OPERATORS WITH THE DISJOINT SUPPORT PROPERTY

JOR-TING CHAN

0. INTRODUCTION

Let K be a compact Hausdorff space and X a real or complex Banach space. Let C(K, X) be the Banach space of all continuous X-valued functions on K under the supremum norm. For a Banach space X, we write X^* for its Banach dual, L(X) the space of all bounded linear operators on X and B_X the closed unit ball. A bounded linear operator T on C(K, X) is said to have the disjoint support property if for every f, g in C(K, X) such that ||f(K)|| ||g(K)|| = 0 for every $k \in K$ we always have ||Tf(k)|| ||Tg(k)|| = 0 for every $k \in K$. Recently Jamison and Rajagopalan [3] proved that such operators are precisely those of the form

$$Tf(k) = \Phi_k f(\varphi(k))$$

where φ is a selfmap of K and for each k, $\tilde{\Phi}_k$ is a bounded linear operator on X. They also gave a necessary and sufficient condition for these operators to be compact. In the following sections we prove that operators on a more general setting of a function module having the disjoint support property also assume the form described above. We shall show that some of the conditions in [3, Theorem 2] are redundant and deduce the theorem from a generalized Arzela-Ascoli theorem. Following [6], criteria for weak compactness is also discussed. In what follows K is not always assumed to be compact, it may be locally compact or completely regular. In these cases, we denote by $C_0(K, X)$ the spaces of all continuous X-valued functions vanishing at infinity on K and $C_p(K, X)$ the spaces of all continuous X-valued functions having relatively compact range in X, respectively.

1. THE DISJOINT SUPPORT PROPERTY

DEFINITION [2, Definition 4.1]. A function module is a triple $(K, (X_k)_{k \in K}, X)$, where K is compact, $(X_k)_{k \in K}$ a family of Banach spaces and X a closed subspace of

 $\prod_{k \in K} X_k$ such that the following conditions are satisfied:

- (i) $hf \in X$ for every $f \in X$ and $h \in C(K)$,
- (ii) $k \mapsto |f(k)|$ is upper semicontinuous for every $f \in X$,
- (iii) $X_k = \{f(k) : f \in X\}$ for every $k \in K$, and
- (iv) $\{k: X_k \neq 0\}$ is dense in K.

For further properties of a function module, we refer to Behrends [2]. We mention in passing that if K is locally compact, $C_0(K, X)$ can be regarded as a function module in $\prod_{k \in \beta K} X_k$, where βK is the Stone-Čech compactification of K $X_k = X$ for $k \in K$ and $X_k = 0$ for $k \in \beta K \setminus K$.

THEOREM 1.1. Let X be a function module in $\prod_{k \in K} X_k$ and let T be a bounded linear operator on X. Then T has the disjoint support property if and only if there is a selfmap φ of X and a family $(\Phi_k)_{k \in K}$ of bounded linear operators with $\Phi_k \in L(X_k)$ such that

$$Tf(k) = \Phi_k(f(\varphi(k)))$$

or every f in

Proof. Sufficiency is clear.

To establish the necessity we shall first construct the selfmap φ . Since no continuity is required, it suffices to define $\varphi(k)$ for those k such that $Tf_0(k) \neq 0$ for some f_0 . Let \mathscr{F} be the set of all non-empty compact subset F of K with the property:

$$f(l) = 0$$
 for every $l \in F$ implies $Tf(k) = 0$.

The above property is equivalent to:

For every $\varepsilon > 0$, $||f(l)|| < \varepsilon$ for every $l \in F$ implies $||Tf(k)|| < \varepsilon ||T||$. We claim that \mathscr{F} has a minimal element (in the sense of set inclusion). To this end take any chain (F_a) from \mathscr{F} . We contend that $\bigcap_x F_a \neq \emptyset$, as (F_a) has the finite intersection property. To show that $F = \bigcap_x F_a \in \mathscr{F}$, consider any $f \in X$ such that $||f|| < \varepsilon$, where $\varepsilon > 0$. The set $u = \{l \in K : ||f(l)|| < \varepsilon\}$ is an open set containing F, by the upper semicontinuity of the function $k \mapsto ||f(k)||$. Since (F_a) is totally ordered, the chain lies eventually inside u. Hence $||Tf(k)|| < \varepsilon ||T||$ and consequently $F \in \mathscr{F}$. Next we shall show that F is a singleton. If $f \in X$ satisfies $Tf(k) \neq 0$, take $p \in X_k^*$, such that $(Tf(k)) \neq 0$. Consider the linear functional on C(F) given by

$$L \mapsto p(T(\widetilde{h}f)(k))$$
 where \widetilde{h} is any extension of h to K.

By the Riesz representation theorem, there is a Radon measure μ on F such that $\int Fh d\mu = p(T(hf)(k))$. Arguing as in [1, Example 2.2], it can be shown that the support of $|\mu|$ is a singleton. The fact that this singleton is indeed independent of the choice of f and p follows from a standard argument (cf. [3, p. 310]). We omit the detail. Now let that singleton set be $\{l\}$. Then for every $f \in X$, f(l) = 0, we have Tf(k) = 0. For assuming the contrary, there is a $p \in X_k^*$ such that $\alpha = p(Tf(k)) > 0$. The set $u = \{l' \in K : ||f(l')|| < \alpha\}$ is open and we may find $h \in C(K)$ with $0 \le h \le 1$, h(k) = 0 and h(l') = 1 for every $l' \in K/u$. Then $||hf - f|| < \alpha$. But p(T(hf)(k)) = h(l) = 0, which is a contradiction. We conclude that $F = \{l\}$ from the minimality of F. We still have to show that there is only one such l. Note that l has the property that of $h \in C(K)$, h(l) = 1 implies T(hf)(k) = Tf(k). The uniqueness now follows from a Urysonn argument. What we have proved so far is that to every $h \in K$ such that $Tf(k) \neq 0$ for some f in X, there corresponds a unique l with

$$f(l) = 0$$
 implies $Tf(k) = 0$.

So, define $\varphi(k) = l$ and $\Phi_k(x) = Tf(k)$ where f is any element of X such that f(l) = x. Then Φ_k is clearly well-defined. For other k, put $\Phi_k = 0$ and $\varphi(k)$ can be defined arbitrarily. Then we have

$$Tf(k) = \Phi_k f(\varphi(k))$$
 for every f in X .

Let $N = \{k \in K : \Phi_k = 0\}$. Then in contrast to the case of continuous functions [3, Theorem 1], the selfmap φ need not be continuous on $K \setminus N$.

EXAMPLE. Let $X = c_0[0, 1]$ and let T be given by

$$Tf(0) = f(1), Tf(1) = f(0) \text{ and } Tf(k) = f(k) \text{ for } k \neq 0, 1.$$

Then T is a bounded linear operator with the disjoint support property. The corresponding Φ_k is the identity on **R** and φ is given by

$$\varphi(0) = 1$$
, $\varphi(1) = 0$ and $\varphi(k) = k$, for $k \neq 0$, 1.

Clearly φ is not continuous at 0 and 1.

However if X is a function module in which $k \mapsto ||f(k)||$ is continuous, then φ is continuous on $K \setminus N$. For if $\Phi_k \neq 0$ and $\mathscr U$ is a neighbourhood of $\varphi(k)$, there is an $l \in X$ such that $\Phi_k f(\varphi(k)) \neq 0$ and f vanishes outside $\mathscr U$. Since $Tf(k) = \Phi_k f(\varphi(k)) \neq 0$, and is continuous, neighbourhood V of k such that $Tf(l) \neq 0$ for every $l \in V$. It follows $\varphi(l) \in$

COROLLARY 1.2. Let K be a locally compact Hausdorff space and X a Banach space. Let T be a bounded operator on $C_0(K, X)$ with the disjoint support property. Then there is selfmap ϕ of K and a bounded L(X)-valued function Φ on K such that

$$Tf(k) = \Phi_k f(\phi(k))$$
 for every $f \in C_0(K, X)$.

Let $N = \{k : \overline{\Phi}_k \neq 0\}$, then φ is continuous on $K \setminus N$ and Φ is strongly continuous on $K \setminus N$. If K is compact, then Φ is strongly continuous on K.

Proof. Viewing $C_0(K, X)$ as a function module over βK , it follows from Theorem 1 that there exist a selfmap φ of βK and a family $(\Phi_k)_{k \in K}$ of bounded operators on X subch that

$$Tf(k) := \Phi_k f(\varphi(k))$$
 for every $f \in C_0(K, X)$.

The boundedness of Φ is immediate. Now the Stone extension of any $f \in C_n(K, X)$ satisfies f(k) = 0 whenever $k \in \beta K \setminus K$, therefore $\varphi(k) \in K$ for every k such that $\Phi_k \neq 0$. We may redefine, if necessary, the value of φ at other points so that φ corresponds to a selfmap on K. The continuity requirement for φ follows from our discussion above and that of Φ follows by considering a function vanishing outside some neighbourhood of $\varphi(k)$. If K is compact, we may just consider the constante functions.

Note that in general Φ may not be continuous on K.

EXAMPLE. Let $K = \{0, 1, 2, 3, ...\} \cup \{12, 1/3, ...\}$ with the usual subspace topology and X be the Hilbert space ℓ^2 . Let (e_i) denote the canonical basis and define φ by

$$\Phi_0 := 0$$
 and $\Phi_n x = \Phi_{1,n} x = (x, e_1) e_n$.

Put $\varphi(0) := 0$, $\varphi(n) := \varphi(1/n) = n$. Then for every $f \in C_0(K, X)$, $Tf(k) := \Phi_k f(\varphi(k))$ is also in $C_0(K, X)$. Therefore Φ and φ define a bounded linear operator on $C_0(K, X)$ with the disjoint support property, while Φ fails to be continuous at k = 0.

We note also that given Φ and φ continuous at every k for which $\Phi_k \neq 0$, they may not define a bounded linear operator on $C_0(K, X)$. To see this just take Φ as in the above example and φ to be the identity map.

Now suppose that K is only completely regular. We know that every $f \in C_p(K, X)$ has a unique extension \tilde{f} to βK and indeed $C_p(K, X)$ is isometrically isomorphic to $C(\beta K, X)$. A linear operator $T: C_p(K, X) \to C_p(K, X)$ has the disjoint support property if and only if it, regarded as an operator on $C(\beta K, X)$, also has the disjoint support property. We conclude the following

COROLLARY 1.3. A bounded linear operator $T: C_p(K, X) \to C_p(K, X)$ has the disjoint support property if and only if there exist $\varphi: K \to \beta K$ and a strongly conti-

nuous function $\Phi: K \to L(X)$ with relatively strongly compact range in L(X) such that φ is continuous on $K \setminus N$, where $N = \{k \in K : \varphi_k = 0\}$ and

$$Tf(k) = \Phi_k(\tilde{f}(\varphi(k)))$$
 for every $f \in C_p(K, X)$,

where \tilde{f} is the Stone extension of f to βK .

Note that in general we do not have $\varphi(K) \subseteq K$. For suppose K is non-compact take any $k_0 \in \beta K \setminus K$ and define $\varphi(k) = k_0$ for every $k \in K$. Then T given by $Tf(k) = \tilde{f}(\varphi(k)) \otimes 1$, the constant function with value $\tilde{f}(k_0)$, has the disjoint support property, but we cannot redefine φ to have $\varphi(k) \in K$.

2. A GOMPACTNESS CRITERIA

In [3] Jamison and Rajagopalan stated and proved the following theorem (rewritten in our notations).

THEOREM [3, Theorem 2]. The following conditions are necessary and sufficient for the weighted composition operator

$$Tf(k) = \Phi_k f(\varphi(k))$$

to be a compact operator on C(K, X).

- (2.1) $\varphi: K \to K$ and φ is continuous on $X \setminus N$.
- (2.2) $k \mapsto \Phi_k$ is continuous in the uniform operator topology.
- (2.3) If F is a compact subset of $K \setminus N$, then $\varphi(F)$ is finite.
- (2.3') If F is a connected component of $K \setminus N$, there exists an open subset U of K, such that

$$U \subseteq K \setminus N$$
, $F \subseteq U$, and $\varphi(\mathcal{U})$ is finite.

- (2.4) If (x_n) is a sequence in X, $\varepsilon > 0$ and F a compact subset of $K \setminus N$, then there exists a subsequence (x_{n_n}) such that $(\Phi_k x_{n_n})$ is ε -uniformly Cauchy on F.
- (2.5) Given a bounded sequence (x_n) in C(K, X), let $Z = \{x : Tx_n(k) = \Phi_k x_n = 0 \}$ for every n. If $\varepsilon > 0$ there exists a subsequence (x_{n_i}) and a neighbourhood $\mathscr{U}_{\varepsilon} \supseteq \mathbb{Z}$ such that

$$||Tx_{n_i}(k)|| < \varepsilon$$
 for every $k \in \mathcal{U}_{\varepsilon}$.

They remarked that (2.4) implies Φ_k is a compact operator for each $k \in K$. But if we assume that every Φ_k is a compact operator and F a compact subset of

 $K \setminus N$, then by (2.2) there exists $k_1, \ldots, k_n \in F$ and open neighbourhoods U_{k_1}, \ldots, U_{k_n} such that for every $l \in U_{k_i}$, we have $[\Phi_l - \Phi_{k_i}] < \varepsilon/4$. Let (x_n) be any sequence in X. Since Φ_{k_1} is compact, there is a subsequence (x_{n_j}) for which $[\Phi_k x_{n_j}]$ converges. Repeat the process for (x_{n_j}) and Φ_{k_2} and so on, we obtain a ε -uniformly Cauchy subsequence on F. Therefore (2.4) follows. For (2.5) we may just take $k_1, \ldots, k_n \in Z$ and corresponding open neighbourhoods U_{k_1}, \ldots, U_{k_n} for which $[\Phi_l - \Phi_{k_l}] < \varepsilon$ whenever $l \in U_{k_l}$. Put $U = \bigcup_{i=1}^n U_{k_i}$. Then (2.5) holds on U and it is not necessary to choose a subsequence. We shall now give a characterisation of compact operators on $C_0(K, X)$ with the disjoint support property for locally compact K. Our main tool is the following generalized Arzelà-Ascoli theorem. This theorem is probably well-known. A further generalization can be found in $[\Phi]$, Theorem 2.1].

THEOREM A. A subset H of $C_{\theta}(K, X)$ is relatively compact if and only if the following conditions are satisfied:

- (i) H is equicontinuous,
- (ii) $H(k) = \{f(k) : f \in H\}$ is relatively compact for every $k \in K$, and
- (iii) H vanishes at infinity uniformly, i.e. for every $\varepsilon > 0$ there exists a compact subset D of K such that $\mathbb{F}(k)^{\varepsilon} < \varepsilon$ for every $f \in H$ and $k \in K \setminus D$.

THEOREM 2.1. The bounded linear operator on $C_0(K, X)$ given by

$$Tf(k) = \Phi_k f(\varphi(k))$$

is compact if and only if the following conditions are satisfied:

- (i) Each Φ_k is a compact operator on X.
- (ii) Φ is continuous in the uniform operator topology and the scalar function $k \mapsto \|\Phi(k)\|$ vanishes at infinity on K.
 - (iii) φ is locally constant on $K \setminus N$.

REMARK. Condition (iii) is equivalent to condition (2.3) or (2.3') in [3].

Proof. Necessity. We shall prove only the second part of (ii), the rest being the same as in the proof of [3, Theorem 2]. Now the compactness of T is equivalent to the relative compactness of the set $T\mathbf{B}_{C_0(K,X)}$ in $C_0(K,X)$. By the Arzelà-Ascoli theorem this set vanishes at infinity uniformly. Hence for every $\varepsilon > 0$, there is a compact subset D of K such that $\|\Phi_k f(\varphi(k))\| < \varepsilon$ for all $k \in K \setminus D$ and for all $f \in \mathbf{B}_{C_0(K,X)}$ which amounts to $\|\Phi_k\| < \varepsilon$.

Sufficiency. We need to show $T\mathbf{B}_{C_0(K,X)}$ satisfies conditions (i) – (iii) of the Arzelà-Ascoli theorem. For $k \in K$ with $\Phi_k = 0$, $T\mathbf{B}_{C_0(K,X)}$ is equicontinuous at k, by the

norm-continuity of Φ . It is also equicontinuous at other points, since then φ is locally constant. Thus (i) is fulfilled. Condition (ii) follows from the fact that each Φ_k is compact. Finally (iii) is already dealt with in the necessity part.

When K is completely regular, condition (iii) above cannot be carried over to βK . Namely if φ is locally constant on K, its Stone extension $\tilde{\varphi}$ need not be locally constant on βK . (We may just consider an infinite set and a function defined on it, which takes distinct values at distinct points.) Following Singh and Summers [6], we put

$$N(\phi, \epsilon) = \{k \in K : ||\phi_k|| \ge e\}$$
 for every $\epsilon > 0$.

It is easy to see that Singh and Summers' condition:

$$\varphi(N(\Phi, \varepsilon))$$
 is finite for every $\varepsilon > 0$

is equivalent to (iii) above, when K is compact.

COROLLARY 2.2. The bounded linear operator on $C_p(K, X)$ given by

$$Tf(k) = \Phi_k \hat{f}(\varphi(k))$$

is compact if and only if the following conditions are satisfied:

- (i) Each Φ_k is a compact operator on X.
- (ii) Φ is continuous in the uniform operator topology.
- (iii) $\varphi(N(\Phi, \varepsilon))$ is finite for every $\varepsilon > 0$.

3. A WEAK COMPACTNESS CRITERIA

We shall restrict our discussion of weak compactness to the case K is compact and deduce as a corollary for $C_p(K, X)$, when K is completely regular. We shall also assume that for the operator $Tf(k) = \Phi_k f(\varphi(k))$, Φ is continuous in the uniform operator topology, a property which is not shared by all weakly compact operators of this form.

EXAMPLE. Again let $K = \{0, 1, 1/2, 1/3, ...\}$ with the usual subspace topology and let $X = \ell^2$ with canonical basis (e_i) . Define Φ by

$$\Phi_0 = 0$$
 and $\Phi_{1/n} x = (x, e_n) e_1$.

Take $\varphi(0) = \varphi(1/n) = 0$. Then for every $f \in C(K, X)$

$$Tf\left(\frac{1}{n}\right) = (f(0), e_n)e_1.$$

The range of C(K, X) under T is isometric to a subspace of C_0 and the image of $\mathbf{B}_{C(K, X)}$ is the set $\left\{e_0 \oplus (\zeta_i) = \sum_{i=1}^{\infty} |\zeta_i|^2 < \infty\right\}$, which is relatively weakly compact in e_0 . Therefore T is weakly compact, while Φ is not continuous in the uniformly operator topology.

We shall resort to a theorem of Ruess and Summers [5, Theorem 2.2]. Since we do not need the theorem in its generality, we state it as follows:

THEOREM B. A subset H of C(K, X) is relatively weakly compact if and only if the following conditions are satisfied:

- (i) H is bounded,
- (ii) $H(k) = \{f(k) : f \in H\}$ is relatively weakly compact for every $k \in K$, and
- (iii) if $f: K \to X$ is the pointwise-weak limit of a net in H, then $f \in C(K, X)$.

Theorem 3.1. The bounded linear operator on C(K, X) given by

$$Tf(k) - \Phi_k f(\varphi(k))$$

is weakly compact if and only if the following conditions are satisfied:

- (i) Each Φ_k is a weakly compact operator on X, and
- (ii) ϕ is locally constant on $K \setminus N$.

Proof. Necessity. Condition (i) is clearly necessary. Condition (ii) can be proved similarly as in the proof of [3, Theorem 2].

Sufficiency. We need only show that if (f_x) is a net of functions in $\mathbf{B}_{C(K,X)}$ such that $\Phi_k f(\varphi(k))$ converges weakly to g(k), then $g \in C(K,X)$. If k is such that $\Phi_k = 0$, then there is a neigbourhood u of k on which $\|\Phi\| < \varepsilon$, for arbitrarily chosen ε . It follows that $\|g\| < \varepsilon$ on u. If $\Phi_k \neq 0$, take a neighbourhood \mathcal{U} of k on which φ is constant and that $\|\Phi_k - \Phi_k\| < \varepsilon$ for every $k \in \mathcal{U}$. Then we have

$$|[g(l) - g(k)]| \leq \liminf |\Phi_l f_2(\varphi(k)) - \Phi_k f_2(\varphi(k))|| \leq \varepsilon.$$

For both cases we have g continuous at k.

In the case when K is completely regular, we have the following

COROLLARY 3.2. The bounded operator on $C_p(K, X)$ given by

$$Tf(k) = \Phi_n f(\varphi(k))$$

is weakly compact if and only if the following condition is satisfied:

- (i) Each Φ_k is weakly compact operator on X, and
- (ii) $\varphi(N(\Phi, \varepsilon))$ is finite for every $\varepsilon > 0$.

REMARK. Corollary 2.2 and Corollary 3.2 generalised part (1) and (2) of [6 Theorem 2.1] respectively.

REFERENCES

- 1. Arendt, W., Spectral properties of Lamperti operators, *Indiana Univ. Math. J.*, 32(1983), 199—215.
- 2. Behrends, E., M-structure and the Banach-Stone theorem, Lecture Notes in Math., 736, Springer-Verlag, Berlin—Heidelberg, 1979.
- 3. Jamison, J. E., Rajagopalan, M., Weighted composition operator on C(X, E), J., Operator Theory, 20(1988), 307-317.
- 4. Rufss, W. M.; Summers, W. H., Compactness in spaces of vector valued continuous functions and asymptotic almost periodicity, *Math. Nachr.*, 135(1988), 7-33.
- 5. Ruess, W. M.; Summers, W. H., Integration of asymptotically almost periodic functions and weak asymptotic almost periodicity, *Dissertationes Math.*, 279(1989), 37 pp.
- SINGH, R. K.; SUMMERS, W. H., Compact and weakly compact composition operators on spaces of vector valued continuous functions, Proc. Amer. Math. Soc, 99(1987), 667-670

JOR-TING CHAN
Department of Mathematics,
The National University of Singapore,
Kent Ridge,
Singapore 0511,

Received August 10, 1989.