J. OPERATOR THEORY © Copyright by IMAR, 1991
25(1991), 331-345 :

NEW CLASSES OF SPACES ON WHICH COMPACT OPERATORS
SATISFY THE DAUGAVET EQUATION

YURI ABRAMOVICH

1. INTRODUCTION

We use the standard terminology on Banach spaces and Banach lattices (see {3],
[17)).
In 1963 Daugavet [7] proved that each compact operator in C[0,1] satisfies the

following equation:
(DE) I +T) =1+]T1,

where I denotes, as usual, the identity operator.

In 1956 Foiag and Slnger [10] extended this result to arbltrary atomless C(K)-
-spaces, and in 1966 Lozanovski [16] discovered that compact operators on L;[0,1]
enjoy the same property. Apart from a couple of generalizations of these results
obtained in [15] and [19], there was no special attention given to this subject until
Babenko and Pichugov [5] recently rediscovered the Lozanovski result and pointed
out 1ts applicatiohs to approximation theory. Since then the interest in this subject
has begun to grow and a number of publication has followed (see [6], [12-14], [21]),

the main result of which may be summarized as follows:

THEOREM 1. (Daugavet, Lozanovski, Foiag and Singer, Krasnoselski, Babenko
and Pichugov, Holub, Kamowitz, Chauveheid, Schmidt). Let X be an arbitrary atom-
less Ly(p)- or Loo(p)-space and T be an arbitrary weakly compact operator on X.
Then T satisfies the Daugavet equation (DE).

We would like to stress that the classical spaces Li(p) and Loo (1) often play an
exceptional rolé in many questions, and initially it seemed quite natural to expect

that the (DE)-property might be characteristic for these spaces. But (and it is-our -

[
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main result here) that is not the case. The purpose of this work is to present new
classes of spaces (different from L;(u) and L (1)) for which the (DE)-property still
holds.

Let us remark incidentally that throghout our work we use the isometric point
of view, and it is the only reasonable point of view when one deals with (DE), since
the property (DE) is isometric by its nature.

In the concluding section we will present several related results, comments and

questions. This section can be viewed as a brief survey on the (DE)-property.

MAIN RESULTS

In this section our main results, Theorem 3 and 4, will be established. We start

with an auxiliary approximation lemma that is of interest in its own right.

APPROXIMATION LEMMA 2. Let T be a weakly compact operator on the space
C(Q), where Q is a compact Hausdorff space without isolated points. Let two func-
tions u, v € C(Q) and two different points pg, qo € @ be fixed. Then for each € > 0
and for each neighborhood V (qo) of qo there is a function & € C(Q) and a point
g6 € V (go) such that .

@ lall < Jull,

(i)  la(q0) + Tt (g0) + v (g0)] > lu(po)| + [Tu(g0) + v (g0)| — €.

Proof. We will assume that the neighborhood V' (¢o) is small enough to guarantee
that

(1) lv(g) — v (q0)] <e/4
and
(2) |Tu(g) — Tu(q0)| <€/4

for each ¢ € V (qo), otherwise we may choose a smaller V' (go) C V (qo) satisfying
these conditions. Since go is not an isolated point we can easily find in C(Q) a
bounded sequence {x,} satisfying the following conditions:

(@) |zalAlem|=0, n#m;

(b) supp (zn) C V (90);

() Iu(g) +a(g)l < llullfor each q € V (qo);

(d) For each n € N there exists a g, € V (go), such that

(3) (u(gn) + 2n (¢n)) (T (90) + v (g0)) 20,
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that is, the signs of the numbers u (¢,) + 2, (¢5) and Tu (go) + v (go) coincide and

(4) [u(gn) + 2n (gn)] > lu(po)| — €/4.

At this point we will apply the following important result due to P. Dodds (see
[9, Theorem 4.2] or [3,; Theorem 18.6]): Any weakly compact operator from a Banach
lattice G into a Banach space F sends an arbitrary order bounded sequence of pairwise
disjoint elements in G to a norm convergent sequence in the space E. Therefore, since
{zn} is exactly such a sequence and since T is weakly compact, we have ||Tz,]|| — 0.

Fix an arbitrary number n for which

(5) IT2all < /4
and let

(6) U:=u+2z,
and

(M 2 = gn.

Using (6) and (7) we can rewrite (4) as follows:

(8) | (g0)| > u(po)| — /4.

We claim that the function @ and the point qq are as required.
Indeed, (6), (a), and (c) clearly imply (i). To verify (i1) we have the following
chain of estimates:

by(5)
| (90) + T (g0) + v (90)| = | (g0) + Tu(g0) + Tza (g5) + v (g0)| >

by(5 1

e , , by (D.2) b
> i (ah) + Tuley) + v (@) - /4 > |a(gh) + Tulgo) + v (go)] — 3e/4™Y
by(3) ., ‘ by (8)
") |5 (gh)] + ITu (g0) + v (20) = 3/4 = u(po)| + [T (0) + v (q0)| — €.

Q. E. D.

REMARKS. 1) Let us notice that if (after & and ¢y have been found and fixed)
we slightly perturb the function v (up to a é), then the inequality in (ii) will not be
affected by more than 26. We will use this simple observation later on.

2) The conclusion of the lemma becomes trivial if |u (go)] > |u (po)] and the signs

of u(go) and Tu (qo) + v (go) coincide, since in this case the function u itself can be
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taken as @i. But, apart from this trivial case, the change of u to 4 implies the change
in T'u and the conclusion is no longer trivial. Moreover, taking a normed u for which
Tu almost attains norm ||T|| and setting v = 0 this lemma immediately gives a new

proof of Theorem 1.

Recall that if X and Y are arbitrary Banach spaces, then Z = X @ Y (resp.
X@®,Y ) is the standard Banach space of all pairs z = (z,y) = z@y withz € X, y€ Y
and with the norm ||z|| = ||z||x V llully (resp. ||z]| = llz|lx + |lylly)- It is well known
that (X @ Y) = X* @1 Y* and (X 8, Y) = X* @ Y.

Throughout this section g and v are arbitrary atomless measures and we let
U= Lo (1) &1 Leo (v)

and
V=L (p) @0 L1 (V).

We will denote by Q; and Q2 the Stone spaces of Lo, () and Lo (v), respectively.
Recall that Lo (p) can be identified with C'(Q1) and Lo (v) can be identified with
C (Q2) (see, for example, [22]).

In what follows we will deal with an operator T: X @Y — X ® Y and for our

purposes it will be convenient to treat T as a matrix operator

® *=|r, n]

where T : X - X, To: Y - X, T3: X >Y,and T3 : Y =Y.
Accordingly, for each z = (z,y) € X ® Y one has

(10) Tz = (Tiz + Toy) ® (T3z + Tuy)
and
(11) (I+T)z=(z+Tz+Toy) ® (y+ Tzz + Tay) .

It is worth mentioning that neither of the spaces U or V is an AL- or AM-
-space. Nevertheless, and it is our first main result in this article, all V\{ea.kly compact

operators on U and V satisfy (DE).

THEOREM 3. Let Z be either of the spaces U or V introduced above and let
T : Z — Z be an arbitrary weakly compact operator. Then T satisfies the Daugavet

equation

(DE) 1 +Ti=1+|T|-
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Proof. We start with the case Z =U = X @, Y = Loo(1t) ®1 Loo(v). The second
case will be reduced to this one. As we have agreed above, we represent a given
weakly compact operator T : Z — Z in the matrix form (9).

In view of (10) we have

(12) |7l = sup ||ITz]|= sup {||Tiz+ Taylle, + |75z + Tuyll,} -
el <1 ll=ll+lvl < 1

Hence, for each € > 0 we can find a zp = (%o, ) € Z such that

(13) ITzo|| 2 [|IT|| -,
where
(14) llzoll = llzolleo + llvolloo = 1. '

This implies that there exist points py € Qand §y, € Q3 such that ||zo||,, =
= |zo Bo)l» llwollee = |y0 (1=Jo)| and therefore,

(15) 20 (Bo)l + |vo (Fo )| = 1.
In view of (13) and (12) we have
I1Th20 + Togollos + [ITsz0 + Tavollos > |71l — ¢
and consequently, there are points §; € @1, g € Qz vsuch that
(16) [(Tizo + T2y0) (To)| + |(Taz0 + Tugo) (To )| 2 ITI| — ¢

Since @; and @, have no isolated points, it is plain to see that without loss of
generality we can assume that By # goand By # o -

Let V (g;) be a clopen neighborhood of g, on which the oscillation of Thyy is less
than /4. '

To the functions z4 and v = T>yp, to the operator T}, and to the points Do and G
we apply the Approximation Lemma. By this lemma there is a function #, and a

point gy in V (g,) such that
(17) l1Zoll < lloll

and

(18) 120 (T0) + T1 %o (T0) + Toyo (T5)] = |zo (Bo)| + |Tizo (G0) + Towo (G0)| — €.
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Since Zg is obtained from z by a perturbation generated by a bounded sequence
of pairwise disjoint functions, a second application of the Dodds theorem guarantees

that we can additionally assume that
(19) | T320 — Tazo|lo, <€/4.

Now we apply the Approximation Lemma for the second time to the functions
u = yo and v = TyZo, to the operator Ty, and to the points Py € Q-and G, € Q».

By this lemma there exist a function gy and a point ﬁé in a vicinity of 7, such that

(20) l1oll < llsoll

and

(21) '.170 (ﬁé) + Tado (3(;) + T3%o (fé)l > |vo (Bo)| + |Tuvo (To) + Tado (3o )| — &
In view of (19) we can rewrite (21) as follows:

(22) |"7° (_7‘;) + Tado (?‘;) + TaZo (?3)‘ 2

2 Iyo (Po )| + | Tayo (3o ) + Tazo (T0)| - 5¢/4.

Finally, again using Remark 1 following the Approximation Lemma, we note
that o was obtained from yo by a perturbation generated by a-bounded sequence of
pairwise disjoint elements and hence, again by the Dodds theorem, || T2g0 — T290l,

can be made as small as we wish; in particular, it will suffice if

1T280 — Tayolleo <e/4-

Consequently, inequality (18) can be rewritten as follows:

(23)  |Z0(g0) + T10 (g0) + T2di0 (90)] = |20 (o)l + [T1z0 (To) + T2v0 (To)| — 5¢/4.
Summing (23) and (22) we obtain
|Zo (30) + T1Z0 (To) + T280 (To)| + |ﬂo (76) + Ta3o (ﬁé) + 320 (3(;)| >
(24) > |20 (Bo)l + |vo (Bo )| + IT120 (To) + Tovo (@) +
' + | Tuyo (To) + Taxo (3o )| — 5¢/2.

Our next step is to estimate both sides in (24). Let R (resp. L) be the right (resp.
left) side in (24). Using (15) and (16) we can estimate R from below in the following

manner:

(25) R 1+||T|| - 7e/2.
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An estimation for L from above goes this way:

5 5 . . . . 11
L < ||Z0 + TaZo + Tadolle, + ldo + T3%0 + Tadhlloo ()

= |I(T+T) %l < M+ T,

and since (17),20)
S . , (14)
IZol] = llZoll + 170l < lzoll + llyoll '="1
we have
(26) LI +7T]).

From (25) and (26) we finally obtain the desired inequality
I+ Tl 21+ ||TH - 7e/2.
Since ¢ is arbitrary and since the converse inequality
M +T| <1+

is trivially correct, the proof of the identity |1 + T'|| = 14||T}|| in the case T: Lo, (1) 1
@1 Loo (V) = Loo (1) @1 Loo (v) is finished. |

Now we can easily prove the remaining case when T is a weakly compact operator
on the space V = L1 (1) ®eo L1 (). Indeed, then the conjugate operator T* is likewise
a weakly compact operator on L (u) @1 L} (¥) = Loo (1) @1 Lo (v), and hence, we
can apply the part already proved: )

W +T = [T+ =1L+ T = 1 +||IT*|| = 1+ |IT)|

Q. E. D.

In our search for spaces different from the classical AL- and AM-spaces,: the

choice of the spaces U and V introduced above may seem quite natural, since these

spaces are the “closest relatives” of the classical ones, and U is order isomorphic to

an Lo-space and V to an Lj-space. However, our next result shows that we can

construct a Banach lattice which is not isomorphic to either of the classical spaces,
and nevertheless each compact operator on which satisfies (DE).

To this end we intfoduce the following two (types of) spaces

Z := Loo (1) ®oo L1 (v),

and

W = Leo (1) @1 L1 (v)
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where g and v are, as Before, arbitrary atomless measures. That is, as opposed to
the case of the spaces Uand V, the “components” of Z and W are no longer of the

same type, and therefore neither Z nor W is isomorphic to a classical space.

THEOREM 4. Each compact operator on the spaces Z and W satisfies (DE).

T
Proof. Let T = [ 1 I
T3 Ty

X @Y, where X := Lo (1), Y =Li(v), T : X=X, T2:Y > X, T3: XY,
and Ty : Y — Y. That is, we again use the matrix form (9) to represent a given

] be an arbitrary compact operator on the space Z =

operator T : Z — Z. Hence by (10) we have

27)  Tll= swp |ITzll=  sup  {||ITiz + Toylleo V I T52 + Tayll,} -
I < 2 llzlloo Vilvll, < 1 |

It is easy to show (see Corollary to Lemma 5 below) that the supremum in (27)

may be evaluated by considering only ||z||,, = 1 and =11 e,
Y y g y oo Yl

(28) 71 = - A {IITyz + Tyl V 5z + Tayll, } -
lleo=Hyll,=1

The rest of the proof may be splitted into the following two cases:

(29) @ NT= sup  |Tiz+ T2yl

Hzllo=ll¥ll =1
or
(30) @) |Ti=  sup  [Tae+Tuyll, -

=)l oo =ll¥ll, =1

The proof in Case (I) is similar to that of Theorem 3 and we will only outline it.
By (29) there exists zg = (Zo, yo) € Z such that

(31): lI0llz = llzolloo = lloll, = 1

and
IT1z0 + T2volloo 2 71 — ¢,

where ¢ is an arbitrary fixed positive number. Therefore we can find distinct points
po and ¢qo in Q,, the Stone space on which X := Lo (i) is represented as C(Q1),
such that

(31) |zo (po)| =1

and

(32) I(Tizo + T2y0) (g0)Il 2 lIT1| — €.
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Fix also any neighborhood V (go) of the point go. Then, applying the approximation
lemma, we can find a function Zo and a point ¢4 € V (go), such that ||Zo|| < ||zo|| and

(33) |(Zo + T1%0 + Toyo) (90)) = |20 (po)| + |(Thzo + T290) (90)| — €.

1]

In view of (32), (31’) and (31) we can rewrite (33) as follows:
(2o + Ti80 + T2y0) (90)| 2 1 +|71| - 2,
and by (11) this implies that
1+ > 147

This finishes Case (I).
Now we will adress the harder case (II). Again fix ¢ > 0 and find o = (z0,%0) € Z
satisfying (31) and such that

(34) | Tazo + Tayoll, 2 ||T|| — €.

Of course we cannot expect to have ||lyo + T3z + Tayol|, 21 + ||T|| — €, but. assume
that we can find a function g, € ¥ with the following properties:

(@ Iigolly =1,

(b) ||T4Yo — Tawoll, < 8, where 6 > 0 is an arbitrary fixed number, and

(c) v(supp (yo)‘;) < &, i. e., the measure of the support of this function ¥, is as
small as we wish.

Consider the function v = Tzzo + Tuyo € Li (v). By virtue of the absolute

continuity of the integral there exists 6 > 0 such that whenever v(D) < § we have

””Xplll <E
In view of (c) this implies that for D = supp (g,) we have

G0 + olly = [[To + (v = vxp) + vxp I, 2 o + (v~ vx,) ||, — €=
= 1Tolly + flv = vx,p ||, =€ = Folly + llvll, — 26 = 1+ [Joll, — 2.

Finally, let us consider the element Z = (20,%;) € Z. By (a) and (31) we have

||Izll ; = 1. Using this element we can estimate from below the norm ||I + T|.

TN 2 U+ T) @)z = llzo + Tizo + Ta¥olle, V ¥ + Tzo + TaToll, 2

_ _ _ (b)
2 170 + T3zo0 + T4 Yoll, = H¥o + T3z0 + Tayo + Tu¥p — Tayoll, >

(36) :

— . _ _ 35
> |[Fo+ Tozo + TuTiolly ~ 6 = [[Fo + vl — 62

(34)
L+l —2—-621+|T|-3-6.
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Since ¢ and § are arbitrary, (36) implies that
N+ 7| >1+|T]],

and this, apart from the existence of the function ¥, satisfying (a)—(c), finishes the
proof in Case (II). The proof of the existence of F, will be given below in Lemma 6.
Thus, we have proved that each compact operator on the space Z satisfies (DE).
We omit a more or less similar (blit rather cumbersome) proof for the space W.
The proof is a combination of the technique used above and that of the “consecutive

corrections” used in the proof of Theorem 3. Q. E. D.

REMARKS. 1) We do not know whether Theorem 4 remains valid for arbitrary
weakly compact operators.

2) Since Z*and W* both have atoms, it is impossible to reduce the proof for one
of these spaces to that for another as it is done in Theorem 3. (Compare Remark 5
in the last section.)

Now we are ready to justify the two assumptions made in the course of our proof

above.

LEMMA 5. Let u, v be two arbitrary elements of a Banach space E and let
v € [0,1}. Then
[l + yoll < max {[lu+ ||, flu—vll}-

Proof. 1t is easily seen that the following identity

(

u+7v;%-ﬁ(u+v)+£1—_——‘y,—)(u—v)

2
holds. Applying the triangle inequality we come to the desired conclusion. Q. E. D.

COROLLARY. Let T: X — Y and S: Y — Y be two operators, where X and Y

are Banach spaces. Then

sup ITz+ Syll=  sup  ||Tz+ Sy||.
l=lf €1, llvll 1 ll=ll=1,llyll=1

LEMMA 6. Let T be a compact operator on the space Ly (v), where v is an
atomless measure. Then for each § > 0 and for each y € Ly (v) there exists § € L1 (v)
such that ‘

(@) liwlly = 13ll s

(b) ||ITy—Tyll; <$, and

(c) v(supp(y)) < 6.
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Proof. Since T is compact we may assume without loss of generality that T is
a finite rank operator, i. e., there exist {z;}]_, € Ly (v) and {fi}i_; € Leo (v) such
that for any z € L; (v),

M

Tz = zn:fi(x)xi-
i=1

Moreover, we may additionally assume that z; € A and f; € B, where A is a dense
subspace of L; (v) and B is a dense subspace of Lo, (¢). Let A and B be the subspaces
of step functions. Let {z;} and {f;} be fixed. Then we can find scalars ag) and bg),
and pairwise disjoint measurable sets {E'k};c= 1» that partition the underlying measure

space, such that
Eak XE and f; = Zb( )xEk
k=1

Now fix an arbitrary y € L, (v). Without loss of generality we may assume that
on each set E} the function y does not change its sign, otherwise we can go to a finer

partition with this property Set 6 = [ ydv. In view of the previous assumption
E,

about the partltlon we have | [ ydu' = [, lyl dv for all k = 1,0 Further, for

each k let us fix any measurable subset e; C Ej and finally, let 7 = Z V_(ij E.-
(Of course we are assuming that u(ek) > 0.) Obviously ¥ satisfies (a) and also
(c), provided Z u(ek) <é. To see that ¥ satisfies (b) it is enough to notice that
i (@) = fi(y) for all 7, We omit the straightforward verification. Q. E. D.

REMARK. To prove the omitted part of Theorem 4 we need the following extra
property of the function ¥: If S is a second compact operator on L,(v) with values in
Loo (1), then (d) [|ST— Sy|| < 6. The proof that there exists an y satisfying (a)-(d)
is exactly the same.

CONCLUDING REMARKS AND COMMENTS

1. Both the Approximation Lemma 2 and Theorems 3 and 4 still hold if one
replaces Loo-spaces by arbitrary atomless AM-spaces. The proof remains basically
the same.

2. It is easy to see that Theorem 3 includes Theorem 1 as a special case. Indeed,

if S is a weakly compact operator on an atomless L, () or on Ly (i), then

=[5 o
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is a weakly compact operator on U or V, respectively, and thus
T+ Sl =1+ T|l=1+TI| =1+ ||S]};

1. e., we obtain all the generalization of both Daugavet’s and Lozanovsky’s results.

3. Answering a question posed to the author by Professor C. Foiag, we can
introduce spaces even more general then U and V, for which the conclusion of Theorem

3 still holds. To define them, let y; (i =1, 2, ---,n) be an atomless measure an let
U:=Le (#1) @1 Loo (2) @1 - - - @1 Lo (n)

and
‘7 =L (ul) Boo L1 (#2) B - Poo L1 (/‘ﬂ) .

Then we have the following result.
THEOREM 7. Each weakly compact operator on U and V satisfies (DE).

The proof of this theorem is a slight refinement of that of Theorem 3 and is

omitted.

4. In this remark we want to mention a simple explanation of why we deal with
atomless spaces. The counterexamples to Theorem 1 when spaces have atoms are
well known (see [6], [10), [12], [14]), but it is worth giving a rule-of-thumb reason for
the existence of this counterexamples. In any ﬁnit‘e dimensional Banach space E the
identity operator I is compact and thus, putting T := —1I, we get ||[I + T|| # 1 +||T|

in E. Basically the same idea works when the spaces have atoms.

5. We would like to stress that (no matter how strange it may seem while dealing
with AL- and AM-spaces) the order of “treating” spaces in our proof of Theorem 3,
1. e., first U and then V cannot be reversed for the following reason. The conjugate
t0 Loo (1) ®1 Loo (v) is, of course, LY (1) oo Li, (¥) = L1 (i) Do L1 (), but in this
case the new measures ji and U are not atomless and this prevents one from reducing
the second case to the first one.

Since the proof of Theorem. 3 is not simple and since Theorem 1 has attracted
so much attention lately, we remark here that Theorem 1 admits a rather simple
proof based on the following two propositions. The idea of this approach goes back
to Lozanovski [16].

Let X be any AL- or AM-space and T': X — X be a bounded operator.

ProrosiTiON 8. If the identity operator I and T are disjoint, then T satisfies
(DE)
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ProrosITION 9. Ifin addition X is atomless, then each weakly compact operator
T is disjoint from 1.

The detailed proofs of these propositions are presented in [2]. Here we mention
only that the proof of Proposition 8 is more or less straightforward and that the
proof of Proposition 9 depends on the fact that in the spaces under consideration,
any operator dominated by an absolute value of a weakly compact operator is again
weakly compact [4], [20]. Obviously, Theorem 1 is a direct corollary of these two
propositions. It would be interesting to find a simpler proof along the same lines for
Theorems 3 and 4, too. Obviously, Proposition 9 remains valid for spaces U and V,
but with Proposition 8 the situation is more complicated. ’

Still another proof of Theorem 1, based on the theory of ortomorphisms, has
been found by K. Schmidt [21].

6. In [1] and [21] generalising an interesting result due to J. Holub [12] the
authors have proved the following theorem.

THEOREM 10. Let T be an arbitrary continuous operator on an arbitrary AL- or
AM-space. Then either ||I + T|| or ||I — T|| equals 1 + ||T||; that is, either T or —T
or both satisfy (DE). '

It would be interesting to find out whether or not this result can be generalized
to the spaces U and V, Z and W, and U and V introduced above.

7. Throughout the paper we have restricted our attention to weakly compact
operators only. But it is worthwile to mention that there are several results in which
the (DE)-property is obtained for some other operators, too.

For instance, M. Krasnoselski [15] introduced a more general class of operators,
called rarhmers, on any C (K)-space on a compact metric space K, which still satisfy
(DE). Generalizing the concept of rammers, Diallo and Zabreiko [8] introduced a
broader class of operators (called infrarammers), and this class allows one to capture
both Daugavet’s and Lozanovski’s cases simultaneously.

Now let T be an almost integral operator [16], [18] on an arbitrary atomless
Lo (p)-space. Then, as was shown by J. Synnatzschke [18], T is disjoint from I and
hence, by Proposition 8, satisfies (DE). Both this and a similar result may be found
in [19].

It is also 'worth mentioning that quite recently K. Schmidt [21] showed that
Dunford-Pettis operators on classical spaces also satisfy (DE). It would be interesting

to generalize this result to the spaces introduced in the present article.
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8. Our final question seems to be rather hard because a positive answer to it will

imply Theorems 3, 4, and 7 and also positive answers to the questions posed above.

Let X and Y be two arbitrary Banach spaces such that in each of them the -

Daugavet equation holds for every weakly compact (or compact) operator.

It 1s an open question whether or not the (DE)-property will hold in X @, Y
and X @, Y.

If X and Y are both atomless AM- or AL-spaces, then the answer is “yes”
(Theorem 3). If X is an atomless AM-space, Y is an atomless AL-space, and we
deal with compact operators on X @, Y or X @; Y, then again the answer is “yes”
(Theorem 4). But in general, we do not know the structure of the components X and
Y and that makes the problem difficult.

9. The following two results are due to Professor T. Ando and they are in-
cluded here (with his kind permission) since they are related to the problems under

consideration.

ProposiTION 11. If T is a lattice isomorphism on a Banach lattice E such that

sup  ||T™|| < oo, then ||[I - T|| > 1.
n=%41,%2, -

ProrosiTioN 12. If G is a group of positive operators on a Banach lattice E
and sup ||T|| = ¥ < oo, then ||Ty — Ty|| > 1/ for each distinct Ty, T» € G.
TeG

10. In conclusion we refer to a paper by C. Franchetti and E. Cheney [11], where
there may be found several results suggesting possible connections between the (DE)-
-property and some geometric properties of Banach spaces, and to a paper by C. D.
Aliprantis, O. Burkinshaw and the author [2] where, among other things, a complete
description of operators satisfying (DE) on arbitrary L, (©)-spaces (1 < p < 00) is

given.
Added in proof. Professor T. Ando has answered in the affirmative the question posed

after Theorem 10. His elegant proof is based on a finite-dimensional evaluation of the norm

of T using extreme points and a subsequent approximation by conditional expectations.
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