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THE 0-FORMALISM AND THE
C*-ALGEBRA OF THE BERGMAN rn-TUPLE

NORBERTO SALINAS

0. INTRODUCTION

In this paper, we assign to each bounded subdomain Q of C" an operator
theoretical object, the Bergman n-tuple B,. This is the n-tuple of multiplication
operators acting on the Bergman space over Q (i.e., the space of all volume Lebes-
gue-measure, square-integrable, holomorphic functions on Q).

Qur basic goal is to try to exploit the great wealth of recent results on the
geometry of the boundary of pseudoconvex domains £, to study the spectral and
C*-algebraic properties of B,. Of course, this program offers a twe-way avenve
that might also bring some new interesting resuits to the theory of functions of
several complex variables.

We start our preliminary discussion, in Section 1, with a simplification of
the formalism of the §-Neumann problem criginated with J. J. Kohn and D.
Spencer. Our approach is similar to that taken by F.-H. Vasilescu [29].

In Section 2, we initiate the study of the C*-algsbra C*(Bg) generated by the
Bergman n-tuple B, on pseudoregular domains which are not necessarily strongly
pscudoconvex. These domains are those on which the Neumann operator is com-
pact (see’ Definition 1.10). As a consequence of Theorem 2.3 it follows that
C*(Bgyy contains the ideal # of compact operators, and that C*(B)/ is
#-isomorphic to the algebra of continuous functions C(X), fwhere ¥ = 4. If ¥
is piccowise smooth, it follows that X = 82, it in addition, € has the Mergelyan
property (see {Theorem ;2.8), then the spectral algebra S(Bg) {which is the norm
closure of the analytic functional calculus of B, on nzighborhoods of ) is a com-
plete set of unitary invariance for biholomorphic equivaicnce.

The last section of the paper is devoicd to proving {see Corollary 3.2) that
for anz bounded domain Q, the type of C¥%(8,) and the property that B, be essen-
tizlly normal are preserved under the proper holomorphic muppings that extend
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contintously to the boundary. This means, in particular, that if 4 and Q are two
bounded domains in C?, and C*(B,) is either type one or essentially abelian while
C*(By,) is not, then there cannot exist any proper holomorphic mapping ¢: 4 -» Q
that extends continuously to ¢4. This fact might be helpful in trving to construct
an example of a proper map between two smoothly bounded domains that may not
be smoothly extendable to the boundary. As far as we know, the’ existence of such
an example is still an open problem.

Finally, we would like to mention that most of the results contained in this
paper were announced in the special session on C*-algebras of the A.M.S. Regional
Meeting, held at Claremont Ceollege, Pomona, California on November §. 1985,

1. GENERAL FRAMEWORK FOR THE {-FORMALISM

We begin by recalling the main features of the d-formalism. As the rcader
will notice, such features are also present in many other situations. For examplc,
1he space & introduced in the following definition may play the role of the space
of test functions, and /() may serve as the raw model of a typical algebra of
reendodifferential operators acting on &.

Drrinimion 1.1. Let @ be a complex inner product space, with inner product
{-,->. We say that a linear operator 7y : 2 — 2 has a formal adjoint if there exists a
linear operator Ty : 2 — Z such that (Tyf, > = {f.Tegy, for all f, g € &Z. In this
case. Tyis unique and is called the formal adjoint of 7. The set &7(Z) of all linear
operators on 7 with formal adjoint constitutes a =-algebra, with ’ as involution.

Let 3 be the completion of Z with respect to (-,-», and let () be the set
of all closed lincar extensions of operators in «7(%),i.e.. T € €() if and only if
the graph of Tis closed in J# @ J#, and the domain & of T satisfies % < & = H,
end 1" 4 € Z(2). Let Z(H) be the algebra of all bounded operators on # so that
CA) N L(HF) = {Te6(H): &y = H).

REMARK 1.2. Let Tye (). and let Ur={fe s : there exists C, >0,
K Fe)' < Crigiforall g € 2. Given f € &, let If € A be defined by (7f.¢) =
= {f. Tog>, g €7. Let &y and T': 7y — # be defined analogously, where one
wses T, in place of T;. Then the following properties are easily obtained:

2y T, T' € ¢(#): Tand 7’ extend T, and T, respectively; 755 = T, (T)* =
= 7. so that 7, and 7, are closable and their closures satisfy T, = 77% = T'%,
Ty = T*. ln particular, 7' and 7* are the minimal closed linear extensions of
Tp and T, respectively.

b) 7 and 7' arc the maximal closed linear extensions of T, and 7,, respecti-
vely.

c) If T¢ = 0 then 7y* = 0 and Ran(T) = Ker(T), Ran(T*) = Ker(T>).
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Given T in € (), we say that T is nilpotent of order two, or briefly nilpotent,
if Ran(T) < Ker(7T). On the other hand, we recall that T is said to be self-adjoint
if T'= T¥, in the sense that %y = @+ and Tis symmetric on Py (i.e., <Tf, g) =
=<f, T8>, f.-g € Z7).

LeEMMA 1.3. Let Ty € &/(2) such that T = 0, and let T € () be the maxi-
mal closed linear extension of Ty (as in Remark 1.2). Then:

~ 2) # = [Ker(T) n Ker(T*)] @ Ran(T) ® Ran(T¥);
b) Let T+ T*:[Zy 0 D] — A be defined by pointwise addition. Then
T + T*% is self-adjoint, Ker(T + T%) = Ker(T) n Ker(T*), and Ran(T + I%) =
= Ran(T) ® Ran(T*).

Proof. Ran(T) and Ran(T™*) are orthogonal, because for every f, g €2 we
have:

Tf, Tgy =<Tofs Togy = <Tif. &> = 0.

Also, it is clear that Ker(T) n Ker(T#) is the orthogonal complement of
Ran(7) @ Ran(T*) in #, so (a) follows. Now for all f'€ @7 N D=, we have:

T+ THAF = [Tfif + T2

so the last two assertions of (b) are also clear. Since 7'+ T* is obviously symmetric,
to prove that T + T is self-adjoint, it remains to show that @(T.:.T“’)* =Dy o =
=9y 0 Dps. Note that @ = {f€ # : there exists C; > 0, (f, T*g>. < Cllgls
forallg € D.s}, Z» = {f € there exists C; > 0, Kf, T2| < Cyligll, for all
g€ %y, and G ;. a0={fe A there exists C; > 0, K[, (T+T*)gd! <Cyllg|, for all
gD, ). Therefore, it is clear that Z; 0 D < Dy, oy On the other

hand, let f€ Q&T—PTU*' Then for every g€ %y we write g =g + g'', where

g'eKer(T*)and g"" € Ran(T") <Ker(T)< Z. This means, in particular, that Tg"’ =
= 0 and that g’ € Dy, so that g € D7 0N D+ and T*g’ = 0. Thus, Kf, Tg)* =
= [Kf. TeDP = Kf, (T + T < CHlig'P< CH(I'g'l? + 8" = Ciligli® Hence,
f €9 ,+. Substituting T (=T*%) by T* in the above argument we also obtain that
J €%y as desired.

We say that a nilpotent T in %() is solvable if Ran(7") is closed (or after
Lemma 1.3 if Ran(7 + T%)is closed). Under the above assumptions we let K € £(0)
be the self-adjoint operator defined by K | Ker(T + T#) = 0, K |Ran(T + T%) =
= (T + T*)~t. Let P, Q, and R be the (orthogonal) projections from J onto
Ker(T) n Ker(T*), Ran(T), and Ran(T*), respectively.

LemMA 1.4, Let T € () be nilpotent and solvable. Then
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a) 1 =P = (T + THXK, and for every f € Dy 0N D s, (1 — P} = K(T +T*)f.

b) Q = TK, and for every fe 2 », Qf = KT*f.

¢} R = T*K, and for every f € %1, Rf = KT¥.

d) Given f e Ker(T) © Ker(T*) = Ran(T), the unique solution of the eguation
Tu = fwhich is orthogonal to Ker(T) is given by u = Kf.

Proof. (a) is immediate by the definition of K. To show (b), notethat 0 < 1 —
— P, and that Q7% = 0, while Q7' =T. S0, Q = Q(1 — P) = Q(T + T*)K = TK.
Also, if f€ 2« then (1 — Q)f eKer(T) = Z = s0 [0f € 21+ and T*(1 — O)f = 0.
Since’ Ran(7) « Ker(T), TOf =0, and hence Qf = (1 — P)Qf = K(T + T%)-
-Qf = KT*Qf = KT¥f,and (b) follows. The proof of (c) is similar. To prove (d},
let feKer(T) © Ker(T*), and let u = Kf. Then we have Tu = TKf = Qf = f.
Further, Ru = KTu = Kf = u so that u € Ran(T*) = Ker(T)", as desired.]

LemMa 1.5. Let T € €(F) be nilpotent, then T is soivable if and only i 0 &
not an accumulation point of o(T + T™). Further, the following conditions are equi-
velent:

a) Ran(T) = Ker(T);

b) T is solvable and Xer(T} « Ker(T*) = 0]

) T+ THe L), and T - T* is invertibie.

Proof. 1t follows casily from Lemma 1.3, Lemma 1.4 and the 'correspoading
definitions.

We shall need the following explicit representation of the exterior; algebra A

over C”. Let Zf be the set of all strictly increasing p-tuples, whose components are
)

in {1, ...,n}. Let u, = card(ZF) :(p> and let A2 be the Hilbert space C'F whess
standard orthonormal basis is indexed by the set ZZ (lexicographically crdered)
so that we can identify A* with C”, and the jth vector in the standard orthonormal
basis of C", withe(;3, 1 < j < 7, where { is the 1-tuple consisting of the positive
integer j.

Ry definition, we let Z% = O, and A, = C so that its standard basis vector is

n
1=¢,.Letd = @ A° and we choose the orthonorma! basis for the Hiltert spacs
Pl

A induced by that of each direct summand. (Note that dim{A) = 2%) Lzt A be dofined
on the above basis of A as foliows: given Je€Z], Ke Zf, we let e, ney =0,
S0 K0 IFF 0 K=0, we st let JAK be the increasing {(p + g)-tuple
obtained fromJ ¢ K, and we izt ¢, . be the sign of the permutation that takes
J U K ontoJ A K. We then define ¢; A ey = ¢, 726

We next extend A lincany to the whoie space A. Thus, A will be considered
as both the cxterior algebra over € and a 2%-dimensional Hilbert space.
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For 1 <j < n, let §; in £(A4) be defined by S;{ = ¢ A V{ecA. Then
the following anticommutation relations hold:
S;S; + S.8; =0,
and

1<j,k<gn
Given a comumuting n-tuple ¢t = (73, ..., T,) of operators in (2}, we let

0,: 2@ AC") -2 ®A be given by 6, = ¥, 7; @ S;.
j X
Note that (¢,)> = 0 by the above anticommutation relations, and that

0, €T ®AN) =A(D)® ,,?(Can). Indeed, (0) = ZS T;® S§;. For exampie,
j-1

for n =1,
()
T 0
for n = 2,
0 0 0 O
o _|m e o o]
d 7. 6 0 o}
0 -7, 7, O
and for n = 3,
0 0 0 0 90 0 0 0
7y 0 0 00 0 0 O
7, 0 0 0 © 0 0 O
_ T3 0 O ¢ 0 0 0 0
A o b T 0 90 0 0 0
0O -7, 0 7, 0 ¥ 0o O
0 0 =7 7, O v 6 0
0 ¢ U & 1y, —T, T. 0/

Let 8, be the maximal exiension of ¢, in Z[# @A4]. Then J, i3 nilpotent. We
say that ¢ is right exact (left exact, rasp.} if 8, is solvabls, und Ker(d,) n Ket(§¥) <
o S ® A° (if 8, is solvable, and Ker(d,) n Ker(B¥) = # @ A", resp.). We say
that ¢ is exact if it is both left and right exact (or equivalently Ran(8,) = Ker(3)).
The notion of exact, left exact and right exact joint specira of 7 are defined
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using the zbove definitions and they are denoted by o(r), 6,(r) and o,(1). res-
pectively. (Note that 6(f) = 6,(t) U ¢,(r), and it follows easily that Co(t) <
< g,(t)n (1)) .,

REMARK 1.6. (a) If 4; are commuting operators in &/(Z) that can be extended

{0 operators A} in L(H), whenl < j < n.and weleta = (44, ..., A,), then a(a)
¢oincides with the standard definition of the joint Taylor spectrum of & =
={(dy, ..., A,) (see [29]). However, 6;(a) is generally bigger than the left spectrum
oy{a) of @ (see for example [25, §3] for the definition of the left spectrum).

(b} Let 2 = C” be a bounded pseudoconvex domain (i.e., a domain of holo-
moerphy) with smeoth boundary ¢Q [19]. Let 2 = CP(Q) with the standard L)
iraer product -, - defined by the volume Lebesgue measure £. Given 1 € j < n
let T; : % — & be defined by

-

ni=ser= (i )
Pl Yy

CI;

whaere 5; = &; + ip; is the j-th complex coordinate in C”. Then T; belongs to /(%)

. é 1 (¢ .0,
A Tif = = f = = (T-f+ i 4) . feq.
cz; 2 \éx; Y

With ¢ = (Ty. .... T,), we let J = 9, € C[LAQ)R A]. Here the elements of
LMYy ® A% can be identified with the space of all (0, g) forms with coefficients in
L*Q), and the resulting complex induced by @ is called the Dolbeault complex.

By results of Oka, Kohn, Hormander, and others (see [14, Chapter 4], [16]
2rd [19)), it follows that @ is right exact and that Ker(d) » Ker(d*) is the Bergman
space A%(Q) of zll analytic functions in L¥Q).

Derixitiox 1.7. From now on {(unless otherwise specified), 2 will denote 2
smoothly bounded pseudoconvex domain in C". Let P, be the orthogonal projec-
tion from L*(Q) onto the Bergman space AXQ). Following the usuval terminologs.
we ca'l Py, the Berginan projection on Q. Let K be the operator related to d according
{0 the definition before Lemma 1.4. We denote by K the restriction to the space of
d-closed (0.1) forms in LAQ) & 4° of the operator K. We also denote by N the res-
triction of K* to the subspace of all (0. 1) forms with coeffictents in L*(Q). The operator
Kis usually referred to as the Kohn operator, while N is called the Neumanr opei-
ator. Following [18], we say that the J-Neumann problem satisfies the compactness
property, if the norm

Lell® = Lol + 100l + 0701,
¢ €4, 0 P50 [LHQ) ® A'] is compact with respect to the L*-norm. This means

that if {¢,,} is a bounded sequence in the ||| - |||-norm then there exists a convergence
subsequence in the L'-norm.
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REMARK 1.8. a) As a consequence of Lemma 1.4, we obtain Koha's formula
(see [17]):

(1 — Po)f = KOf, fe@

s ML) ® A%
Notice that £3(Q2) = L¥(Q) ® A< . Tt also follows easily that, given a J-closed
(0, 1) form a with coefficients in L*(Q), the only function » in L*(2) that solves the
equation du = « and is orthogonal to A%(Q) is given by u = K. This is called the
canonical solution.

b) It is of great interest (and still an open problem) to find necessary and
sufficient conditions for the global regularity of the 9-Neumann problem, i.e., the
global regularity of the canonical solution of the equation du = . This means that

I7 o is a d-closed (0,1) form with coefficients in C*(Q), then Kz e C*(Q). in [18,
page 445, it is shown that if the J-Neumann problem satisfies the compactness
property (according to Definition 1.7), then it is globally regular (see also [17,
page 139]). The most general sufficient geometric condition for the compactness
property of the J-Neumann problem was given in [6], and was called property P,
It is also shown in the same paper that pseudoconvex domains with weakly regular
boundaries] satisfy property P. These domains include the strongly pseudoconvex
domains, pseudoconvex domains with real analytic boundary (see [1]), and more
generally, domains of finite type (see [6) and [7]).

Although the following proposition might be well known, we were unable to
find a reference to it in the existing literature.

Prorosition 1.9. Let Q be a smoothly bounded pseudoconvex domain in C".
Then the restriction L Dy N (LAY ® A"} > D=0 G L) ® A of K to
the (0, m)-forms in 9'(.;:: is a compact transformation.

Proof. Notice that L*(Q) ® A" = P ;. Also, by definition, 8,Lf = f for every
fel*@A"and L#8}p = ¢ for every p € Tgn = G 0 (LYQ) @ A”), where 8, is

the operator induced by d from (0, n— 1)-forms to (0, n)-forms. Since 9% is the mi-
nimal extension of d/, (which is the formal adjoint of §,), the graph of 8% is the
closure of the graph of 9, (defined on & ® A”). But, a straightforward calculation
shows that the 9;-graph norm of every /' € & ® A” coincides with the first Sobolev

norm | fi;, of f (recall that such f’s have compact support in ). Thus, Dy =

= H}{Q)®A". Let V:Ran(3} — HYQ)® A") be defined by VIif = f. Since 8% is
injective and has closed range, ¥ is a continuous isomorphism. Furthermore, no-
tice that L* = JV, where J: H{(Q)® A" — LA(Q)® A" is the inclusion map. Fi-
nally, since J is compact, it follows that L* is compact, and hence L is also
compuct, as desired.
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DeriNiTION 1.10. A (smoothly bounded pscudoconvex) domain © on which
the Neumann operator is compact will be called pseudoregular.

REMARK 1.11. a) It is easy to sce that the 9-Neumann problem satisfies the
compactness property (see Definition 1.7) if and only if the Neumann operator V'
is compact. From Proposition 1.9, it follows that, for n = 2, N is compact if and
only if K is compact. Therefore, for » = 2, pseudoregularity is equivalent to the
compactness of X

b) From results of [16], it follows that Kis globally regular if and only if P,
is globally regular, i.e. PoC=(Q) = C>=(Q). Indeed, the only if part is an immediate
consequence of Kohn's formula (seec Remark 1.8(a)). For the if part, let « be a d-clo-
sed (0,1)-form with coefficients in C>=(Q). By [16], there exists © € C®() such that
Ov = = But, then, by assumption and Kohn's formula, it follows that Ko = (1 -
— Ppy)v € C=(Q), as desired. Thus, pseudoregular domains satisfy condition R, i.e.
P is globally regular, because the compactness property of the g-Neumann problem
implies the global regularity of K (see Remark 1.8(b)).

¢) As it was pointed out in [17. page 141], there are dcmains € in C? that satisfy

cndition R, for which the compactness property is not satisfied. i.e., they ‘are not
pseudorcgular.

d) Using the mean value property for holomorphic functions, it is immediate
that evaluation of functions in 4%(Q) at a point w of Q produces a bounded linear
functional on A%(Q), which can be represented by K, € A%(Q2). The function
K(z,w) = K,(z)is usually called the Bergman kernel on @ and itlis the reproducing
kernal function of A%(Q). We then have:

Puf = SK(L of{w)dew)., fe L¥Q).

@

In {15], it is observed that, given w € Q, and given a function ¢, € CP(Q), which
is radially symmetric about » and such &hatS(pc,(z)d).(z)==1,we have (Pop,,)(2) =

= K{(z, w), for every = in Q. Thus, as observed |in [4], if Q satisfics condition R,
then, for every o € @, K(-, w) = C=().

PROPOSITION 1.12. Let @ be a (simoothly bounded, pseudoconvex ) domain in C*
sazisfying condition R, and for each o in Q, let k(z; @) = K(z, )]} K(w, ). Ther
k(- : w) has norm one and tends weakly to zero as o tends to (Q. In particular, this
property holds, if Q is pseudoreguiar.
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Proof. It is enough to check the above limits on a total set of elementsin A%(2).

Thus, take the total set consisting of K, , with zin Q. Then, since lim K(w, w) = o0
-0

(see [22)), we have: (k(-; w), K,) = K{(z, oj)/}/k_(w. ©) — 0 as o tends to ¢Q.

2. THE C*-ALGEBRA OF THE BERGMAN #-TUPLE
ON PSEUDOREGULAR DOMAINS

In this section, we study the unital C*-algebra C*(B,) generated by the
Bergman n-tuple B, on a pseudoregular domain @ (see Definition 1.10).

DEeFmNITION 2.1. Given a continuous complex valued function ¢ in C(Q), let
T, be the (Bergman) Toeplitz operator with symbol ¢, 1.e.. T, is defined by:

T.f = Poof, fe€AXQ).

In particular, B, is the n-tuple whose i-th component is T. E where z;: 2 - C s
the i-th coordinate function.

REMARK 2.2. It readily follows (via the Stene-Weierstrass Theorem, the obvious
estimate |7,/ < [l¢ile» and the fact that T, = T,,T,,, for ¢, Y € C(Q) such that  is
holomorphic on Q) that C*(B,) coincides with the C*-algebra generated by T,
¢ € C(9). Thus, the study of C*(B,) coincides with the study of the (Bergman)
Toeplitz C*-algebra over Q.

The following theorem is an improvement of {30}, [8], [25], and [11] (see Defi-
nition 1.10 and Remark 1.8 part c)).

THEOREM 2.3. Let Q be pseudoregular. Then H[A*(Q)] < C*(By), and the
Jollowing sequence is exact:

0 — A [A(Q)] ~ C*(By) — C(6Q) — 0.

In particular, the essential spectrum 6.(Bg) of Bg coincides with Q. Further, if n = 2,
ie., Q c C? then o(By) = Q, 6,(By) = Q. and ¢,(By) = Q.

Proof. We define the map L: C(CQ) —» Z(4*(Q)) by Lo = T,,, where y is the
standard Poisson extension of ¢ € C(7Q) to &. It is easy to check that L is a unital
completely positive linear map. We now claim that the self-commutator of L is
compact, i.e. [(Lo)*, Lo] = (Lo)*Lo — Lo(Le)* €A, for every ¢ in C(0R2). Indeed,
let  be as above, so that we must show that [(T,)*, T,] € #". Let M, be the operator
on LX) consisting of multiplication by i, and observe that

[(Tlp):::= Ip]PQ = A’Aa
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where A = A, is the operator on L3Q) given by 4, = (1 — Po)M,Py. Sinee
C=(Q) is dense in C(Q), it suffices to show that A, €.#" for every iy € C={{J). But,
notice that Ran(M,P,) = Z;, so that by Kohn's formula (see Remark 1.82)),
we have:

(I — P)M Py = KM, Pq.

o

Since ¥ € C*(Q), it follows that the operator M, of multiplication by 6 from

L3(Q) @ A° to L3(R2) ® Al is bounded. Moreover, since A is compact because £
is pseudoregular, our first claim is established. 1t is now easy to check that L{¢n) —
— L(@)L(n) is compact for every ¢.n € C(CQ) (see [26], Section 2). We next clalin
that T, € #[A*(Q)]if and only if the restriction ¢ of ¥ to ¢Q is zero. Indeed, if ¢ = @,
then 1 is the uniform limit of a sequence {l,/l,,,} of continuous functiciis with compuct
support in Q. Since multiplication by ¥, on L*Q) produces a compact operater,
it follows that the Toeplitz operator with symbol ¢, is compact, and hence, T, is
compact. Now, assume that 7T,, is compact, and let { € (Q. Also, let {p,,,} b a se-
quence of polynomials in two indeterminates such that {p,(z. z)} converges upi-
formly to y(z) on . Further, let {;} < Q be a sequence that tends to ¢, and iet
Ji(2) = k(z; {;), z € Q. By Proposition 1.12, {f,} is a sequence of unit vectors in
A*(Q) that tends weakly to zero. Now, given ¢ > 0, let m be large enough so that
W — paio < & We can write p,, as

Pl @y = Y, 4y o6,
[}

where /, 5, € C and the sum runs over [« + f less than some positive integer &, .
Since (T)* = T.. and (T7f))(w) = @fi(e), we deduce that

(T o J> = GYE) + ol 1,
where J, ; is the operator

PoM {1 — Po)M.;

is compact because of our first claim. Therefore there is a compact operator J,,
such that, for every i = 1, 2, ..., we have:

<Tg’1j‘i: ﬁ) = <T(U-Pm)f;'a ﬁ) "L pm(;i ? g:} + (‘]ir.f& > .fl)'

Since y € C(2) and {f;} tends weakly to zero, we can chose j large enovgh so that
iw(ﬁ) - lﬁ(g,)‘ <eg, {:Jmf;“ <g, and {.Tt’/ j:i <& ThUS,

O < 2+ ipn(G L) < de + UL S D < Se
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Hence, () = 0, and our second claim is proved. We now use a standard argument
to prove irreducibility of C*(B,). Let P be a self-adjoint idempotent on 4%(Q) that
commutes with the components of By, and let 1 = P(1) € A2(Q). If f and g are any
two analytic polynomials, we have: <Af, g> = <Pf, g> = {f, Pg> =<, hg). Since
the span of the set of functions of the form fg, where f and g are analytic polynoQ
mials, is dense in L3(Q), it follows that / is real valued, and hence constant. The
fact that P? = P yields either P = 0 or P = 1, as desired. Since B, is non-normal
and irreducible, we conclude that % < C*(By). Let n: C¥(By) — C*(By)iA be
the quotient map. From the first part of the proof, we deduce that = o L is a «-mono-
morphism from C(0Q) into C*(Bg,)/o". To prove that it is onto, let T & C*(By),
and let {qm} be a sequence of polynomials in two non-commutative indeterminates
such that {g,,(B,, BS)} tends to 7. By the first part of this proof, there exists a
sequence of compact operators {K,,} such that q,,(By, B) = Ty + K,,. Further-
more via a suitable compact perturbation Kj,, we can write 7, = L(p,,) + K,
where @, is the restriction of ¢,(z, Z) .to ¢@, m = 1,2, ... . Therefore, (T —
— Lo, ). = [|alT — q,,(Ba, B < 1T — q,.(Ba, BE)I| -0, as m — oo. It follows
that {ergom} forms a Cauchy sequence, and since nL is isometric, {(,9,;,'} converges

to ¢ € C(¢92). We conclude that nT = nLe, and ontoness of nL is proved, so that
the exactness of the above sequence of C*-algebras follows. The statements about
the different spectra for n = 2 follow from [11].

REMARK 2.4, a) With a little more work, one can actually prove that 2 <
< C*(B,), where A is any bounded domain such that 04 = &(A4). Indeed, the irre-
ducibility of C#*(B,) is proved in the same way as in Theorem 2.3. Now let p(z) =
=dist(z, ¢4). It follows that p € C(4), and that T, # 0, because (7,1, 1> # 0. Since
the restriction of p to dA is zero, one argues, just as in the proof of Theorem 2.3, to
deduce that T, is compact, forcing # to be contained in C¥(B,).

b) Using the solvability of the d-Neumann problem on a bounded pseudo-
convex domain ©, and employing an argument{ that involves| the Cech-cohomology
of @ with coefficients in the sheaf generated by A*(Q). one can prove that, if in addi-
tion, Q satisfies the condition of part a) of this remark, then the n-tuple B, — @
is left exact for every w € Q, and it is exact for every w € C*\Q (see [23, Section 4],
for a similar argument). Further, one can prove that Ker(ggﬂ_z)’:‘ n (539__.) is one di-
mensional for every z in Q. In particular, this means that B, belongs to the class
A,(R), introduced in [10]. In other words, the kernel K(z, w) is a generalized
Bergman kernel according to [10, Definition 4.10].

¢) The exact sequence in Theorcm 2.3, actually gives rise to an extension
1o of # by C(@Q), ie., T IS 2 unital =monomorphism from C(0Q) into the
Calkin algebra. The equivalence class containing T, up to unitary equivalence is
_ denoted by [7p]. Furthermore, the map L (introduced in the proof of Theorem

9D ~ 1359
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2.3) is a completely positive lifting of 75, i.e., T, = =L, wherc = is the canonical
quotient map into the Calkin aigebra. It follows that L is %,-smooth according to
[26] (here, %, denotes the pth-Schatten ideal) if and only if L(z;?) — L(Z,)L(z;) €7,
for 1 < § < n. This is the case, with p appropriately large, for the ellipsoidal domains
2., where ¢ = (g;, . ..,4,) is an a-tuple in Z, . We recall that

o
.
Q,={eC ¥ i T<i},
e jgu

(see the calculations in {11, Section 5]). The domains £, are pscudoregular becavsc
022, is real analiytic (see Remark 1.8 part ¢)). However, the fact that B, is essentiatly
normal can be proved by a direct calculation, as in [11, Section 5].

THLOREM 2.5. Let Q and Q' be pseudoreguiar domains in C*. Then the following
conditions are equivalent : i

a) There exists a homeomorphism k:0Q — Q' such that h¥[zg) = [t19],
where b7 is the homomorphisin induced by h at the Ext-level.

b) There exists a unitary U: 4XQ) — AXQ'), such that C*(Bg) = U*C*(By)L.

Proof. If = ad =’ are the quotient maps by the ideal of compact operators, and
L and L’ zre the corresponding completely positive liftings of 1, and 1o, respecti-
vely (as in Remark 2.4 (¢)). so that =, = %L, and 15 = =L’. We first prove that b}
imiplies a). Thus, fet U be a unitary transformation as in b). Then, n=L and
o (UEL'(-}U) are =-isomorphisms from C(¢Q) and C(CQ") onto the same quotient
zlgebra. Therefore. there exists a homeomorphism A: (Q — dQ’, such that, for
every fin C(6Q"), we have: (U L'(f)L) = nL(fh). This means that a)is valid. On
the other hand, if a} is satisfied, then there must exist a unitary U: A%Q) — AX(Q'),
such that the Jast identity holids. Since #” = C*(By), and Ran(L) = C*(By), b)! easily
forlows.

REMARK 2.6. As expected, the structure of C*(B,) is seldom fine enough to
distinguish biholomorphically inequivalent pseudoregular domains. For example.
lev @ and ' be two different ¢llipsoidal domains of the type described in Re-
mark 2.4¢). Let i: @ — Q' be the radial projection. Then, by an easy index argu-
ment, M%7, = 7,7, but 2 and €' are not biholomorphically equivalent. In fact. if
2 =2, and Q == Q. where the first component (say) of p and ¢ are relatively
privie. then there does not exist any proper holomorphic mapping that maps one
domacin conto the other (sec [201).

DeriNimion 2.7, Let S(8,) be the norm ciosure in C#(B,,) of a set of elements
of the form f{B,). where § is a complex valued function holomorphic in 2 neigh-
morheod of @, and f{B,) is caleulated, for instance, using the Bochner-Martineili
serne’! (sec [28]). in other words., S(By), which was called in [27] the spectral aigebra
of B, is ihe closure of the analytic functional calculus of B, .
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THEOREM 2.8. Assume that Q and Q' are both pseudoregular domains in C" and
that they satisfy the Mergelyan property (see [13]),i.e., every function in C°(8) holo-
morphic on Q is the uniform limit on Q of holomorphic functions in a neighborhood of
Q. Then the following conditions are equivalent:

a) Q and Q' are biholomorphically equivalent.

b) There exists a unitary V: AX Q") — AX(Q) such that V*S(By)V = S(Bg).

Proof. Assume there exists a biholomorphism ¢: Q — Q'. Since both 2 and @’
satisfy condition R (see Remark 1.11), by results of [4], we can extend ¢ to ¢Q so
that it becomes a homeomorphism h: Q2 — ¢Q'. However, we need a more special
unitary transformation than the one provided by Theorem 2.5. Indeed, the map ¢
induces a unitary transformation V: A¥Q') — A4%(Q), given by Vg = det(¢')go0.
This is the standard transformation induced by the change of variables. The Bergman
kernels are also transformed under the standard formula

Ko((, w) = det(e' (D)Ko (D), p(w))det(e’ (w)).

We then have: VBoV* =T, where T, is the n-tuple of Toeplitz operators on 4%(Q2)
determined by ¢. Given a holomorphic function g in a neighborhood of Q’, the func-
tion g « ¢ is holomorphic on @ and is in C®(2). Since Q has the Mergelyan property,
there exists a sequence {f,} of holomorphic functions in neighborhoods of @ that
converges uniformly to gop. But, Ty = f,(Bg), {so that T, € S(By), and hence
V*S(By )V < S(Bg). Since the other inclusion is obtained by using ¥~ and ¢
in place of ¥ and o, we proved that a) implies b). For the opposite implication, let
¥ be a unitary iransformation as in b). Further, let # be the quotient map onto
C*(Bg))# and let 14: C(€Q) — nC*(B,,), as in the proof of Theorem 2.5. Also, let
T = V*ByV. Since T € S(By), by b), a7 = 1,5(h), where h: (Q — ¢Q’ is a homeo-
morphism which is the uniform limit of functions holomorphic in a neighborhood
of Q. Therefore, # extends holomorphically to Q. Using the same argument with
V and /& replaced by V-! and h~!, we conclude that h is a biholomorphism from
Q2 onto &', znd a) follows.

REMARK 2.9. a) We point out that the Mergelyan property of a domain Q
forces 2 to have a system of pseudoconvex neighborhoods. On the other hand, the
only other requirement for the proof of Theorem 2.8 to go through is that @ and
€' satisfy property R. It would be interesting to know if the Mergelyan property is
really necessary for the validity of the corclusion of Theorem 2.8.

b) Of course, there are pseudoconvexr domains (whose boundary is not
smooth) for which b) dces ndt imply a) in Theorem 2.8. For example, consider
Q = Dx(D\{0}) and Q' = Dx D, where D is the open unit disk in C. By the L*
-Riemann cxtension Theorem (see for instarce [2]), cne can show that every fin
A*(Q) exterds uniquely to @', and that the extending map is a unitary {ransforma-
tion. It is obvious that statement b) of Theorem 2.8 is valid but a) is not.
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¢) Among the class of domains Q for which Theorem 2.8 is valid, we have a
natural invariant for the biholomorphic equivalent classes of these domains, pro-
vided by the K-Theory of the spectral algebra of B,,i.e., K .(S(B,)) provides obstruc-
tion to biholomorphic equivalence. On the other hand, if the structures of C#(Bp)
and C*(By) are different, then Q and Q' cannot be. biholomorphic. In the next
section, we shall see that, in some cases, the structures of such C*-algebras can be so
different that there may not cven exist any proper holomorphic mapping from 2
onto £’

3. PROPER HOLOMORPHIC MAPPINGS

We recall that given two domains 4 and Q in C”, a proper holomorphic map-
ping ¢: A — Q, is a2 holomorphic function under which preimages of compact sub-
sets of Q are compact in 4. It then follows (see [24], Chapter 15) that ¢ 1s an open
map onto Q. Further, if*#" < Q is the zero varietyJof the complex Jacobian det(¢>")
of ¢ and ¥ = (%), then] card{ep “Yw)} is a fixed finite number m for every
w € Q\¥. The number m is called the multiplicity 'or total branching order of ¢.

THEOREM 3.1. Let A and Q be two bounded domains and fet © 14 - Q be
« proper holomorphic mapping. Let T, be the Toeplitz n-tuple on A(4) with symbol .
Then there exists a subspace & of A*(4) which is reducing for T, and such that the
restriction of T,, to 47 is unitarily equivalent to By,.

Piroof. Let & = A and ¥ < Q be as above. Then there exists an opzn subset &'
of @\% which is 2 union of open balis whose closures are disjoint and contained in
\%, and such that the (Lebesgue) measurzs 2(Q\Q') of the complement of Q' in @
is zero. Sincg’each component of Q' (i.e., an'open ball) is;simply connected and it is
a subset of @\%, there are holomorphic cross sections ¥;: Q' — 4 of the covering
map ¢: 0 (Q) - 2, 1 <j < m, such that the open sets 4; = y;(Q') are disjoint.
Here, m is the multiplicity of ¢. Further, if we let ¢ ~"Y(Q’) = 4’, then we claim that
i(4\4’) = 0. Indeed, notice that 4" = Cj 4;. Then, by the change of variables for-

j=1
mula, we deduce that, for every function fin L%(Q), we have:

S Fople)? et o' 2)PAAE) =

4

= ml S ()P di(e).

2

Taking f to be the characteristic function of @\Q’, our claim is established. Now,
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we construct a unitary transformation U from 4%(Q') ® C™ onto A*(4’), defined by
U(fis .. .ofud2) = fie(2)detfop(2)], z € 4;, 1 < j < m. Also, we define an isometry
D: A3(Q) - A(Q)®C™, by the diagonal map Df = (f, ..., Nfim, feAXQ). It
readily follows that every function in the range of theisometry UD can be extended
holomorphically to a function in 42%(d), so that the extending map ¥ is unitary-
Indeed, note that given fin A2(Q), det(¢')f ¢ € A%(4), and that for every z € 4,
we have: (VUDf)(z) = (1/'m) [det(¢)f<0)(=). 1t is also easy to see that U* and
D* are given by U*g = det())g<¥y;,1 <j < m, g €4*(4"), and D*(fy, ....[) =
=1 /Vm) . Y. f;-Let Rbe the final projection of the isometry W = VUD, i.e.,R =

&j<m

= WW#*. Then for every f in A*(4), we have: (Rf)(z) = (1/m) Y, feb; o 0(2),

lg jsm

z € 4’. Notice that the right hand side also makes sense for any z in A\Z, as long
as we choose appropriate holomorphic cross sections of ¢. Also, the]value of the
right hand side at z does not depend on that choice, so that the function Rf is well
defined by the right hand side of the above equation on AN\Z. Further, by the L*
-version of the Riemann Extension Theorem (see [2]), the defining expression of Rf
can be extended holomorphically to 4. We next show that the space .# = Ran(R)
satisfies the required properties. To this' end we prove that R commutes with T,.
Indeed, let z € 4', and f € A%(4). Then,

(TLRE)

i

o (1/m) Y, f2(; - 0(2) =
=Y @) o¥;° 0.

Therefore, T,R = RT,. In order to complete the proof of the theorem it suffices
to show that the restriction of the n-tuple T,,, acting on 4%(4’), to ¥ = Ran(V*RV)
is unitarily equivalent to B, . But, notice that UD is a unitary transformation from
A*(Q) onto A" so we need only check that UD intertwines T,,' & and B,. Indeed,
for every z € A’, and every f € 4%(Q), we have:

(UDByf)(z) = det(9'(2))(Bof) = ¢(2) =

= det(¢")(2)p(2)f > ¢(2) = (T,UDf)(2),
as desired. .

COROLLARY 3.2. Let A and Q|be bounded domains and let ¢: A — Q be a proper
holomorphic mapping that extends continuously to the boundary ¢A. Then, if C*(B,) is
a type 1 C*-algebra then C*(By) is also of type 1. If, in addition, B, is essentially nor-
mal, i.e., C*(B)/o is abelian, then the same property holds for Bg,.

Proof. Since ¢ € C(4), we deduce that the components of 7, are in C*(B,).
Thus, if C*(B,) is type I, then C*(T,) is also type I (see [21]), and if B, is essentially
normal, then T, is also essentially normal. Now, the corollary is an immediate
consequence of Theorem 3.1.
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COROLLARY 3.3. Let A and Q be sinoothly bounded pseudoconvex deinains in C*,
and assume that A satisfies condition R. [f C¥(Bg) is not type I, but C*(B,) is type T,
then there cannot exist any proper holomorphic mapping ¢©: 4 — 2. The same con-
clusion holds, if B, is essentially normal but B, is not.

Proof. Assume, by way of contradiction, there is a proper holomorphic mapping
@: 4 —~ Q. Then, by [3], or [12], ¢ can be extended smoothly to the boundary ¢4,
In particular, ¢ € C(4), and Corollary 3.2 applies.

REmARrk 3.4. a) From Theorem 2.3, it follows that if 4 is pseudoregular, then
B is essentially normal. Thus, if 4 is pseudoregular, but Q is not, it is very likely
that a conclusion similar to that of Corollary 3.3 holds, Of course, this would be
the case if the converse to the statement at the beginning of this paragraph were
true. We suspect that this is the case but we are unable to prove it at the time of
writing.

b) As we already saw in Remark 2.4 ¢), C*(B,) and C%(Bg) can bz s-isomor-
phic and both B, and B, can be essentially normal, but there may not exist any proper
holomorphic mapping that maps one domain onto the other. However, in view
of Coroilary 3.2, it is still of significant interest to construct examoles of bounded
domains € such that B, is not essentially normal, or furthermore, such that C*{8,,)
is not of type 1. When Q is not pseudoconvex, this is not difficult to do. For exampie,
if Q is a complete Reinhardt domain, and its logarithmic convex hull is different from.
Q, then B, is not essentially normal (see [11]). Further, it was shown, in {9}, that
if @ = Q_ ; is the union of two polydisks in C* of multiradii (1, &) and (&, 1), with
S<1,¢< 1, then C*(By) is type I if and only if log(e)/log(d) is rational.
On the other hand, if Q is pseudoconvex, but (Q is not smooth, again there are many
examples of the above phenomenon. For instance, if Q is a polydisk in C", then
By, is easily seen not to be essentially normal (see. for example, [i1]). Also. 1f 4.
is the logarithmic convex hull of the domain Q, ; mentioned above, then o refine-
ment of the techniques used in [9) shows that arn analogous result to the onc about
the domains Q, ; quoted previously, aiso holds for the domains 4, ;.

c) We recall (see [2, Section 5)) that a proper holomorphic mapping ©: 4 — &
can be factored, if and only if the following property is satisfied:

There exists a subgroup G, = AUT(4) of the group of (holomoiphic) auto-
morphisms of A such that ¢-y() = o(C). for every { €4 and every v G, ; alve,
o) = U {7({)} Jor every { € A, where the union runs over all y € G, .

The existence of G,, gives rise to a canonical factorization ¢ = ¢ i, where
n:d4 - 4]/G, is the quotient map and ¢:4/G,— Q is a biholomorphism. An
immediate consequence of the next theorem is the fact that when ¢@:4 — Q is
a proper holomorphic mapping from a pseudoconvex domain 4 onto a pseudo-
convex domain £, and the above property holds. then 7, is in the class A,(Q) intrc-
duced in [10] (see Remark 2.4 (b)), where i is the multiplicity of ¢.
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The following theorem is a strengthening of Theorem 3.1, in the case that ¢
is factorable.

THEOREM 3.5. Let A and Q be bounded doimains in C*, and let ¢4 — Qbz a
proper holomorphic mapping. If the property of Remark 3.4 ¢) holds, then T, is uni-
tarily equivalent to By, ® 1, where m is the multiplicity of .

Proof. 1t is clear (see [2], page 168) that Ord(G,,) = in. We et G, ={y;, - . ., Viu}s
and proceeding as in the proof of Theorem 3.1, we shall define (orthogonal) proje-
tions Ry, ..., R, in L[A*(4)] whose sum is the identity on 4%(4). and reduce T,,.
To this end we first point out two important properties ¢f the group G, :

(%) |det(y)] =1, forallyeg,

(%) Y (det(y)Y =0, forallls#;ed,.

0K jom—1

The above properties are verified easily using, several times, the change of
variables formula (see the beginning of the proof of Theorem 3.1). For 1 €7 € m,
and fe A*4). we define

Rif=(1/m) ¥ [det(zpi % ;.
K Jsin
Using the chain rule, it readily follows that (R,)* = R,. Also, emploving (x) and the
change of variables formula, we deduce that (R)* = R,. Furthermore, it is easy to
see, from (*#), that Y} R, = I Therefore, the projections R; must be orthogonal,
7

ie., RiR; =0, i/ # j. Notice that R, coincides with the projection R defined in the
proof of Theorem 3.1. Infact, if ;. 1 < j <, are localinverses for the mapping ¢,
defined in neighborhoods of Q outside of the variety % of critical values of ¢, we
nave the following alternative expression for R; onn A~ ¢ (here 4" is the zero variety
of det(e’)):
() (R N=) = (ll‘m)1 Y [det(r;e @) (20 Y 4= 0(2).
K jsm

As in the proof of Theorem 3.1, we point out that, for z € 4™..%. the righ thand side
of (#*%) is independent of the choice of local inverses. Using the L2-version of the
Ricmann Extension Theorem (see [2]), the right hand side of (+=%) can be extended
uniquely to a function in A%(4), and the extending map is unitary. Finally, it is easy
to check, employing the same arguments as in the proof of Theorem 3.1, that T,R;=
= R;T,. and that T,  Ran(R,) is unitarily equivalent to By, I < / < m. This corm-
pletes the proof of the theorem.

RemArK 3.6. Given a proper holomorphic mapping ¢: 4 — @, it would be
interesting to know under what less restrictive conditions the conclusion of Theo-
yem 3.5 holds. Observe that if the open sets 4" and Q" and the unitary transformation
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U: £3(QYg C" — A%(4') are as in the proof of Theorem 3.1, then UT,U* = B, ®
®17.,. In the proof of Theorem 3.5, we were able to extend U to a unitary transfor-
mation from A*(Q)®C™ ~ AX4). In general, if I' is a simply connected domain
In @\%, where % is the variety of critical values of ¢, then we can define a genera-
lized Bergman kernel K,: I x'I' — £(C™) (in the sense of [10]), so that its cano-
nical model (i.e., the multiplication n-tuple by Z on the Hilkert space generated
by K, see [10, Section 3]) is unitarily equivalent to T,,. Indeed, welet K (., ¢)be
the operator whose representing matrix on the standard basis of C” is given by

(KL, @)y = (detyy NIKW ). Y (w))det(Y ) (o),

where ¥, 1 < p < 5. are holomorphic cross sections of ¢ on I', and X is the Berg-
man kernel on 4. Notice that the trace of K, can be extended to € X Q. In fact,
if K’ denotes the Bergman kernel on Q, we obtain the transformation iaw for the
Bergman kernels under the mapping ¢ (sce [2]), namely:

{'(z, w) = trace(K )z, ), =, win Q.

>
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