 1/x is
raplaced in certain cases by 7in the Jones index set. We wish to discuss this in
future publications.
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