SHIFTS ON THE HYPERFINITE FACTOR OF TYPE II,

DONALD BURES and HONG-SHENG YIN

0. INTRODUCTION

Following Powers, we call a shift on the hyperfinite II_1 -factor R a unit-preserving *-endomorphism σ of R such that $\bigcap_{k=1}^{\infty} \sigma^k(R) = \mathbb{C}$. We introduce a class of shifts, which we call group shifts, constructed by realizing R as a twisted group von Neumann algebra on a discrete abelian group. We obtain an intrinsic characterization of such shifts, and, for those satisfying $\sigma(R)' \cap R = \mathbb{C}$, a classification up to conjugacy. We then examine in detail the special case of the group $\bigoplus_{i=0}^{\infty} \mathbb{Z}_n^{(i)}$ with the canonical shift, thereby unifying and generalizing results of R. Powers, G. Price and M. Choda.

In Section 1 we give the details of the construction of a group shift given a discrete abelian group G, a shift s on G, and an s-invariant 2-cocycle ω on G. In Section 2 we give first an intrinsic characterization of group shifts (Proposition 2.1); secondly, when $\sigma(R)' \cap R = C$, we determine the normalizer of σ (Proposition 2.2); finally we classify such σ (up to conjugacy) in terms of G, s, ω (Proposition 2.5).

In Sections 3 and 4 we study *n*-shifts: group shifts with $G = \bigoplus_{i=0}^{\infty} \mathbf{Z}_n^{(i)}$ and s the canonical shift on G. For n=2 these are the binary shifts of [5] and [6]; for general n these include the n-unitary shifts of [1]. In Section 3 we obtain a necessary and sufficient condition for $W^*(G, \omega)$, the twisted group von Neumann algebra determined by the group G and cocycle G, to be a factor (Proposition 3.1). This result was proved for n=2 in [6]. And in [7], a preprint which we received during the final preparations of this paper, G. Price proves a result equivalent to our Proposition 3.1 by somewhat different methods. In Section 4 we obtain an intrinsic characterization for n-shifts (Proposition 4.1) and we find an explicit conjugacy invariant when n is square-free (Proposition 4.4). In Section 5 we conclude with some simple examples of shifts with integer index which are not group shifts, and of group shifts of finite index n which are not n-shifts.

We would like to thank Geoffrey Price for sending us the preprints [6] and [7]. The second named author was supported by Edmond Granirer's NSERC grant. He is grateful for this support.

1. GROUP SHIFTS

In this section we construct certain shifts of the hyperfinite II_1 -factor R by realizing R as a twisted group von Neumann algebra. First let us recall some definitions.

DEFINITION 1.1. ([5]). A shift σ of a unital C° -algebra A is a *-endomorphism of A such that $\sigma(1) = 1$ and $\bigcap_{k=1}^{\infty} \sigma^k(A) = \mathbb{C}$.

DEFINITION 1.2. A shift s of a group G is an one-to-one endomorphism of G such that $\bigcap_{k=1}^{\infty} s^k(G) = \{e\}.$

In the following let G be a discrete abelian group, ω a normalized 2-cocycle of G with values in the unit circle T and s a shift of G. Assume s is compatible with ω , that is $\omega(s(g), s(h)) = \omega(g, h)$, for $g, h \in G$. The (reduced) twisted group C° -algebra of G, $C^{\circ}(G, \omega)$, is the C° -algebra generated by the left regular projective representation of G, $g \to U_g$, associated with ω on $\ell^2(G)$. These unitaries U_g satisfy the relation

(1.1)
$$U_g U_h = \omega(g, h) U_{gh}, \quad g, h \in G.$$

The weak closure of $C^{\circ}(G, \omega)$ is the (reduced) twisted group von Neumann algebra of G, $W^{\circ}(G, \omega)$. The shift s of G induces a *-endomorphism σ of $W^*(G, \omega)$, as well as of $C^{\circ}(G, \omega)$, by $\sigma(U_g) = U_{s(g)}$, $g \in G$. If H is a subgroup of G, $W^*(H, \omega|H)$ can be identified in a natural way with the von Neumann subalgebra of $W^{\circ}(G, \omega)$ generated by $\{U_g : g \in H\}$.

PROPOSITION 1.1. σ is a shift of $W^*(G, \omega)$ as well as of $C^*(G, \omega)$.

Proof. It is obvious that $\sigma^k(W^*(G, \omega)) = W^*(s^k(G), \omega)$. If $\{H_i\}$, $i \in I$, is a family of subgroups of G, then $\bigcap_i W^*(H_i, \omega) = W^*(\bigcap_i H_i, \omega)$ which follows from

$$\bigcap_{i} \ell^{2}(H_{i}) = \ell^{2}(\bigcap_{i} H_{i}). \text{ Hence } \bigcap_{k=0}^{\infty} \sigma^{k}(W^{*}(G, \omega)) = W^{*}\left(\bigcap_{k=0}^{\infty} s^{k}(G), \omega\right) = \mathbb{C}. \text{ Q.E.D.}$$

The 2-cocycle ω of G gives rise to a character ρ of the second exterior product $G \wedge G$ via

(1.2)
$$\rho(g \wedge h) = \omega(g, h) \overline{\omega(h, g)}, \quad g, h \in G.$$

Proposition 1.2. If H is a subgroup of G, then

$$W^{*}(H, \omega)' \cap W^{*}(G, \omega) = W^{*}(D_{H}, \omega),$$

where D_H is the subgroup $\{g \in G : \rho(g \land H) = 1\}$ of G.

Proof. From (1.1), $U_gU_h = \rho(g \wedge h)U_hU_g$. Hence $W^*(D_H, \omega)$ is the relative commutant of $W^*(H, \omega)$. For the reverse inclusion, let $T \in W^*(H, \omega)' \cap W^*(G, \omega)$ and let $\{f_g : g \in G\}$ be the canonical orthonormal basis of $\ell^2(G)$, so that $U_g(f_h) = \omega(g, h)f_{gh}$. Assume $Tf_e = \sum_{g \in G} c_g f_g$, where e is the identity of G, $c_g \in C$, $\sum_{g \in G} |c_g|^2 < \infty$. For any $h \in H$, we have

$$(U_h T) f_e = \sum_g c_g \omega(h, g) f_{h_G},$$

$$(TU_h)f_e = T(R_{h^{-1}}f_e) = R_{h^{-1}}(Tf_e) = \sum_{g} c_g\omega(g,h)f_{gh},$$

where $k \to R_k$ is the right regular ω -representation of $G: R_k(f_b) = \omega(g, k^{-1}) f_{gk^{-1}}$ with R_k commuting with the U_g . Since $U_h T = T U_h$, we get $\sum_g c_g \omega(h, g) f_{hg} = \sum_g c_g \omega(g, h) f_{gh}$. Therefore $c_g \omega(g, h) = c_s \omega(h, g)$, $g \in G$, $h \in H$. If $c_g \neq 0$, then $\rho(g \land h) = 1$. This shows that T is supported on D_H . It follows that $T \in W^*(D_H, \omega)$.

COROLLARY 1.3. (i) $W^*(G, \omega)$ is a factor if and only if $\rho(g \wedge G) = 1$ implies g = e.

(ii) $(\sigma^k(W^*(G,\omega)))' \cap W^*(G,\omega) = \mathbb{C}$ if and only if $\rho(g \wedge s^k(G)) = 1$ implies g = e.

When ω (resp. ρ) satisfies the condition of Corollary 1.3(i), we say it is non-degenerate.

PROPOSITION 1.4. Suppose that G is a countable discrete abelian group, that ω is a nondegenerate 2-cocycle of G and that s is a shift of G compatible with ω . Let σ be the shift of $W^*(G, \omega)$ induced by s. Then

- (i) $W^*(G, \omega) = R$, the hyperfinite II_1 -factor;
- (ii) The Jones index $[R: \sigma(R)] = [G:s(G)]$;
- (iii) $\sigma(R)' \cap R = \mathbb{C}$ provided [G: s(G)] is a prime number.

Proof. (i) The nondegeneracy of ω implies that $W^*(G, \omega)$ is a (finite) factor and that s is one-to-one on G. Then $\bigcap_k s^k(G) = \{e\}$ implies that G is an infinite group. Hence $W^*(G, \omega)$ is a Π_1 -factor. The dual group of G, \hat{G} , acts on $W^*(G, \omega)$ via $\theta(U_g) = \theta(g)U_g$, $\theta \in \hat{G}$, $g \in G$. It is a standard result that this action is ergodic. Thus by [4; 5.15], $W^*(G, \omega) = R$, the unique hyperfinite Π_1 -factor.

- (ii) This follows from [2; 2.32]. In fact, we can replace the crossed products there by twisted crossed products and the proof still works.
- (iii) By Corollary 1.3 (ii), it is enough to show that $\rho(g \wedge s(G)) = 1$ implies g = e. Assume the contrary. Then the subgroup $E = \{g \in G : \rho(g \wedge s(G)) = 1\}$ is nontrivial. We have $E \cap s(G) = \{e\}$. For, if $s(g) \in E$, then $\rho(g \wedge G) = \rho(s(g) \wedge s(G)) = 1$ by the compatibility. Since ω is nondegenerate, we get g = e and so s(g) = e. Therefore the restriction of the quotient map $\pi: G \to G/s(G)$ to E is one-to-one. Since G/s(G) has order [G: s(G)] a prime number, it follows that E is a cyclic group of order the same prime, and that $G = E \oplus s(G)$. Let g be a generator of E; then $\rho(g \wedge G) = \rho(g \wedge E) \rho(g \wedge s(G)) = \rho(g \wedge E) = 1$. The nondegeneracy of complies that g = e. A contradiction.

The shift σ of R constructed in Proposition 1.4 will be called a group shift and denoted by $\sigma(G, s, \omega)$ when there is need to indicate the data G, s, ω . Note that for a group shift $\sigma(G, s, \omega)$, ω is always nondegenerate by assumption.

We record the following result for future reference.

PROPOSITION 1.5. The following are equivalent:

- (i) $C^*(G, \omega)$ is simple;
- (ii) $C^{\circ}(G, \omega)$ has trivial centre;
- (iii) $C^{\circ}(G, \omega)$ has unique tracial state;
- (iv) ω is nondegenerate;
- (v) $W^{\circ}(G, \omega)$ is a factor.

This proposition is essentially proved in [8]. The proof given in [5] can be viewed as an alternative proof in the case $G = \bigoplus_{i=1}^{\infty} \mathbb{Z}_{2}$.

Finally we remark that some results in this section are also true for non-abelian groups.

2. CHARACTERIZATION AND CLASSIFICATION OF GROUP SHIFTS

In this section we first determine when a given shift σ of R is conjugate to a group shift $\sigma(G, s, \omega)$ as constructed in Section 1. Secondly, for those group shifts σ of R satisfying $\sigma(R)' \cap R = C$, we calculate the normalizer of σ and its conjugacy class in terms of (G, s, ω) .

PROPOSITION 2.1. A shift σ of R is conjugate to a group shift $\sigma(G, s, \omega)$ if and only if there exists a set S of unitaries of R such that

- (i) $\{S, \, \sigma(S), \, \sigma^2(S), \, \ldots\}'' = R \, and$
- (ii) $uvu^{\circ}v^{\circ} \in \mathbb{C}$ for all u, v in $\{S, \sigma(S), \sigma^{2}(S), \ldots\}$.

Denote by $G_{\sigma}(S)$ the group of unitaries generated by $\{S, \sigma(S), \sigma^{2}(S), \ldots\}$, and let $\pi: G_{\sigma}(S) \to G_{\sigma}(S)_{i}G_{\sigma}(S) \cap \mathbb{C}$ be the quotient map. Then under conditions

(i) and (ii) σ is conjugate to $\sigma(G, s, \omega)$, where:

$$G = G_{\sigma}(S)/G_{\sigma}(S) \cap \mathbb{C},$$

$$s(\pi(u)) = \pi(\sigma(u)),$$

and ω is a suitable nondegenerate 2-cocycle.

Proof. If σ is a group shift $\sigma(G, s, \omega)$, we can take $S = \{U_g : g \in G\}$. For the converse, assume S satisfying (i) and (ii) is given. By (ii), G is an abelian group. The map s on G is naturally induced by σ and is a shift of G since σ is a shift of G. It is easy to see that s is one-to-one. Define a cross-section δ of π as follows: let $\delta(0) = 1$. For all $g \in G \setminus s(G)$, let δ satisfy $\delta(g^{-1}) = \delta(g)^{-1}$. For any $g \in s^k(G) \setminus s^{k+1}(G)$, there is a unique element $g' \in G \setminus s(G)$ such that $s^k(g') = g$. Then define $\delta(g) = \sigma^k(\delta(g'))$. Write $\delta(g) = V_g$, $g \in G$. Our choice of δ ensures $\sigma(V_g) = V_{s(s)}$. Since $\pi(V_gV_h) = gh = \pi(V_{gh})$, we have $V_gV_h = \omega(g, h)V_{gh}$ for some $\omega(g, h) \in T$. It is routine to check that ω is a normalized 2-cocycle of G. Applying σ to the both sides of the equation $\omega(g, h)V_{gh} = V_gV_h$, we obtain

$$\omega(g,h)V_{s(gh)}=V_{s(g)}V_{s(h)}=\omega(s(g),s(h))V_{s(gh)}.$$

This shows that s is compatible with ω . If $g \in G$ is such that $\rho(g \land G) = 1$, then V_g commutes with all V_h , $h \in G$. It follows from (i) that V_g is a scalar. So g = 0. This proves that ω is nondegenerate. By the universal property of twisted group C^* -algebras, there exists a *-homomorphism $\beta \colon C^*(G, \omega) \to R$ such that $\beta(U_g) = V_g$, $g \in G$. Since ω is nondegenerate, it follows from Proposition 1.5 that β is a *-isomorphism onto the C^* -subalgebra of R generated by $\{V_g : g \in G\}$, and β extends to a *-isomorphism of $W^*(G, \omega)$ onto R by the uniqueness of tracial state. Finally let $\widetilde{\sigma}$ be the group shift associated to (G, s, ω) . We check $\sigma \circ \beta = \beta \circ \widetilde{\sigma}$. So σ is conjugate to $\widetilde{\sigma}$.

DEFINITION 2.1. ([5]). The normalizer, $N(\sigma)$, of a shift σ of R is the group of unitaries w of R such that $w\sigma^k(R)w^* = \sigma^k(R)$, $k = 1, 2, \ldots$

PROPOSITION 2.2. Suppose $\sigma = \sigma(G, s, \omega)$ is a group of R. Then $N(\sigma) = \{\lambda U_g : \lambda \in \mathbf{T}, g \in G\}$ if and only if $\sigma(R)' \cap R = \mathbf{C}$.

Proof. First assume $\sigma(R)' \cap R = \mathbb{C}$. Since $U_s \sigma^k(U_h) U_g^* = U_g U_{s^k(h)} U_g^* = 0$ $= \rho(g \wedge s^k(h)) U_{s^k(h)} \in \sigma^k(R)$, and since $\{U_h : h \in G\}'' = R$, we see that $U_g \in N(\sigma)$. Now let $K = \{\theta \in \hat{G} : \theta(s(G)) = 1\}$. The group K acts on $R = W^*(G, \omega)$ via $\theta(U_g) = 0$ $= \theta(g) U_g$, $\theta \in K$, $g \in G$. The fixed point subalgebra of K, K, is just

$$\bigcap_{\theta \in K} W^*(\ker \theta, \, \omega) = W^*(\bigcap_{\theta \in K} \ker \theta, \, \omega) = W^*(s(G), \, \omega) = \sigma(R)$$

(cf. [4], [9]). Assume $W \in N(\sigma)$. Since the linear span of $\{U_g : g \in G\}$ is weakly dense in R, we can find some $g \in G$ such that $\tau(U_g^*W) \neq 0$, where τ is the unique normal normalized trace on R. Write $U_g^*W = W_1$. Since $W_1 \in N(\sigma)$, there is a *-automorphism γ of R such that $W_1\sigma(a)W_1^* = \sigma(\gamma(a))$, $a \in R$. Then $\theta(W_1)\sigma(a)\theta(W_1)^* = \sigma(\gamma(a))$, $\theta \in K$. It follows that $W_1^*\theta(W_1) \in \sigma(R)' \cap R = C$. Hence $\theta(W_1) = \lambda W_1$ for some $\lambda \in T$. Taking the trace, which is K-invariant, we get $0 \neq \tau(W_1) = \tau(\theta(W_1)) = \lambda \tau(W_1)$. This forces $\lambda = 1$, and so $\theta(W_1) = W_1$. Since $\theta \in K$ is arbitrary, we obtain $W_1 \in R^{\Lambda} = \sigma(R)$. Let $W_1 = \sigma(W_2)$. It is easy to see that $W_2 \in N(\sigma)$. The uniqueness of trace implies $\tau(W_2) = \tau(\sigma(W_2)) = \tau(W_1) \neq 0$. Repeating the above argument with W_2 , we get $W_2 \in \sigma(R)$. Thus $W_1 \in \sigma^2(R)$. By induction, we obtain $W_1 \in \bigcap_{K} \sigma^k(R) = C$. Hence $W = \lambda U_g$ for some $\lambda \in T$. This completes the proof that $N(\sigma) = \{\lambda U_g : \lambda \in T, g \in G\}$.

For the converse, if $\sigma(R)' \cap R \neq \mathbb{C}$, then any unitary in $\sigma(R)' \cap R$ is in $N(\sigma)$. By Proposition 1.2, $\sigma(R)' \cap R$ is the von Neumann algebra of the subgroup $\{g \in G : \rho(g \land s(G)) = 1\}$. If this group is nontrivial, $\sigma(R)' \cap R$ certainly contains unitaries which are not of the form λU_g .

Q.E.D.

Corollary 2.3. Suppose σ is a shift of R. Then the following are equivalent:

- (i) $N(\sigma)^{\prime\prime} = R$ and $N(\sigma)/T$ is abelian;
- (ii) σ is a group shift with $\sigma(R)' \cap R = \mathbb{C}$.

Proof. (i) \Rightarrow (ii). Taking $S = N(\sigma)$ in Proposition 2.1, we see that σ is some group shift $\sigma(G, s, \omega)$. Since $\sigma(N(\sigma)) \subset N(\sigma)$, the group $G = N(\sigma)$, T. Hence $N(\sigma) = \{\lambda U_g : \lambda \in T, g \in G\}$. By Proposition 2.2, we get $\sigma(R)' \cap R = C$.

(ii) \Rightarrow (i). By Proposition 2.2 again, $N(\sigma) = \{\lambda U_g : \lambda \in \mathbb{T}, g \in G\}$. Hence (i) holds. Q.E.D.

COROLLARY 2.4. If any element in $N(\sigma)$ has square a scalar multiple of the identity and if $N(\sigma)'' = R$, then σ is a group shift with $\sigma(R)' \cap R = C$.

Proof. From the hypothesis, any element in $N(\sigma)/T$ has order two. This implies, as is well-known and elementary in group theory, that $N(\sigma)/T$ is abelian. Then Corollary 2.3 applies.

REMARK. By this corollary, the shifts considered in [6; § 4] are in fact group shifts.

For group shifts $\sigma = \sigma(G, s, \omega)$ with $\sigma(R)' \cap R = C$, Proposition 2.2 shows that the normalizer is the central extension of G. This enables us to obtain a complete classification of these shifts up to conjugacy.

PROPOSITION 2.5. Suppose $\sigma_i = \sigma(G_i, s_i, \omega_i)$, i = 1, 2, are group shifts of R with $\sigma_i(R)' \cap R = C$. Then σ_1 and σ_2 are conjugate if and only if there exist a group somorphism $\gamma \colon G_1 \to G_2$ and a map $\lambda \colon G_1 \to T$ such that

(i)
$$s_2 \circ \gamma = \gamma \cdot s_1$$
;

(ii)
$$\omega_1(g, h) = \frac{\lambda(g)\lambda(h)}{\lambda(gh)}\omega_2(\gamma(g), \gamma(h)), g, h \in G_1;$$

(iii)
$$\lambda(s_1(g)) = \lambda(g), g \in G_1$$
.

Proof. Assume σ_1 and σ_2 are conjugate. Then there is a *-automorphism ψ of R such that $\sigma_2 \circ \psi = \psi \circ \sigma_1$. Thus ψ restricts to a group isomorphism of the normalizers: $\psi \colon N(\sigma_1) \to N(\sigma_2)$. By Proposition 2.2, $N(\sigma_1) = \{\lambda U_g : \lambda \in \mathbf{T}, g \in G_1\}$ and $N(\sigma_2) = \{\lambda V_g : \lambda \in \mathbf{T}, g \in G_2\}$. Then ψ induces a group isomorphism $\gamma : G_1 \to G_2$ since $G_i = N(\sigma_i)/\mathbf{T}$. From $\sigma_2 \circ \psi = \psi \circ \sigma_1$, we get $s_2 \circ \gamma = \gamma \circ s_1$. It is obvious that $\psi(U_g) = \lambda(g)V_{\gamma(g)}$, $g \in G_1$, for some $\lambda(g) \in \mathbf{T}$. Applying ψ to the equation $U_gU_h = \omega_1(g,h)U_{gh}$, we obtain

$$\lambda(g)V_{\gamma(g)} \cdot \lambda(h)V_{\gamma(h)} = \omega_1(g, h)\lambda_{gh}V_{\gamma(gh)}.$$

Since $V_{\gamma(g)}V_{\gamma(h)} = \omega_2(\gamma(g), \gamma(h))V_{\gamma(gh)}$, we get

$$\omega_1(g, h) = \frac{\lambda(g)\lambda(h)}{\lambda(gh)}\omega_2(\gamma(g), \gamma(h)).$$

Applying σ_2 to $\psi(U_s) = \lambda(g)V_{\gamma(g)}$, we obtain

$$\sigma_2 \circ \psi(U_g) = \lambda(g)\sigma_2(V_{\gamma(g)}) = \lambda(g)V_{s,\circ\gamma(g)} = \lambda(g)V_{\gamma\circ s_1(g)}.$$

However, $\sigma_2 \circ \psi(U_g) = \psi \circ \sigma_1(U_g) = \psi(U_{s_1(g)}) = \lambda(s_1(g))V_{\gamma \circ s_1(g)}$. Therefore $\lambda(s_1(g)) = \lambda(g)$. This proves the necessity. For the sufficiency, assume γ and λ satisfying (i)—(iii) are given. Then $\psi : C^*(G_1, \omega_1) \to C^*(G_2, \omega_2)$, $\psi(U_g) = \lambda(g)V_{\gamma(g)}$, is a *-isomorphism and extends to a *-isomorphism of $W^*(G_1, \omega_1)$ onto $W^*(G_2, \omega_2)$ by the uniqueness of the trace (Proposition 1.5). It is easy to check that $\sigma_2 \circ \psi = \psi \circ \sigma_1$, that is, σ_1 and σ_2 are conjugate shifts.

Q.E.D.

REMARK. The conditions (i)—(iii) of Proposition 2.5 are sufficient for any two group shifts $\sigma_i = \sigma(G_i, s_i, \omega_i)$ to be conjugate, without the hypothesis that $\sigma_i(R)' \cap R = C$. Moreover, if we replace the map λ by $\theta \circ \lambda$ for any $\theta \in \hat{G}$, the condition (ii) remains unchanged, but the condition (iii) now becomes $\theta(s_1(g))\lambda(s_1(g)) = \theta(g)\lambda(g)$, $g \in G_1$. For certain groups, we can always find some θ to make this equation hold. Therefore, the two conditions (i) $s_2 \circ \gamma = \gamma \circ s_1$ and (ii) $[\omega_1] = [\omega_2 \circ \gamma]$ in $H^2(G_1; T)$ will be sufficient for σ_1 and σ_2 to be conjugate. A direct consequence of this observation is that we can use the characters ρ of $G \cap G$ to replace the cocycles ω . More precisely, let ω_1 and ω_2 be (nondegenerate) cocycles of G with $[\omega_1] = [\omega_2]$. Let S be a shift of G satisfying $\omega_1 = \omega_1 \circ S$, S in S induces two shifts S and S and S and S and S and S induces two shifts S and S and S should be conjugate. However, in the circumstances mentioned

above, we know that σ_1 and σ_2 are actually conjugate. Thus we only need to specify the character ρ of $G \wedge G$ defined in (1.2), since those characters and cohomology classes of cocycles are in one-to-one correspondence (cf. [4]).

PROPOSITION 2.6. Suppose $G = \bigoplus_{i=0}^{\infty} \mathbf{Z}_n^{(i)}$, ω_1 and ω_2 are 2-cocycles of G with $\omega_1(g,h) = \frac{\lambda(g)\lambda(h)}{\lambda(gh)}\omega_2(g,h)$, $g,h \in G$, for some map $\lambda:G \to \mathbf{T}$. Let s be the shift $s(e_i) = e_{i+1}$, $i \geq 0$, where e_i is a generator of $\mathbf{Z}_n^{(i)}$. Suppose $\omega_i \circ s = \omega_i$, i = 1, 2. Then the shifts σ_1 and σ_2 induced by s on $W^*(G,\omega_1)$ and $W^*(G,\omega_2)$ respectively are conjugate.

Proof. The hypotheses implies that the map $\psi(g) = \frac{\lambda(g)}{\lambda(s(g))}$, $g \in G$, is a character of G. We define a character θ of G by $\theta(e_0) = 1$, $\theta(e_i) = \psi(e_{i-1})\theta(e_{i-2})$, $i \ge 1$. This guarantees $\theta(s(g))\lambda(s(g)) = \theta(g)\lambda(g)$, $g \in G$. With $G_1 = G_2 = G$, $s_1 = s_2 = s$, $\gamma = \mathrm{id}_G$ and λ being $\theta \circ \lambda$ in Proposition 2.5, all three conditions are fulfilled. Hence σ_1 and σ_2 are conjugate. Q.E.D.

3. FACTOR CONDITION

Let $n \ge 2$ be an integer, let $G = \bigoplus_{i=0}^{\infty} \mathbf{Z}_n^{(i)}$, let $s(e_i) = e_{i+1}$, where e_i is a generator of $\mathbf{Z}_n^{(i)}$, and let ω be an s-compatible 2-cocycle. Let σ be the shift of $W^*(G, \omega)$ induced by s. In this section we determine all those ω which are nondegenerate, equivalently, which make $W^*(G, \omega)$ a factor. By the remark after Theorem 2.5 and Proposition 2.6, this is equivalent to determining all nondegenerate s-compatible characters ρ of $G \land G$. Here the s-compatibility means $\rho(g \land h) = \rho(s(g) \land s(h))$ for all g, h in G. In the case when n = 2, this problem was solved previously by G. Price [6]. However, our approach is different, and we feel, much simpler.

Let $\gamma = e^{2\pi i/n}$ and let $\rho(e_0 \wedge e_j) = \gamma^{a(j)}$, where $a(j) \in \mathbb{Z}_n$. By defining

(3.1)
$$a(0) = 0, \quad a(-j) = -a(j),$$

we obtain a sequence $\{a(j)\}, j \in \mathbb{Z}$, of elements of \mathbb{Z}_n satisfying

(3.2)
$$\rho(e_j \wedge e_k) = \gamma^{a(k-j)}, \quad j, \ k = 0, 1, 2, \dots$$

Conversely, each doubly infinite sequence $\{a(j)\}\subset \mathbb{Z}_n$ satisfying (3.1) determines an s-compatible character ρ by (3.2). We call $\{a(j)\}$ the defining sequence of ρ , as well as of ω .

PROPOSITION 3.1. The following are equivalent:

- (i) $W^*(G, \omega)$ is a factor;
- (ii) $(\sigma(W^*(G, \omega)))' \cap W^*(G, \omega) = \mathbb{C};$
- (iii) For all primes p dividing n, the defining sequence $\{a(j)\}$ of ω fails to be periodic mod p.

Proof. By Corollary 1.3, condition (i) is equivalent to $\rho(g \land G) = 1$ implying g = 0, and condition (ii) is equivalent to $\rho(g \land s(G)) = 1$ implying g = 0. Then the following lemmas will complete the proof.

Lemma 3.2. Suppose $g = \sum_{j=0}^{\infty} g_j e_j$, where $g_j \in \mathbf{Z}_n$ and $g_j = 0$ for all but finitely many j. Then $\rho(g \wedge s^m(G)) = 1$ if and only if

(3.3)
$$\sum_{j=0}^{\infty} g_j a(k-j) = 0 \quad \text{for } k = m, m+1, m+2, \dots$$

Proof. $s^m(G)$ is generated by $\{e_k : k \ge m\}$. Now $\rho(g \land s^m(G)) = 1$ if and ony if $\rho(g \land e_k) = 0$ for $k \ge m$, the latter being (3.3). Q.E.D.

LEMMA 3.3. Suppose that there exists a prime p dividing n and such that $\{a(j)\}_{j\in\mathbb{Z}}$ is periodic modulo p. Then there exists $g\in G$, $g\neq 0$ and $\rho(g\wedge G)=1$.

Proof. Assume t is a positive integer such that $a(j) = a(j+t) \pmod{p}$ for all $j \in \mathbb{Z}$. Then put $g = \frac{n}{p} (e_0 - e_t)$. Q.E.D.

LEMMA 3.4. Suppose that there exists $g \in G$ with $g \neq 0$ and $\rho(g \land s(G)) = 1$. Then there exists a prime p dividing n such that $\{a(j)\}_{j \in Z}$ is periodic modulo p.

Proof. Assume first that n is a prime. We show $\{a(j)\}_{j\in\mathbb{Z}}$ is periodic. Let $g:=\sum_{j=0}^{\infty}g_{j}e_{j}\neq0$ be such that $\rho(g\wedge s(G))=1$, so that by Lemma 3.2:

(3.4)
$$\sum_{j=0}^{\infty} g_j a(k-j) = 0, \quad \text{for } k = 1, 2, \dots.$$

Let j_1 be the smallest and j_2 the largest j's for which $g_j \neq 0$. Then we can solve (3.4) to obtain

$$a(k-j_1) = \varphi(a(k-j_1-1), \ a(k-j_1-2), \ldots, a(k-j_2))$$

and

$$a(k-j_2) = \psi((a(k-j_2+1), a(k-j_2+2), ..., a(k-j_1))$$

for k = 1, 2, 3, ..., where φ and ψ are fixed linear functions.

Let $r = j_2 - j_1$ and assume first that r > 0. Then we have

(3.5)
$$a(k) = \varphi(a(k-1), a(k-2), \dots, a(k-r))$$
 for all $k \ge 1 - j_1$, and

(3.6)
$$a(k) = \psi(a(k+1), a(k+2), \dots, a(k+r))$$
 for all $k \ge 1 - j_2$.

Since there are only finitely many distinct values for an r-tuple from \mathbb{Z}_n , (3.5) implies that a(k) is ultimately periodic as $k \to \infty$, that is, there exist positive integers t and N such that a(k+t)=a(k) for all $k \ge N$. Then (3.6) implies that a(k+t)=a(k) for all $k \ge 1-j_2$. Since a(-j)=-a(j) for all $j \in \mathbb{Z}$, we deduce from (3.5) that

(3.7)
$$a(k) = \varphi(a(k+1), a(k+2), \dots, a(k+r))$$
 for all $k \le j_1 - 1$.

Since $(1 - j_2) - 1 \le j_1 - 1$ always, (3.6) and (3.7) shows that a(k + t) = a(k) for all $k \in \mathbb{Z}$.

Suppose now r=0. Then (3.4) becomes $g_{j_1}a(k-j_1)=0$ for $k=1,2,\ldots$, or a(k)=0 for $k\leqslant 1-j_1$. Since $j_1\geqslant 0$ and a(-k)=-a(k), we obtain a(k)=0 for all $k\in \mathbb{Z}$.

Now consider the general case where n has the prime decomposition $n=p_1^{z_1}p_2^{z_2}\ldots p_s^{z_s}$. Under the hypothesis $\rho(g\wedge s(G))=1$, we still have (3.4). Since $g\neq 0$, one of the primes $p_i=p$ must be such that $g_{j_1}\neq 0\pmod{p_s^{z_i}}$. Write $g_j=p^kh_j$ where k is the largest integer such that p^k divides all g_j . It follows that $k<\alpha_i$ and that not all h_j are $0 \mod p$. Then we obtain from (3.4) that

$$\sum_{i} h_i a(k-j) = 0 \pmod{p}$$
 for $k = 1, 2, ...$

As before we now find that $\{a(k)\}\$ is periodic mod p.

Q.E.D.

4. n-SHIFTS

For each integer $n \ge 2$, let $G_n = \bigoplus_{i=0}^{\infty} \mathbf{Z}_n^{(i)}$ and let s_n be the shift defined by $s_n(e_i) = e_{i+1}$ as in Section 3, where e_i is a generator of $\mathbf{Z}_n^{(i)}$.

Definition 4.1. A shift σ of the hyperfinite II_1 -factor R is called an *n-shift* if σ is conjugate to a group shift $\sigma(G_n, s_n, \omega)$.

In this section we first give a characterization of n-shifts, which shows that our results about group shifts generalize the results for the binary shifts of Powers [5] and Price [6] and the n-unitary shifts of Choda [1]. Then we discuss the classification problem for n-shifts.

PROPOSITION 4.1. A shift σ of the hyperfinite 11_1 -factor R is conjugate to an n-shift if and only if there exists a unitary u in R (which is called a σ -generator) such that the following hold:

- (i) $u^n = 1$ and $u^k \notin \mathbb{C}$ for $1 \leqslant k \leqslant n-1$;
- (ii) $\{u, \, \sigma(u), \, \sigma^2(u), \, \ldots\}^{\prime\prime} = R;$
- (iii) u and $\sigma^i(u)$ commute up to a scalar for $i = 1, 2, \ldots$

When these conditions hold, the conjugacy is given by $u \to U_{\epsilon_0}$.

Proof. If $\sigma = \sigma(G_n, s_n, \omega)$, we can take $u = U_{e_0}$. Then $\sigma^i(u) = U_{e_i}$ and conditions (i)—(iii) are easily verified. Now assume σ is a shift of R with a unitary $u \in R$ so that the conditions (i)—(iii) are satisfied. Taking $S = \{u\}$ in Proposition 2.1, we see that σ is conjugate to a group shift $\sigma(G, s, \omega)$. By that proposition, G is the quotient group of the group generated by $\{u, \sigma(u), \sigma^2(u), \ldots\}$ modulo scalars. Denote the image of $\sigma^i(u)$ in G by f_i . Then G is the abelian group generated by $\{f_i : i \ge 0\}$ and s is defined by $s(f_i) = f_{i+1}$ (Proposition 2.1). Note that $kf_i = 0$ if and only if $k = 0 \mod n$.

We proceed to show that $\{f_i: i \ge 0\}$ is Z_n -linearly independent, which proves $G = \bigoplus_{i=0}^{\infty} Z_n^{(i)}$. Assume there exists a relation $\sum_{i=0}^{N} c_i f_i = 0$ with $c_N \ne 0 \pmod{n}$ in Z_n . Consider all such relations where N is minimal. Among them choose one so that c_N is minimal. An Euclidean algorithm argument then shows that c_N must divide n. Let $n = dc_N$. Then in $d\sum_{i=0}^{N} c_i f_i = 0$, since $dc_N = 0$, all coefficients must be zero: $dc_i = 0 \pmod{n}$, $0 \le i \le N-1$. It follows that c_N divides c_i for all i. Applying s^j to $\sum_{i=0}^{N} c_i f_i = 0$, we obtain $\sum_{i=0}^{N} \frac{c_i}{c_N} (c_N f_{i+j}) = 0$ for all $j = 0, 1, 2, \ldots$. Now let K be the subgroup of G generated by $\{c_N f_0, c_N f_1, \ldots, c_N f_{N-1}\}$. The above equation shows that $s(K) \subset K$. Since s is one-to-one (see the proof of Proposition 2.1) and K is finite, we get s(K) = K. Then $\bigcap_{k=0}^{\infty} s^k(G) \supset K \ne \{0\}$ contradicting the fact that s is a shift of G.

REMARK 1. The proof of the proposition shows that if G is a group possessing a one-to-one shift s and if $g \in G$ is an element of order n, then the subgroup of G generated by $\{g, s(g), s^2(g), \ldots\}$ is isomorphic to $\bigoplus_{i=0}^{\infty} \mathbf{Z}_n^{(i)}$ under $s^i(g) \to e_i$. This shows that n-shifts are the basic blocks of more general group shifts.

REMARK 2. Suppose that a shift σ of R satisfies the conditions of Proposition 4.1 except that instead of (i) we assume only (i)' $u^n = 1$. Then we can proceed as follows. Let m be the smallest positive integer such that $u^m \in \mathbb{C}$. Let $v = \lambda u$ where λ

is a scalar chosen so that $v^m = 1$. Then $\{\sigma, v\}$ is a pair satisfying the conditions of Proposition 4.1. Hence σ is an *m*-shift. If *n* is a prime, of course (i) and (i)' are equivalent.

REMARK 3. Suppose that σ is an *n*-shift with generator u and that σ is conjugate to $\sigma(G_n, s_n, \omega)$. Then the defining sequence $\{a(j)\}_{j\in\mathbb{Z}}$ (Section 3) for ω is given by

$$u\sigma^{j}(u)u^{\psi}\sigma^{j}(u)^{\psi} = (e^{2\pi \mathrm{i}/n})^{a/j}.$$

COROLLARY 4.2. If σ is an n-shift of R with generator u, then

- (i) $\sigma(R)' \cap R = \mathbb{C}$.
- (ii) The normalizer $N(\sigma) = \{\lambda w : w \text{ is a word in } \sigma^j(u), \lambda \in \mathbf{T}\}.$

Proof. (i) follows from Proposition 3.1; (ii) from Proposition 2.2. Q.E.D.

REMARK. The problem of classifying *n*-shifts is, of course, completely solved by Proposition 2.5. Let $G = \bigoplus_{i=0}^{\infty} \mathbb{Z}_n^{(i)}$ and ρ a nondegenerate character of $G \wedge G$ with defining sequence $\{a(j)\}_{j\in\mathbb{Z}}$. By Proposition 2.5 and Proposition 4.1, to determine all *n*-shifts conjugate to the given one associated with ρ , it is sufficient to determine all elements $g \in G$ such that $\{g, s(g), s^2(g), \ldots\}$ generates G. These g's are called generators. Then the defining sequence can be computed in terms of $\{a(j)\}$ by $\rho(g \wedge s^j(g)) = e^{2\pi i b(j)}$. For example, let n = 4 and $g = e_0 + 2e_1$. Since $g + 2s(g) = e_0$, g is a generator. Using (3.2), we get b(f) = 2a(j-1) + a(j) + 2a(j+1), $j \in \mathbb{Z}$. Thus $\{b(j)\}_{j\in\mathbb{Z}}$ defines an n-shift conjugate to the one defined by $\{a(j)\}_{j\in\mathbb{Z}}$. If $\{a(j): j \geq 0\}$ is $\{0, 1, 0, 0, 0, \ldots\}$, then $\{b(j): j \geq 0\}$ is $\{0, 1, 2, 0, 0, \ldots\}$.

The classification of binary shifts in [5] is achieved by showing that if u and v are two σ -generators of a binary shift σ , then $u = \pm v$. It is tempting to try to prove that, for general n, two σ -generators of an n-shift are related as $u = \lambda v^m$ for some m with (n, m) = 1. However, as shown in the last paragraph for n = 4, this is no longer true. We need some condition on n.

PROPOSITION 4.3. Suppose that u and v are σ -generators of an n-shift σ and that n is square-free. Then $u = \lambda v^m$ for some $\lambda \in T$ with $\lambda^n = 1$, and some integer m with (m, n) = 1.

Proof. By Proposition 4.1, we can assume $\sigma = \sigma(G_n, s_n, \omega)$ such that u is just U_{e_0} . Since v is a generator for σ , $v \in N(\sigma)$. By Proposition 2.2, $v = \lambda U_g$ for some $\lambda \in T$, $g \in G$. Since v is a generator for σ , g must be a generator for G. Hence

(4.1)
$$e_0 = \sum_{j=0}^{M} c_j s^j(g), \quad c_M \neq 0, \quad \text{and} \quad g = \sum_{i=0}^{N} b_i e_i, \quad b_N \neq 0.$$

Substituting and comparing the coefficients of e_{M+N} , we get $b_N c_M = 0$ in \mathbb{Z}_n pro-

vided M+N>0. Hence if n is a prime, we must have M=N=0, so that $g=b_0e_0$, or $v=\lambda u^{b_0}$. It is obvious that $(b_0,n)=1$. In the general case where $n=p_1p_2\dots p_s$ with the p_k 's distinct primes, we pass (4.1) to the quotient group $\bigoplus_{i=0}^{\infty} \mathbf{Z}_p^{(i)}$ for each $p_k=p$. The same argument as above gives $b_i=0 \pmod{p}$ for i>0. Hence $b_i=0 \pmod{p}$ for i>0 and again $g=b_0e_0$.

PROPOSITION 4.4. Suppose that σ_1 and σ_2 are n-shifts with defining sequences $\{a(j)\}_{j\in\mathbb{Z}}$ and $\{b(j)\}_{j\in\mathbb{Z}}$ respectively, and that n is square-free. Then σ_1 and σ_2 are conjugate if and only if there exists an integer m, (m, n) = 1, such that $a(j) = m^2b(j)$ for all $j \in \mathbb{Z}$.

Proof. Assume $\psi \in \operatorname{Aut}(R)$ implementing the conjugacy. Let u and v be gener ators of σ_1 and σ_2 respectively. Then $\psi(u)$ is a generator of σ_2 . By Proposition 4.3, $\psi(u) = \lambda v^m$ for some m, (m, n) = 1. Computing the defining sequences as in Remark 3 following Proposition 4.1, we get $a(j) = m^2 b(j)$. The converse is obvious: $\gamma(e_i) = me_i$ is an automorphism of $\bigoplus_{i=0}^{\infty} \mathbf{Z}_n^{(i)}$ such that $\gamma \circ s = s \circ \gamma$ and that $\rho_1(e_j \wedge e_k) = \rho_2(\gamma(e_i) \wedge \gamma(e_k))$. Q.E.D.

5. SOME EXAMPLES

In this section, we first show that for each integer $n \ge 2$, there is a group shift of index n which is not an n-shift. Then we show, by using Jones' work on index of subfactors, that there are shifts of R which are not group shifts. We conclude with remarks on sequences of projections.

We start with the construction of some group shifts over the group $G = \bigoplus_{j \to -\infty}^{+\infty} \mathbf{Z}_n^{(j)}$. The construction is a variant of that in Price [6]. Let e_j be a generator of $\mathbf{Z}_n^{(j)}$, and let $s(e_j) = e_j + e_{j+1}$. First we check that s is a shift and that [G: s(G)] = n.

Define a character $\theta: G \to T$ by

$$\theta(e_j) = \begin{cases} e^{2\pi i/n}, & \text{if } j \text{ is even,} \\ e^{-2\pi i/n}, & \text{if } j \text{ is odd.} \end{cases}$$

Let $H = \ker \theta$; then [G: H] = n. A short calculation shows that s(G) = H. Hence [G: s(G)] = n.

LEMMA 5.1. s is a shift of G.

Proof. Assume $g \in \bigcap_k s^k(G)$ with $g \neq 0$. Let γ be the automorphism of G defined by $\gamma(e_j) = e_{j+1}$. Since $\gamma \circ s = s \circ \gamma$, we have $\gamma'(g) \in \bigcap_k s^k(G)$ for all $l \in \mathbb{Z}$.

Therefore, without loss of generality, we may assume $g = \sum_{j=0}^{N} c_j e_j$ with $c_N \neq 0$. Note that

$$s^{k}(e_{0}) = e_{0} + {k \choose 1} e_{1} + {k \choose 2} e_{2} + \ldots + {k \choose k-1} e_{k-1} + e_{k}.$$

Thus $g = c_N s^N(e_0)$ is a linear combination of e_0 , e_1 , ..., e_{N-1} . It follows from induction that $g = \sum_{j=0}^N b_j s^j(e_0)$ with $b_N = c_N$. Let b_k be the first nonzero b_j . Then $g = b_k s^k(e_0) \in s^{k+1}(G)$. Since $g \in s^{k+1}(G)$ by assumption, we have $b_k s^k(e_0) \in s^{k+1}(G)$. It is easy to see that s is one-to-one. Hence $b_k e_0 \in s(G) = \ker \theta$, and $1 = \theta(b_k e_0) = e^{(2\pi i!n)b_k}$. Thus $b_k = 0 \pmod{n}$. A contradiction. Q.E.D.

Next we need to define a nondegenerate character ρ on $G \wedge G$ which is compatible with s. Let $\rho(e_i \wedge e_j) = \mathrm{e}^{(2\pi \mathrm{i}/n)a_{i,j}}$ where $a_{i,j} \in \mathbf{Z}_n$. The compatibility condition $\rho(e_i \wedge e_j) = \rho(s(e_i) \wedge s(e_j))$ is just that

(5.1)
$$a_{i,j+1} + a_{i+1,j+1} + a_{i+1,j} = 0$$
 for all $i, j \in \mathbb{Z}$.

The $a_{i,j}$ satisfy also $a_{i,j} = -a_{j,i}$ and $a_{i,i} = 0$. Set $a_{0,1} = 1$ and $a_{0,k} = 0$ for $k \neq 1$. Then (5.1) and the skew symmetry determine the $a_{i,j}$ completely: Letting A_k be the $2k \times 2k$ matrix $(a_{i,j})_{i,j+k+1, k+2, \dots, k}$, we see that

$$A_1 = \begin{pmatrix} a_{66} & a_{16} \\ a_{61} & a_{11} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

and in general

$$A_{k+1} = \begin{pmatrix} * & \dots & * & \pm & 1 \\ \vdots & & & & \ddots \\ \vdots & & & & \ddots \\ * & & & & \vdots \\ \mp & 1 & 0 & \dots & 0 \end{pmatrix}.$$

Therefore $\det A_k = \pm 1$ for all $k \ge 1$. Now we show that ρ is nondegenerate. For suppose $\rho(g \land G) = 1$. Then if $g = \sum_{j=-\infty}^{\infty} x_j e_j$, we must have $\sum_{j=-\infty}^{\infty} a_{ij} x_j = 0$ for all i in \mathbb{Z} . Choosing k so large that $x_j = 0$ for $|j| \ge k$, we get $A_k X = 0$ where $X = (x_j)_{j=-k+1, -k+2, \dots, k}$. Since $\det A_k = \pm 1$, A_k is invertible in the ring of k k matrices over \mathbb{Z}_n . This forces X = 0, and so g = 0. With this nondegenerate ρ , we get a group shift $\sigma = \sigma(G, s, \omega)$ of R, of index n.

PROPOSITION 5.2. The group shift $\sigma = \sigma(G, s, \omega)$ constructed above is a shift of index n of R but is not an n-shift.

Proof. Assume $\sigma(G, s, \omega)$ is conjugate to an *n*-shift $\tilde{\sigma} = \sigma(G_n, s_n, \omega)$ in the notation of Section 4. Since $\tilde{\sigma}(R)' \cap R = \mathbb{C}$, there exists a group isomorphism $\gamma \colon G_n \to G$ such that $s \circ \gamma = \gamma \circ s_n$ (Proposition 2.5). Note that $e_0 \in G_n$ is a generator (Section 4), that is, $\{s_n^k(e_0) : k \ge 0\}$ generates G_n . Hence $\gamma(e_0)$ must be a generator of G. However, it is easy to see that there is no generator in G. Q.E.D.

REMARK. The example of Price [6; § 5] is in fact a group shift $\sigma(G, s, \omega)$, where $G = \bigoplus_{i=1}^{\infty} \mathbb{Z}_2^{(i)}$, $s(e_i) = e_{i+1}$ if $i \ge 0$ and $s(e_i) = e_i + e_{i+1}$ if i < 0.

Using tensor products, we can get new shifts from old ones. Suppose $\sigma_i = \sigma(G_i, s_i, \omega_i)$, i = 1, 2, are group shifts. Then $\sigma_1 \otimes \sigma_2$ is a group shift $\sigma(G_1 \oplus G_2, s_1 \oplus s_2, \omega_1 \oplus \omega_2)$, where $(s_1 \oplus s_2)(g_1 \oplus g_2) = s_1(g_1) \oplus s_2(g_2)$ and $(\omega_1 \oplus \omega_2)(g_1 \oplus g_2, h_1 \oplus h_2) = \omega_1(g_1, h_1)\omega_2(g_2, h_2)$. Note that $\omega_1 \oplus \omega_2$ is nondegenerate if and only if ω_1 and ω_2 are both nondegenerate. If $\sigma_i(R)' \cap R = C$, i = 1, 2, then $(\sigma_1 \otimes \sigma_2)(R \otimes R)' \cap (R \otimes R) = C$. In particular, if $[G_i : s_i(G_i)]$ is a prime, then $\sigma_1 \otimes \sigma_2$ always satisfies this by Proposition 1.4 (iii).

PROPOSITION 5.3. The tensor product σ of an n_1 -shift σ_1 and an n_2 -shift σ_2 is a shift of R of index n_1n_2 . σ is an n_1n_2 -shift if and only if $(n_1, n_2) = 1$.

Proof. As in Section 4, let $G_n = \bigoplus_{i=0}^{\infty} \mathbf{Z}_n^{(i)}$ and $s_n(e_i) = e_{i+1}$. Assume $\sigma = \sigma_1 \otimes \sigma_2$ is an $n_1 n_2$ -shift. By Theorem 2.5, there exists an isomorphism $\gamma \colon G_{n_1} \oplus G_{n_2} \to G_{n_1 n_2}$ such that $s_{n_1 n_2} \circ \gamma = \gamma \circ (s_{n_1} \oplus s_{n_2})$. Hence γ induces an isomorphism between $G_{n_1} \oplus G_{n_2}/(s_{n_1} \oplus s_{n_2})(G_{n_1} \oplus G_{n_2}) = \mathbf{Z}_{n_1} \oplus \mathbf{Z}_{n_2}$ and $G_{n_1 n_2}/s_{n_1 n_2}(G_{n_1 n_2}) = \mathbf{Z}_{n_1 n_2}$. It follows that $(n_1, n_2) = 1$. Conversely, if $(n_1, n_2) = 1$, fix an isomorphism $\gamma \colon \mathbf{Z}_{n_1} \oplus \mathbf{Z}_{n_2} \to \mathbf{Z}_{n_1 n_2}$ and extend γ to $G_{n_1} \oplus G_{n_2} \to G_{n_1 n_2}$ in an obvious way so that $s_{n_1 n_2} \circ \gamma = \gamma \circ (s_{n_1} \oplus s_{n_2})$. Q.E.D.

PROPOSITION 5.4. For each prime n > 4, there is a shift of R of index n which is not a group shift.

Proof. Let σ be an *n*-shift over $G = \bigoplus_{i=0}^{\infty} \mathbf{Z}_n^{(i)}$. Denote U_{e_i} by U_i , and put $p_i = (1/n)(1 + U_i + U_i^2 + \ldots + U_i^{n-1})$, which is a spectral projection of Y_i . Since $U_iU_j = \lambda U_jU_i$ for some $\lambda \in \mathbf{T}$, an easy computation shows that

$$p_i p_j p_i = \frac{1}{n} p_i, \quad \text{if } \lambda \neq 1,$$

$$p_i p_j = p_j p_i, \quad \text{if } \lambda = 1,$$

$$r(wp_i) = -\frac{1}{n} \operatorname{tr}(w), \quad \text{if } w \text{ is a word on } 1, p_1, \dots, p_{i-1}.$$

Let M and N be the von Neuman subalgebra of $W^{\alpha}(G, \omega)$ generated by $\{p_1, p_2, p_3, \ldots\}$ and $\{p_2, p_3, \ldots\}$ respectively. The shift σ restricts to a shift $\tilde{\sigma}$ on M such that $\tilde{\sigma}(p_i) = p_{i+1}$. So $\tilde{\sigma}(M) = N$. We choose the defining sequence of ω by a(1) = 1, a(-1) = -1, and a(k) = 0 otherwise. Then $\{p_1, p_2, \ldots\}$ satisfies the conditions of Jones [2; 4.1.1]. Hence M is the hyperfinite H_{α} -factor R and N is a subfactor of M with index [M:N] = n. By [2; §5], $\tilde{\sigma}(M)' \cap M \neq C$ if n > 4. Hence by Proposition 1.4 (iii), when n > 4 is a prime, $\tilde{\sigma}$ cannot be a group shift. Q.E.D.

CONCLUDING REMARK. Let S be any nonempty subset of positive integers. When $n \ge 3$, we can always find n-shifts so that the procedure in the proof of above proposition provides a shift given by $p_i \to p_{i+1}$ where $\{p_1, p_2, \ldots\}$ is a sequence of projections satisfying

(i)
$$p_i p_j p_i = \frac{1}{n} p_i$$
 if $|i - j| \in S$;

(ii)
$$p_i p_i = p_i p_i$$
 if $[i-j] \in S$; and

(iii)
$$tr(wp_i) = \frac{1}{n} tr(w)$$
 if w is a word on 1, p_1, p_2, \dots, p_{i-1} .

The work of V.F.R. Jones ([2], [3]) suggests that it would be of interest to carry out further investigations of such sequences of projections, particularly when 1/n is replaced in certain cases by τ in the Jones index set. We wish to discuss this in future publications.

REFERENCES

- 1. Choda, M., Shifts on the hyperfinite II₁-factor, preprint.
- 2. JONES, V. F. R., Index for subfactors, Invent. Math., 72(1983), 1--25.
- 3. Jones, V. F. R., A polynomial invariant for links via von Neumann algebras, *Buil. Amer. Math. Soc.*, 12(1985), 103-112.
- OLESEN, D.; PEDERSEN, G. K.; TAKESAKI, M., Ergodic actions of compact abelian groups, J. Operator Theory, 3(1980), 237-269.
- Powers, R. T., An index theory for semigroups of *-endomorphisms of B(H) and type II₁ factors, Canad. J. Math., to appear.
- 6. PRICE, G., Shifts on type II₁ factors, Canad. J. Math., to appear.
- 7. PRICE, G., Shifts of integer index on the hyperfinite II, factors, preprint.
- SLAWNY, J., On factor representations and the C*-algebra of canonical commutation relations, Comm. Math. Phys., 24(1972), 151-170.
- YIN, H.-S., Classification of crossed product C*-algebras associated with characters on free groups, preprint.

DONALD BURES and HONG-SHENG YIN
Department of Mathematics,
University of British Columbia,
Vancouver, B. C.,
Canada.