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OPERATORS WITH THE DISJOINT SUPPORT PROPERTY

JOR-TING CHAN

0. INTRODUCTION

Let K be a compact Hausdorff space and X a real or complex Banach space,
Let C(K, X) be the Banach space of all continuous X-valued functions on K under
the supremum norm. For a Banach space X, we write X* for its Banach dual,
L(X) the space of all bounded linear operators on X and By the closed unit ball,
A bounded linear operator T on C(K, X) is said to have the disjoint support property
if for every f, g in C(K, X) such that ||f(k)|lig(k),| = O for every k € K we always
have [{Tf(k)| [|Tgk), =0 for every k< K. Recently Jamison and Rajagopalan
[3] proved that such opzrators are precisely those of the form

Tf(k) = &, f(o(k))

where ¢ Is a selfmap of K and for each k, ¢, is a bounded linear operator on X. They
also gave a necessary and sufficient condition for these operators to be compact.
In the following sections we prove that operators on a more general setting of a
function module having the disjoint support property also assume the form described
above. We shall show that some of the conditions in [3, Theorem 2] are redundant
and deduce the theorem from a generalized Arzcla-Ascoli theorem. Following [6],
criteria for weak compactness is also discussed. In what follows K is not always
assumed to be compact, it may be locally compact or completely regular. In these
cases, we denote by Cy(K, X) the spaces of all continuous X-valued functions vani-
shing at infinity on K and C,(K, X) the spaces of all continuous X-valued functions
having relatively compact range in X, respectively.

1. THE DISJOINT SUPPORT PROPERTY

DerinmmioN [2, Definition 4.1, A function module is a triple (K, (X )rek, X),
where K is compact, (X,)xe« a family of Banach spaces and X a closed subspace of
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II X. such that the following conditions are satisfied:
kG

(i) ife X for every f'€X and he C(K),
(ii) & > flh)ir is upper semicontinuous for every /¢ X,
(iity X, = {ftk):f€X} for every k € K, and
(iv) {k : X, # 0} is dense in K.
For further properties of a function module, we refer to Behrends [2]. We mention

in passing that if K is locally compact, Co(K, X') can be regarded as a function module
in [T X, where BK is the Stone-Cech compactification of K X, = X for k¢ K

ke kR
and X, == 0 for k€ fK\K.
THEOREM 1.1, Let X be a function module in [} X, and let T be a bounded linear
kek
operator on X. Then T has the disjoint support property if and only if there is a self-
map @ of X and a family (D Yie i of bounded linear operators with &, € L(X}) such that

Tfik) = .(flp(k)))
or every f in

Proof. Sufficiency is clear.

To establisk the necessity we shall first construct the scifmap ¢. Since no con-
tinuity is required, it suffices to define ¢(k) for those k such that Tfy(k) # 0 for
some f,. Let .# be the the set of all non-empty compact subset F of K with the

property:

fU) = 0 for every I € F implies Tf(k) = 0.

The above property is equivalent to:

For every ¢ > 0, f(})! < ¢ for every / € F implies [ Tf(k)}, < ¢, 7. We claim
that # has a minimal element (in the sense of set inclusion). To this end take any
chain (£,) from &. We coatend that (T} F, # €}, as (F,) has the finite intersection

x

property. To show that &£ = () F, € #, consider any f€ X such that [ F| <zs,

where ¢ > 0. The set # = {{e K: fil}}j < ¢} is an open set containing F, by the
upper semicontinuity of the function k — _f(k). Since (F,) is totally ordered, the
chain lies eventually insi:ie w. Hence Tf(k)yj < €37} and consequently F & 7.
Next we shali show that Fis a singleton. If f€ X satisfies THA) 5 0, take p ¢ X7,
such that (Tf(k)) # 0. Consider the linear functional on C(F) given by

/ »p(T(]Tj'; (k) where 7 is any extension of & to K.
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By the Riesz representation theorem, there is a Radon measure u on F such that
S}v’lid/t = p(T('/ff)(k)). Arguingasin [1, Example 2.2], it can be shown that the support

of {u| is a singlcton. The fact that this singleton is indced independent of the choice
of f and p foilows from a standard argument (cf. [3, p. 310]). We omit the detail.
Now let that singleton sct be {/}. Then for every f€ X, fil) = 0, we have Tf(k) = 0.
For assuming the contrary, there is a2 p € XF¥ such that 2 = p(Tf(k)) > 0. The set
u={I'"eK:\fI) < a}isopen and we may find 1 € C(K)with0 < h < 1, h(k) = 0
and h(!") = | for every !I’€ K/u. Then ['hf — f|| < x. But p(T(hf)(k)) = h({l) = 0,
which is a contradiction. We conclude that # = {/} from the minimality of F.
We still have to show that there is only one such /. Note that / has the property
that of # € C(K), h(l) = 1 implies T(if)(k) = Tf(k). The uniqueness now follows
from a Urysohn argument. What we have proved so far is that to every he K
such that 7f(k) # O for some f in X, there corresponds a unique / with

fi) = 0 implies Tf(k) = 0.

So, define @(k) = [ and ®,(x) = Tf(k) where [ is any element of X such that f(I) = x.
Then @, is clearly well-defined. For other k, put ¢, = 0 and ¢(k) can be defined
arbitrarily. Then we have

Tf(k) = &, flpk))y foreveryfin X.

Let N = {k € K:®, = 0}. Then in contrast to the case of continuous func-
tions [3, Theorem 1], the selfmap ¢ need not be continuous on K\N.

ExamMpLE. Let X = ¢,[0, 1] and let T bc given by

TH0) = f(1), Tf(1) = f(0) and Tfik) =fik) for k #0, L.

Then T is a bounded linear operator with the disjoint support property. The corres-
ponding @, is the identity on R and ¢ is given by

0@ =1, ¢(l)=0 and @tk) =k, for k#0, 1L

Clearly ¢ is not continvous at 0 and 1.

However if X is a function module in which k > [ f(k}}] is continuous, then ¢
is continuous on K\NV. For if ¢, # Oand % is a ncighbourhood of ¢(k), thercisan
I € X such that &, f(p(k)) # O and f vanishes outside %. Since Tf(k) = &, f(p(k)) # O,
and is continuous, neigbourhood ¥ of k such that 77(/) # O for every [eV. It
follows o(l) e
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CoroLLary 1.2, Let K be a locally compact Hausdorlf space and X a Banach
space. Let T be a bounded operator oin CK, X} with the disjoint support property.
Then theve s selfmap o of K and a bounded 1(X)-valued function @ on K such that

Ty = & floth))  for every fe Co(K, X

Let N = {k : @ 5 O, then o is continnous on K \N and @ s stronzly continuous
oin KN\N. If K is compact, theia @ is strongly comtinuous on K.

Proof. Viewing C,{K, X) as a function moduie over K, it follows from Theorem
1 that there exist a seifmap ¢ of SR and a family (@) of bounded orerators on
Y J Ling H
X subch that

THKY == @ fiplh)y  for every fe Cy(K. X))

The boundedness of ¢ is immediate. Now the Stone extension of any fe CAL X)
satisfies f(k) == 0 whenever k € BKN\K, therefore o(k) € K for every & such that
&, 4 0. We may redefinz, i€ necessary, the value of ¢ at other points so that ¢ cor-
responds to a selfmap on K. The continuity requirement for ¢ follows from our
discussion above and that of @ follows by considering a function vanishing outside
some neighbourhood of o(k). If K is compact, we may just consider the constunte

.

functions. !

Note that in general ¢ may not be continuous on K.

Exampir. Let K= {0, 1, 2, 3,...} U {12,173,...} with the usual subspace
topology and X be the Hilbert space £2. Let (¢)) denote the canonical basis and
define ¢ by

@, =0 and @ x = @y ,x = (¥, ¢e,.

Put o(0) := 0, o) == o{l ) = »n. Then for every fe Cy(K., X), THK) -= & flo(h)
is also in Cy(K. X). Therefore @ and ¢ define a bounded linear operator on Cy{K, X)
with the disjoint support property, while @ fails to be continuous at A = (.

We note also that givea @ and ¢ continuous at cvery & for which @, 5% 1), they
may not define a bounded linear operator on Cy(K. X). To sce this just take ¢ as
in the above exampie and ¢ to be the identity map.

Now suppose that A'is only completely regular. We know that every f'& C (K, X)
has 2 unique extension f to K and indeed C(K, X) is isometricaily isomerphic
to C(SK, X). A lincar operator 7t C (K. X) - C(K. X) has the disjoint support pro-
perty if and only if it, scgarded as an operator on C(HK, X), also hus the disjoint
support property. We conclude the following

37

COROLLARY 1.3, A bounded linear operator T': CAK, X} CAK, X} has the
disjoint support property i aad only if there exist ©: K- PR and a strongly coiti-
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nuous function ®: K — L(X) with relatively strongly compact range in L(X) such that
@ is continuous on K\N, where N = (ke K: ¢, = 0} and

Tfik) = o (flo(k))  for every [ € C (K, X),
where f is the Stone extension of f to K.

Note that in general we do not have ¢(K) < K. For suppose K is non-compact
take any k, € BK\K and define ¢(k) = k, for every k &€ K. Then T given by Tf(k) =
= f(p(k)) ® 1, the constant function with value f(k,), has the disjoint support
property, but ws cannot redefine ¢ to have ¢(k) € K.

2. A COMPACTNESS CRITERIA

in [3] Jamison and Rajagopalan stated and proved the following theorem
{rewritten in our notations).

TuroreM [3, Theorem 2]. The following conditions are necessary and sufficient

for the weighted composition operator

Tf(k)y = & f(ep(k)
to be a compact operator on C(K, X).
(2.1) o : K- K and ¢ is continuous on X \N.
(2.2) k —> &, is continuous in the uniform operator iopology.
(2.3) If F is a compact subset af K\ N, then o(F) is finite.

~ (2.3') If F is a connected component of K \N, there exists an open subset U
of K, such that

Uc KN\N, FcU, and (%) is finite.

(2.4) If (x,) is a sequence in X, ¢ > 0 and F a compact subset of K’\N, then
there exists a subsequence (x,,i) such that (Pyxy.) is s-uniformly Cauchy on F.

(2.5) Given a bounded sequence (x,) in C(K, X), let Z = {x : Tx (k) = ¢,x, =0
Jor every n}. If ¢ > O there exists a subsequence (xy) and a neighbourhood U, 2
2 z such that

WTxa (K| <& for every k €, .

They remarked that (2.4) implies ¢, is a compact operator for each ke X.
But if we assume that every @, is a compact operator and F a compact subset of
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K\, then by (2.2) there exists &, ..., &, € Fand open neighbourhoods U/\»l.. Uk

n
such that for every l € U, we have 9, - P, - < &f4. Let (x,)be any sequencein X,
Since (I),. is compact, there is a subsequence (x, )for whlch(dﬁn, ) converges. Repeat
the process for (\,, ) and @, and 50 on, we obtam a g-uniformly Cauchy subsequence

on F. Therefore (2 4) iollow> For (2.5) we may just take k,, ..., Kk, € Z and corres-
ponding open neighbourhoods Ukl‘ U, for which @, -- d)k‘”_' < ¢ whenever
IeUr,. Put U = U Ur,- Then (2.5) holds on U and it is not necessary to choose a
i

subsequence. We shall now give a characterisation of compact operators on Cy(K, X)
with the disjoint support property for locally compact K. Our main too! is the
following generalised Arzeli-Ascoli theorem. This theorem is probably well-knowa.
A further generalization can be found in {4, Theorem 2.1).

TusoREM A. A subset H of Cy(K, X) is relatively compact if and only if the fol-
lowing conditions are satisfied :
(1) H is cquicontinuous,
@ity H(k) = {fik) : fe H} is relatively compact for every k €K, and
(iil) I vanishes at infinity uniformly, i.c. for every &€ > 0 there cxists a compact
subsct D of K such that | fik)i < ¢ for every € H and k € K\D.

TurorREM 2.1, The bounded linear operator on Cy(K, X) given by

Tf(k) = ®.f(o(k))

is compact if and only if the following conditions are satisfied :

(i) Each @, is a compact operator on X.

(iiy @ is continuous in the uniform operator topology and the scalar function
ko> lp{le) vanishes at infinity on K.

(ii1) @ is locally constant on K\N.

Rumark. Condition (iii) is equivalent to condition (2.3) or (2.3) in {3].

Proof. Neczssity, We shall prove oaly the seeond part of (i), the rost being
the sam: as in the proof of {3, Tazorem 2]. Now the compactness of T is equivalent
to the relative compactnoss of the set TBcx, x; in Co(K, X). By ¢ the Arzela-Ascoli
theoram this st vanishes at infinity uniformly. Hence for every ¢ > 0, there s a
compact subsst D of Ksuch that (@, flok))j<eforaltk e K\D and for all f & B¢ ur, x
which amounts to |@,]] <e.

Sufficiency. We nced to show TBc (x, x) satisties conditions (i) -~ (iii) of the Arzela-

-Ascoll theorem. For ke X with @, = 0, TBCO(K. xy is equicontinuous at %, by the
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norm-continuity of @. Tt is also equicontinuous at other points, since then ¢ is locally
constant. Thus (i) is fulfilled. Condition (ii) follows from the fact that each @, is
compact. Finally (iii) is already dealt with in the nccessity part. %,

When K is completely regular, condition (iii) above cannot be carried over
to iK. Namely if ¢ is locally constant on K, its Stone extension ¢ need not be
locally constant on K. (We may just consider an infinite set and a function defined
on it, which takes distinct values at distinct points.) Following Singh and Summers

[6], we put
N@, ¢) ={keK: o) > e} for every ¢ > 0.

It is casy to see that Singh and Summers’ condition:
P(N(D, ¢)) is finite for every £ > 0

is equivalent to (iii) above, when K is compact.

COROLLARY 2.2. The bounded linear operator on C(K, X) given by
Tf(k) = :f(@(k))

is compact if and only if the following conditions are satisfied :
(1) Each @, is a compact operator on X.
(ii) @ is continuous in the uniform operator topology.

(i) (NP, ¢€)) is finite for every ¢ > 0.

3. A WEAK COMPACTNESS CRITERIA

We shall restrict our discussion of weak compactness to the case X is compact
and deduce as a corollary for C, (K, X), when K is completely regular. We shall
also assume that for the operator Tf(k) = D f(p(k)), ¢ is continuous in the uni-
form operator topology, a property which is not shared by all weakly compact oper-
ators of this form.

EXAMPLE. Again let K = {0, 1, 1/2, 1/3, ...} with the usual subspace topology
and let X = ¢* with canonical basis (e;). Define ¢ by

@ =0 and @,,x:==(x,e,)e.

Take @(0) = ¢(1/n) = 0. Then for every fe C(K, X)

Tf( }7) = (f0), ey
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The range of C(K, X) under T is isoretric to a subspace of €, and the image of
oo

Bew, x) is theset {q, (&) = Y Etc oo}, which is relatively weakly compactin ¢,.
id

Therefore T is weakly compact, while @ is not continuous in the uniformly operator
topology.

We shall resort to @ theorem of Ruess and Summers [S, Theorem 2.2]. Since
we do not need the theorem in its generality, we state it as follows:

TuroreM B. A subset H of C(K, X) is relatively weakly compact if and oniy
if the following conditions are satisfied :

() H is bounded,

(i) Hk) = {fik)y:fe H} is relatively weakly compact for every k ¢K, and

(iii) i £ K- X is the pointwise-weak limit of a net in H, then fcC(K, X).

TrroreM 3.1, The dovnded linear operator on C(K, X) given by
Tfik) - @ fleth)

is weakly compact if and ondy if the following conditions are satisfied :

(1) Each @, is a vedkly compact operator on X, and

(1) o is locally constant on K\N.

Proof. Necessity. Condition (i) is clearly necessary. Condition (i) can be
proved similarly as in the proof of [3, Theorem 2].

Sufficicncy. We need only show that if (£,) is a net of functions in Be, x, such
that @ flo(k)) converges weakly to g(k), then g € (K, X). If & is such that & == J,
then there is a neigbourhood u of & on which @ < ¢z, for arbitrarily chosen .
It follows that "¢, < & on u. If @, # 0, take a neighbourhood # of & on which
is constant and that “@, .- &, < ¢ for every /& #. Then we have

cetl) — gty < liminfi@, fL(o(F)) -~ & f k) < e

For both cases we have g continuous at &,
In the case when K is compietely regular, we have the following

CoroLLARY 3.2. Tie bounded operator on C (K, X} given by
Ty = &y flep(R))

is wealdy compact if and oriy if the following condition is satisfied :

(i) Each @, is weokly compact operator on X, and

(i1) o(N(D, &)) is finite for every & > Q.

Remark, Corollary 2.2 and Corollary 3.2 generalised part (}) and (2) of [6
Theorem 2.1} respectively.
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