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BOUNDED MODULE MAPS AND
PURE COMPLETELY POSITIVE MAPS

HUAXIN LIN

0. INTRODUCTION

Let A and B be two C*-algebras, ¢ a completely positive map from A to B. The
map ¢ gives a Hilbert B-module H, and a *-homomorphism =, from A into the C*-
-algebra of all bounded B-module maps with adjoints on H,. In the case that B = C,
it is well-known that ¢ is pure if and only if #, is irreducible. It is then natural to
ask whether it is also true for general C*-algebras B. In this note we give a negative
answer to the problem in general. We also show that for many C*-algebras B, the
maps ¢ are never pure and m, are never irreducible. However, for some C*-algebras
B, the purity of ¢ does imply the irreducibility of 7, and for some C*-algebras B,
the irreducibility of 7, implies ¢ is pure.

In (5], Kasparov showed that if H is a Hilbert module over C*-algebra B, then
L(H), the C*-algebra of all bounded module maps with adjoints on H, is isomorphic
to M(K(H), the multiplier algebra of K(H)), where K(H) is the C*-algebra of
“compact” module maps. In this note we show that B(H), the Banach algebra of
all bounded module maps on-H, is isometric isomorphic to LM(K(H)), the Banach
algebra of left multipliers of K(H), and B(H, H#), the set of bounded module maps
from H to H#, is isometric isomorphic to QM (K (H)), the quasi-multipliers of K (H).

B(H) = LM(K(H)) was established in [10] in the case that H is countably gen-
erated. It plays an important role in studying the self-duality of countably generated
Hilbert modules. It turns out that the isomorphism B(H, H#) = QM (K (H)) has'its

role in studying completely positive maps.
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1. BOUNDED MODUL MAPS

Reeall the defmition of Hilbert wiodules over a C%-algrbra B {)5))

Dswinrrion .1 Net I be o luew space over the complex ficld € with the
strueture of a right Bemodule, Ao suopose shat A(wb) = (Az)h = 2(Ab), for all
ACC, 2@ [, 6C 3. The space FT is called o pre-Hilbert B-module if there exists an

?

inner product f7 3 07— A satislyiog for evory 2,9,2 € H, b€ B, A € € the following

conditions:

(1) o g2 o= () (o,2); (o) = {2, )A
2 (e yb) = (2, y)b

3) ()= {z, 9"

(4) (2,2)20; if {&,2) == 0, then # = 0.

For & ¢ I, put 2]l = y{r,2) 1. This is a norm on H. If H is complete, [T
is called a (Dilbert moduie over B. I is called full, if the closed ideal generated by
{{z,yy 2,y H} is B,

We will use the notation Hy for the Hilbert module of those sequences {8, } such

N
iy . .
that b, € B and Z b, by, norm converge as N - 00. For a Hilbert B-module H , we let

gp=zll
H# denote the set of bounded F-module maps of H into /3. Each h € H gives rise to a

map BN € Ii'¥# defined by kM) = (R, 2) for z € H, we call H self-dual if H == H¥, i.c.
if every map in H# arises by taking J-valued inner products with some fixed h € H. If
we define sealar maltiplication on 7% by (Az)(h) = Mz(h)forA € C, z € H#¥ he H
en H# becomes a linear space. H# becomes a
right B=mm51ﬂo if we set (2b)(h) = b*z(h) for z € H¥, b € B, h € H. The map
h — h* is ‘hen an one-to-one module map from H into H#¥. We regard H as a

and add maps in H# pointwise, th

sanbmodme of H# by identifying H with H*. Instead of using notation h* we will
wiite & overywhere in this note.

I B is a W*-algebra, then by 112, 4.3), the inner produet {-, ) extends to H# x T #
in such o wey as to make H# info & sclf-dua’ Hilbert B-module. Moreover, z(h) =
= (@, k) for rin H, b in H. For the details of i # readers are reffered to [12).

Drwixrrion 1.2, ([12, 3]) For Hithert B-module H we denote by L(H) the s
of sueh bounded module maps 7 : /7T — H that there exists T : [ — H satxsfymg,,
the condition:

{(Tt), gy == o, "y forall s.yC H.
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With the operator norm, L{ H) forms a C*-algebra.

For z,y € H, put 0 4(h) = z(y, h) for h € H. Then 6,y is in L(H). The closure
of the linear span of {0, : z,y € H} in L(H) will be denoted by K(H). K(H) is
an ideal of the C*-algebra of L(H). In [5], Kasparov showed that L(H) = M(K(H)).
Let B(H) denote the set of all bounded maps from H into H. With the operator
norm, B(H) forms a Banach algebra. We denote by B(H, H#) the set of bounded
module maps from H into H#. With the operator norm, B(H, H#) forms a Banach

space.

DEFINITION 1.3. Let H be a Hilbert module over a C*-algebra A. The algebraic
tensor product H @ A** becomes a right A**-module if we set (h Q@ @) -a; = h ® aa,
for h€ H, a,a; € A*. Define [-,"]: H® A** x H® A** by

[E hi ® a;, ij ® a_,] = Ea: (hi, z;)a;.

s J 2

Set N={z€ H® A** : [2,z] = 0}. As in [12,4], H ® A** /N becomes a pre-Hilbert

A**-module containing H as an A-submodule. We will denote by H™~ the self-dual

Hilbert A**-module [(H ® A**/N)~]#. For more details about H™~, please see [12, 4].
If T' € B(H), a staightforward computation shows that T extends uniquely to a

module map 7 on H ® A**/N (with ||T|| = ||T]|). Therefore, by [12, 3.6], T extends

uniquely to a module map in B(H~). If T € B(H, H#), for any h € H, Th € H¥.

However, it is clear that H# is an A-submodule of H~. We define

{T (Zh,-@a.-) , szj®aj] =

= Z a; [T(hi)(z;)]e;.

Then T becomes an element in B((H ® A**/N)~,H~). So, by [12, 3.6], T extends a
map T in B(H™). The extension from T' to T is unique. Indeed, if Tl = 0, take T*,
the adjoint of 7 in B(H~) (B(H™~) = L(H~) by [12, 3.4]). Then

{T* (Z hi ®a,')) ,ZICJ' ®ajjl =
i ‘ J
= Za{(h;,T:cj)aj =0

ij

Therefore 7* = 0. So T' = 0.
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Since H™ is self-dual and BJH™) = L(II™) s a [V*-algebra, it is sometime
pleagent to work in ™ and B{T™). in what follows, we wiid work in #~ whencver

we want to and identify 1" with 7 without wariing {with some excepiions, of corurse).

L 1.4, Let K be o Hilbert inedule over o C* -0l
Then ihere are xy € (xA)™ snuch tnat 2|} <1 and

oo A, 2 € Handg € H#,

AN

{21, 2rpe{e) -= p(x) In norm.

Proof. For cach a € A, we define U(z - a) = (z,z)%a. Clearly, U extends a
module map from (2A)~ onto R, where R = [{,z)% A]~ such that

[ U(2) = (y,2) forall y,z € (zA)".

Let * = u{z,z)? be the polar decomposition in H~ (see [12, 3.11]) and z, =
= ufz,2)%, n=1,2.... Since

o(u{z, £}3t%) - ¢(z) in norm,

we have

p(en )z, e")é — (&) in norm.

Clearly p(z,) € R*. Let vy = [p(z,)]* €R, ¥ = U~ (v,), n=1,2

.... Then
(Yn, @) == v} (2, 2)* — () in norm.
Let yn = 9n{Un,¥n)? be the polar decomposition for y, in H~. Set Wnm =
= U (U, Yo} %, mym = 1,2,... . Then, for fixed n,

(Wm,m y Wn,m) (yn , 55) =

= (Yn, Yo} ™ (¥n+ 2) = (Yo, z) in norm.

‘Therefore there is a sequence {xr} € (zA)~! such that {jz;]| <1 and

zr,xz) > ¢(z) — @(2) in norm.
&4

Toror:M 1.5. Let A be a C*-algebra and H a Hilbert A-module. Then there is
an isometric isomorphism @ from the Banach algebra B(H) onto the Banach algebra

LM(K(H)). Moreover, the restriction of & on L(H) gives an isomorphism from the
C*-algebra 1,(H) onto the C*-algebre M{K{)).
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Proof. H can be viewed as an A-module, if we define z -1 =z for all z € H.

Thus we may assume that A is unital.

For every T € B(H), define &(T) by
HT)E) =T -k for k € K(H).

It is easy to see that @ is a linear map from B(H) into LM(K(H)) and ||9||<1. If
T,S € B(H),

[9(T) - 9(S)](k) = &(T)(Sk) = T(Sk) = &(TS)(k).
So @ is a homomorphism. Since &(T)(0:,y) = 07,y forallz,y€ H,ifc € H
| &(T) bz 72)l| = 1672, 72| = [|T||*.

Since ||0z 72|l = ||(z, )2 (T, Tz)3||, we conclude that ||&(T)|| = ||T|]. To show that
@ is surjective, we put for Ty € LM(K(H)), t € H

-1
WIN@) = lim (T10.(&) [(e,0+ 2]

As in [7, Theorem 1], it is easy to see that the limit exists. Moreover, one sees that

¥(T}) is a linear map on H. Now we assume that z € H, ||z|| <1 and = u(z, z)7,

the polar decomposition for z in H~ (see [12, 3.11]). Set y = u(z,z)3*~%, 2z

L 1
= u(x, z)?7~*, where 1 <a< % Theny,z € Hand ;. =0, ;-0,,. Put Yo(T1)(z) =

-1
= (T10:2)(2) [(:c,:r)+ %] n=1,2,.... Foranyn

(e T2)(2), o (T1)(@)) =
= [+ 2] (01000 10,0000 [+ ] =

= [ea+ 2] o @0, @@ we e+ 2] <

-1

<o+ 2] i@ e 2 e+ 1]
(See 2.8(ii) and 2.9 in [12] for the last inequality.) Let n — oo, we have
($(T1)(=), $(T1) () < IT1|[*(z, z) !

1
for 3 <a< % Let a — %,we have

($(T1)(2), 9(T1)(2)) < 1 Ta|f* (2, 2)
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for ol & & H with jl2li 1. It fobows from {12, 2.8 (i)} that ¥{T}) is a (boundeu)
inodule map.
I6 vemains to show thob for any «,y € H, T40z = Oyrr)ey. Suppose that
e . R - . o i
@ = ule,xd2 is the poiar docompesition for @ in 1™, Let o = w(z, £)s. Then

i ] -1
P19 w2, z) [(;c,a:) 4

71‘,}

converges to 110, o tlw) in pormu. Therefore
1Yw,

Boege A —
h.{'“ U(Tlox,z)(:)[(z‘":r)"",XT]—!tJ -

B o
Ty jlagy TR A

= lm \95T:gw.u)(g.‘,_,)(x)[(x,m)-i-H"‘,El =

N==X
= im0, )w)izelliz,e)+ i1y =
= 0(1100,0)w)y-
On the other hand,
1105,y = (Tlgw,w)au,y = g(Tlfiu‘w)(w),y~

80 110z, =2 Oy(1y)(z),y-

Therefore @ is an isometric isomorphism from the Banach algebra B(H) onto the
Banach algebra LM(K(H)). It is clear that the restriction of @ on L(H) is exactly
the same map defined in [7, Theorem 1]. Therefore the restriction of @ on L(H) gives

an isomorphism from the C*-algebra L(H) onto the C*-algebra M (K(H)).

THEOREM 1.6. Let A be a C*-algebra and H be a Hilbert A-module. Then
there is an isometric linear map ¢; from B(H, H¥) onto QM(K(H)). Moreover the
restriction of @, on B(H) is the map described in Theorem 1.5.

Proof. Define a map &, from B(H, H#) into QM (K (H)) as follows:

821y @1(T)bzy = Oz y(2 o)y for T € B(H,H#)
and z,y,2’.9 € H. Suppose that 2 = u(x,:c)% be the polar decomposition of
2 in H~. Set w = u{z,z), where % > e > 0. For z € H, (notice that -
a(y) = a*p(y) for all p € H#¥, ¢ € A and y € H. We also use the inequality
(W) [F@) N < IT@IP(, o) (cee [12, 2.8 (i) and 2.9])),
192 yr @I =
= [z, T () W)=, 2" W T(2)(Y') by, 2Dl =
= [I(z, y)e, @) 5 E (D) )1, ) [T @) (2, 2) 5~ (D) <
< )V DN P, 2y Gy, )2 =
= {i{e, ') ST @) T W) )), 2 2 i, 2) 25 (o, )P <
@), ) 079 2 i, ) 5w, ) e ) ) 0l <

SHT@PI" 23 0y o )| lide, ) 2% (y, ) 211220
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Let € — 0, we have

1651y (z ey (M S ITI ', )5 (8, ') 31 (2, 2) % (w, ) B =1

Therefore
1827y @1(T)0z,y [ <N TIHIOz,y Il 1|0z,

forall z’/,y,z,y € H.
So @,(T) defines a quasi-multiplier of K(H) and

21D KITI|  for all T € B(H, H#).

To show that ||@(T)|} = ||T]|, we assume that ||z|| <1, |[y]|<1 and ||¥/||<1. Let
€ = y(T(z)(y')) and € = v(€,€)% be the polar decomposition of £ in H~. Set z' =
=v(€,€)*/||(€, €)% for « > 0. So ||2’|| < 1.

1021,y7 @1(T)bs 4| =
= ey r@enll =
= (=, &) 3 [T(=)())" (0, (T (@)@
For any € > 0, there are :c,yi € H with ||z|| <1 and ||y’|] €1 such that
IT() (N > IT) - e

By Lemma 1.3, if we chose y in the unit ball of H properly, when « is small enough,

we have

W0z1,y: @1(T)0s,41| > |IT]| - -
This implies that ||®1(T)]] = ||T}|- So &; is an isometry from B(H,H#) into
QM(K(H)).

We now show that &; is surjective. Suppose that Ty € QM (K(H)). For any
ke K(H), k-Ty € LM(K(H)). Let ¢ be the same notation used in Theorem 1.2.
For each z,y € H, we define

@ (T)(=)(Y) =

= lim ($(0,,T1)(z),9) [(y, 0+ ;11_] -

It is now routine to show that the limit exists and for each z € H, ¢;(T1)(x) is a

linear map from H into A. Let y = u(y, y)% be the polar decomposition of y in H~.
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L 1 1
Set z; = uly, y)3*~ % and z, = u(y, ) ¥, i <a< 7 Forn=1,2,...,

(WO Ti)(e)3) |09 + l] T

n

OO A B [ +%J
11-

1}1

('/)(01,2 ""71)(1‘3)’22)(7"1’3/) [( Yy ) + ;lz-] -

= (0~1 22 w(ng, QTI (x):y [(y: ?/) +

2|

-1
= ($(0:0,7,T1)(2), 22) (v, 9)* [(y, y) + %] .

By the arguments used in the proof of Theorem 1.5, we can show that ¢, (7})(z) is
a bounded module map. Since 9 is an isometry from LM (K(H)) onto B(H), we see
that ;(7}) is a bounded module map in B(H, H#).

To show that &) is surjective, it is suffices to show that 6, ,Ti0,, =
= et (s (1)) w") for Ty € QM(K(H)) and z,y,2',y' € H. Let ¢ = u(z,z)¥, ¥ =
= vy, 1/) be the polar decomp051t10n of z and ' in H™, respectively. Set w;
= ulz, 2)¥,wy = u(y,y')5. From the proof of Theorem 1.5, we know that for § €
¢ LM(K()), ¥(S) () == (S8u, u, wi). As in the proof of Theorem 1.2, we have

oy (T )(=)") =
= hm 0o (09,0, T)(2) 0y 9+ 210 =
= Wm0y 00y,en @) wa) 0y )+ 211 =
= 020 (0,0 Ti) (@) 02) =

= ozla?/(@wg.ulegwl,un(wl):wz).
On the other-hand,
01"-?!'T10$.U = 9;',w20w2,w2T10w1,w1oul,y =

= ox’,y(Ouz.uszﬂul.u, (wi)wa)-

So Oyt 118y = ot w1 (T1)(2)(y7)- Hence @y is surjective. It is easy to see that the
restriction of @) on L(H) is & defined in 1.5.
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REMARK 1.7. The ideal of 1.5 and 1.6 is surely taken from {7, Theorem 1]. The
proofs of 1.5 and 1.6 are more complicated than we first thought. In [7, Theorem 1],
when T € M(K(H)), the equality (T'z,y) = (z,T*y) guarantees that T is a module
map. In both 1.5 and 1.6, some additional efforts have to be made to show that
the map ¢(T1) and v;(T}) are module maps. One may also notice that in general
10z,4]] = ll(z, 2)3(y,v) %|| # |lzl||ly]l. So one has to take more care about the norm
of ¥1(T1). One may not need the polar decomposition in H™, if one shows a version
of [13, 1.4.5]. On the other hand, if one works in H~ and B(H™) freely, some
routine computation can be avoided. However, the present proofs are more direct
and elementary. Further applications of 1.5 and 1.6 may be found in the author’s

successive paper.

2. COMPLETELY POSITIVE MAPS.

Let A and B be two C"-algebras and H a Hilbert B-module. Given a
*-homomorphism 7 : A — L(H) (henceforth called a representation of A on H)
and an element e € H#, we may define a linear map ¢ : A — B by ¢(a) = (e, w(a)e)
provided (e, n(a)e) € B for every a € A, where the inner product is the one on H™.
An easy computation (as in [12, 5.1]) shows that ¢ is completely positive. In the case
that both A and B are unital, Paschke showed (he actually showed more than this)

in (12, 5.2] that every completely positive maps of A into B arises in this way.

THEOREM 2.1 (Cf. [12, 5.2]). Let A and B be two C*-algebras and p : A — B a
completely positive map. There is a Hilbert B-module H,, a representation 7, of A
on H, and an element e € H¥ such that ¢(a) = (e, 7,(a)e) for all a € A and the set
{ry(a)(e-b) : a € A, b € B} spans a dense subspace Hy of H,. Furthermore, if A is
unital, we may takee € H,.

Proof. 1t follows from [12, 5.2] that we need only to show the existence of the
element e € H¥. We will follow notations in the proof of (12, 5.2] with the following
exceptions: we will use H, instead of X, Hy instead of X and N, instead of N. One

may also notice our definition of inner product on Hilbert module is the conjugate of
the one defined in [12, 2.1].

As before, we may assume that B is unital. Suppose that {u,} is an approximate
identity for A. Set ex = uy ® 1 + N,,. For any

w:ia;@)b,-—{—N‘p

i=1
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where a; € A, b € B,
7 n
(e, z) = th(uw;)bi — Z‘P(ai)bi
izl i=1

in norm. Therefore there is e € H# such that
(e, ) = linfex,z) for all z € H.
Since my(a)ex -b = auy ® £ - N, we have
To(a)e - b=a®@b+ N,.
Hence the linear span of the set
{rp(a)(e-b):a€ A, be B}
is densc in 7 and

(e.mo(a)e) = im(uy ® 1, e @ 1) =lim p(ura) = p(a) fora € A.

Let ¢ : A —s B be a complotely positive map. If H, «, and ¢ are as in Theorem
1.7 and 1" € B(H, H#), define ¢r by pr(a) = (e, T7,(a)e) (notice that w,(a)e € IT)
for @ € A. If T commutes with m,(a) {(in B(H™~)) for every a € Aand 12T 20 (we
say T2 0 if {x, Tz) > 0 for every x ¢ H) pr is a completely positive map from A to B
aud 0 < gr < ¢. The next theorem can be thought of as a Radon-Nikodym theorem.
The proof of the following theorem is similar to that of {12, 5.4]. The key difference
is that the Hilbert B-module may not be self-dual. Thus the set B(H, H#) has to be

considered. ‘This is one of the reason why B(H, H#) catchs our attention.

TuroriM 2.2 (Cf. [12, 5.4]). The map T' — @t is an affine order isomorphism
of

{I'e B(H,H#) :0< T < Iy, Tcommutes with every element in To(A)}

onto {0, p].

Proof. ¥irst we show that 1" — @r is one-to-one. Indeed, if T € B(H,H¥), T
commutes with each m(e) for ¢ € A and ¢r = 0, we have, (by working in H~ if
necessary) {w(ap)e - by, Tm(az)e - by) = 0 for all aj,as € A and by,b2 € B. So
T(z)(y) = 0 for all z,y € Hy, whence for all z,y € H,. Thus T = 0. That o7 is
completely positive follows exactly as the argument used in the proof of [12, 5.3]. As
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in [12, 5.3], we see that T — 7 is an affine order isomorphism of {T € B(H, H#) :
:0<T< I, T commutes with every element in 7,(A)} into [0, ¢].

To show that this isomorphism is surjective, take 1 € [0, ¢]. From 2.1, we get a
*-representation p of A on a Hilbert B-module E and an element d € E# such that
¥(a) = (d, p(a)d) for all a € A and the set {p(a)(d-b):a € A, b € B} spans a dense
subspace Eg of F.

Fix ap € A and by € B, define

Yag,bo(m(a)e - b) = (p(ac)d - bo, p(a)d - b)
for a € A, b € B. Clearly 94,3, is a module map. Moreover, since ¥ < ¢,

[[$a0,50(m(a)e - B)II2 < [{p(a0) - bo, p(a0)d - bol| l{p(a)d - b, p(a)d - b)|| =
| = |[b5¥(ag ao)boll l1b* $(a* a)b|| <
< [[63¢(agao0)b]l [[b* @ (a a)b]| =
= ||m(ao)ebo| |7 (a)e - b]|?.

S0 40,8, is @ bounded module map and

¥a0,b0ll < Il (ao)ebo]|-

Fora € A, b € B, define
S(w(a)e - b) = tpas.

Then S is a module map and ||S|| < 1. Thus S € B(H,, H¥). Let T = S*. We have
(m(a)e - b, Tr(a)e - b) =
= (p(a)d - b, p(a)e - b) = b*y(a*a)b> 0.
So 0 T < 1.For any aj,az,a3 € A and by,b, € B,

(r(ar)e - by, Tm(az)m(as)e - by) =
= (p(a1)d - b1, p(az)p(az)d - bz) =
= bi9(ajaza3)b; = bi(aj(a3) as)bs =
= (p(az)p(ar)d - by, p(az)d - ba) =
= (m(a2)*7(ay)e - by, Tn(as)e - bs).

Therefore T' commutes with 7(a) for each a € A.
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Finally, we have

er{e) = {e,Tr(a)e) =
= lim(e, T'w(up)m(a)e) =
= lim{m(up e, Tn(a)e) =

= Hm ¢Ylura) = Y(a)

where {ux} is an approximate identity for A. This completes the proof.

DermviTion 2.3(Cf. 11, 1.4]). Let A and B be two C*-algebras. We denote by
CP(A, B) the set of completely positive maps from A to B. A completely positive
map ¢ C C'P(A, B) is called pure if, for every ¢y € CP(A, B), ¥ < implies that ¢ is
a scalar maltiple of . A completely positive map ¢ in CP(A, B) is callad full if the
clesed ideal generated by ¢(A) is B.

DeriniTiON 2.4, Let A and B be two C*-algebras, H a Hilbert B-modulie.
A representation 7w of A on H is said to be irreducible if for every w(A)-invariant
submodule Ho of H, either Hy = {0} or Hi = {0}.

DEFINITION 2.5. Let A be a C*-algebra. If the zero ideal of A is a prime ideal,
i.e. if I) and I be two ideals of A, I; I, = {0} implies I; = {0} or I> = {0}, then we
say that A is a prime C*-algebra. A C*-algebra A is said to be weakly primitive if
C(A) = C, where C?(A) is the set of bounded continuous functions on the spectrum
Aof A.

ProprosiTiON 2.6. Let A and B be two C*-algebras, H a Hilbert B-module and
7 : A—> L(H) is a representation of A on H. If r is irreducible, then w(A) is a prime

C*-algebra.

Proof. If 7 is irreducible and I; and I» are two ideals of 7(A) such that I - I =
= {0}. Clearly I /{ is an invariant submodule of 7(A). Since LH C (I H)*, we
conclude that either I = {0} or I = {0}. So m(A) is a prime C*-algebra.

Let A be a C*-algebra. Recall that an open prejection p in A** is called dense if
for any e € A, ap = 0 implies a = (.

Prorosrrion 2.7. Let ¢ € CP(A, B). Then
(1) @ is pure if and only if

{7 e B(H,, Hf) 10T g1, Tcommutes with every element in m,(A)}

1s scalar imiltiples of the identity;



BOUNDED MODULE MAPS AND PURE COMPLETELY POSITIVE MAP 133

(2) 7, is irreducible if and only if the only possible open projections of K(H,)

commuting with w(a) for every a € A are dense open projections or zero.

Proof. (1) is a immediate consequence of Theorem 2.5. Suppose that p is a non-
zero open projection of K (H,) commuting with m,(a) for every a € A. Let K; be the
hereditary C*-subalgebra of I{(H,,) corresponding to p. Since 7,(A)K; C K, K1 H,
is an invariant submodule for 7,(A). If p is not dense, then there is a non-zero open
projection ¢ of K(H,) such that ¢<1—p. Let K7 be the hereditary C*-subalgebra
of K(H,) corresponding to ¢. Then K;H, # {0} and K,H, C (K1H,)'. Hence 7,
is not irreducible.

For the converse, suppose that Hy is a non-zero (closed) submodule of H, Hy #
# {0}, and is invariant under ,(A). Clearly, Hg is also invariant under 7,(A). Set

Ko = {k € K(H,): kHy =0 and k"Hi = 0}.

Clearly KoK(H,)Ko C Ko. Therefore (KoK(Hy)Ko)~ = Ko. This implies that
Ko is a hereditary C*-subalgebra of K(H,). Tor every a € A, m,(a)k € Ky and
kn,(a) € Ko for all k in Ky. Let p be the open projection of K(H,) corresponding
to Ko and {kx} an approximate identity for Ko. Then m,(a)kr = pm,(a)ky for all a
in A and A. Then 7,(a)p = pr,(a)p for all @ in A. Therefore 7,(a) commutes with
p. Suppose that € Hg", then pf; ; = 0, .p = 0. This implies that p is not dense.

ProposITION 2.8. Let H be a Hilbert module over a C*-algebra A. Then the
identity representation of K(H) is irreducible if and only if K(H) is a prime C*-
algebra.

Proof. Suppose that KX (H) is a prime C*-algebra and Hy is a non-trivial invariant
submodule for K(H). If H; = (Ho)* # {0}, then H; is also a non-trivial invariant
submodule for K (H). It follows from the proof of Proposition 2.7 that there are two
orthogonal central open projections of K(H). Therefore K(H) has two orthogonal
non-zero ideals. This is impossible, since K (H) is prime.

The converse immediately follows from Proposition 2.6.

COROLLARY 2.9. A C*-algebra A is a prime if and only if there is a faithful
irreducible representation m : A — L(H), for some Hilbert module H.

Proof. The “if” part follows from 2.6. Suppose that A is prime. Let H = A,
then H is a Hilbert A-module. Define n(a)-b = ab for a,b € A. It easy to check that
K(H) = A and the representation 7 is irreducible by 2.8.

REMARK 2.10. In spite of the obvious resemblance between primitivity and
primeness staded in 2.9, the author is not sure if 2.9 is at all relevant to the problem

whether every prime C*-algebra is primitive.
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TuroreM 2.11. Let A be a C*-algebra. Then the identity mapi: A — A is
puie (in C1’(A, A)) if and only if A is weakly primitive.

Proof. If i : A — A is pure, by Proposition 2.7,
{T ¢ B(H;, HB#) :0<T <1, T commutes with m;(a) for every a € A}

is seolar multiples of identity. In particular, {T € L(H;) : 0T <1, T commutes
with 7;(e) for every a € A} is isomorphic to C. Since m;(A) = K(H;), it follows from
[7, Theorem 2] that the center Z of M(K(H;)) = M(A) = C. By the Dauns-Hofmann
Theorem (sce [13, 4.4.8]), A is weakly primitive. Conversely, if A is weakly primitive,
then by Daans-Hofmann, the center Z of M(A) (= M(K(H;))) is isomorphic to C.
Suppose thot T is in QM (K (H;)) and commutes with every a € K(H;) = m;(A).
Tet @ = ule]”, where u € K(H;), 0 < a < 1 (see[15, 1.4.5])). Then Te = Tula|* =
= wi'a™ € W(I;). Hence T € LM(K(H;)). Similarly T € RM(K(H;)). Therefore
1 ¢ M(K(Il;)), where T = Al for some A € C. It follows from Theorem 1.5 and 1.6

that
{T" ¢ B{H;, Hi#) :0€T <1, T commutes with m;(a) for every a € A}

is isomorphic to €. By Proposition 2.6, i is pure.

ProrosiTiON 2.12. Every prime C*-algebra is weakly primitive. There are
weakly primitive C*-algebras that are not prime.

Froof. Suppose that A is a prime C*-algebra. If A is not weakly primitive, then
€*(A) is not isomorphic to the complex field C. By Dauns-Hoffmann’s theorem, the
center 4 of M (A) is not the complex field. Therefore there are z,y € Z;, £ #£0, y #
# 0, ®y == y2 = 0. Let I} be the closure of zA, I the closure of yA. Then I) and I»
are two ideals and I) - I» = {0}. This contradicts the fact that 4 is prime.

Let By be a non-elementary simple C*-algebra. We may assume that By C B(£?).
Then By N K = {0}, where K is the C*-algebra of compact operators on £2. Suppose
that @ is tke canonical homomorphism from B(£?) onto B(¢2)/K. Then &|g, is
faithful. Let Ba be the C*-algebra of #~![®(B,)], the preimage of #(B;), Bz =
= By ® By and @, the canonical homomorphism from B, @ B onto Bo® By /K @ K.
Then @;(B3).= By @ By. Set

By={z€B;®B,:2=z®z, z€ B}
Then 1, 2 #;. Now put A = &7(B4). A is an extension of the following form

0-K+K—-A—B; -0



BOUNDED MODULE MAPS AND PURE COMPLETELY POSITIVE MAP 135

By the construction above, the only primitive ideals of A are K @ 0, 0 ® K and
KOK. Let t, = K®0, t, =08 K, t3 = K& K and f € C*(A). If f(t,) = A, since
t3 € 13, f(t3) = X. Since t3 € {2, f(t2) = A. Therefore f is a constant function. This
implies that C?(A) = C. Hence A is weakly primitive. However A is obviously not a
prime C*-algebra.

REMARK 2.13. Let i : A — A be the identity map. Then m;(A) = K(H;). If A
is prime then =; is irreducible and i is pure (in CP(A, A)). However if A is weakly
primitive but not prime then ¢ is pure but =; is not irreducible. Therefore we have
the following conclusion:

A pure completely positive map ¢ may not give an irreducible representation.

THEOREM 2.14. Let A be a separable C*-algebra, B a C*-algebra such that
every ideal of B is o-unital, and ¢ : A — B a completely positive.

(1) If ¢ is pure, then the ideal generated by p(A) must be weakly primitive.

(2) If m, is irreducible, then the ideal generated by ¢(A) must be prime.

(3) If B has no ideal which is a weakly primitive C*-algebra, then CP(A, B) has
no pure elements. _

(4) If B has no ideal which is a prime C*-algebra, then every representation m of
A on a Hilbert B-module is reducible.

Proof. (1) We may assume that ¢ is full. If ¢ is pure, then the center of L(H,)
must be isomorphic to C. Therefore K(H,) must be a weakly primitive C*-algebra.
Since A is separable, H, is countably generated. Since ¢ is full, by the construction
in (12, 5.2}, H, is full. By [8, 1.5], K(H,) has a strictly positive element. It follows
from [6] that K(H,) is stably isomorphic to B. By (14, Theorem 1.6], for any C*-
-algebra C, € is homeomorphic to (C'® K)*, where K is the C*-algebra of compact
operators on an infinite dimensional separable Hilbert space. Therefore B is also
weakly primitive.

(2) We may again assume that ¢ is full. If =, is irreducible, by 2.8, K(H,) is
a prime C*-algebra. As in (1), K(H,) ® K is isomorphic to B ® K. Since the only
ideals of B ® K are those I ® K, where the I’s are ideals of B, we see clearly that B
is also a prime C*-algebra.

The conclusions of (3) and (4) are immediate consequences of (1) and (2), re-
spectively.

REMARK 2.15. If, in both cases (1) and (2), we assume that ¢ is full, then we
only need to assume that B is o-unital.

ExaMpPLE. The C*-algebra A = C[0,1] is an example that all ideals of A are

neither weakly primitive nor prime.
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THEOREM 2.16. Let A be a separable C*-algebra, B a separable type I C*-
algebra and ¢ : A — B a completely positive map. If w, is irreducible, then ¢ is

pure.

Proof. Let I be the ideal of B generated by ¢(A). Then [ is also a separable and
type I C*-algebra. Thus we may assume that ¢ is full. If there are two non-zero ideals
I, and I of K(H,) such that I, - I = {0}, then I} H is a w,(A)-invariant submodule
such that InH, C (LH)*. Since m, is irreducible, this is impossible. Therefore
K(H,) must be a prime C*-algebra. By (3, 1.2], K(H,) is stably isomorphic to B.
Thus K'(H) is a separable, primitive and type I C*-algebra, since every separable
prime (C*-algebra is primitive (see [13, 4.3.6], for example).

Let p be a faithful irreducible representation of K(H,) on a Hilbert space H,.
It follows from (15, ] that the extension of p is faithful on M(K(H,)), whence on
7eo(A). Let K be the C*-algebra of all compact operators on H,. Then K C
C p(K(Hy)). If p[wy(A)] has a non-trivial invariant subspace of H,, there is a non-
trivial open projection p of K such that p commutes with p(7,(A)) for every a € A.
Notice that p is faithful. There is an open projection p of p~}(K) (=2 K) such that
p(p) = p, (we use the notation p for its normal extension of p~!(K)**). Then j com-
mutes with 7,(a) for all @ in A. Since p~!(K) C K(H,), p is an open projection of
K(Hy). Since p is non-trivial, so 1s p. By Proposition 2.7, this is impossible. There-
fore p[w,(A)] is irreducible. Since p is faithful on K(H,), by {13, 3.12.5], p is faithful
on QM (K (il,)), whence p|r (a) is also faithful. Moreover p[m,(A)] is weakly dense
in B(H,). T € QM(K(H,)), 12T >0 such that T commutes with every element
in m,(A), then p(T) commutes with every element in p[r,(A)]. Since p[m,(A)] is
weakly densc, p(T") commutes with every element in p(K(H,)). Therefore T com-
mutes with K (H,). By the argument used in Theorem 2.9, T € M(K(H,)) = L(H,).
Since K'{H,) is primitive, T = A] for some A € C. It follows from Theoremn 1.5 and
Proposition 2.7 that o is pure.

Let v : A — B, be a completely positive map. If B is a W*-algebra, 7, may be
extended to a representation of A on H#¥. We denote this extension by wg.

The following lemma follows easily from (12, 3.4] or from [2, 1.7 and 1.8 (ii)] (H¥
is the strong closure of Hp).

LeEMMA 2.17. Let A be a W*-algebra, H a self-dual Hilbert A-module and Ho C
C H. Then il = H¥ & (H¥)*.

THEOREM 2.18. Let A be a C*-algebra, B a W*-algebra and ¢ : A — B a
completely positive map. Then o is pure if and only if wg is irreducible.

Proof. Suppose ¢ is pure. ¥ T € B(H,, H;‘) and T commutes with =,(a) for
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every a € A, then T = Al for some A € C. Therefore the set
{T € B(H,, H¥) : T commutes with 7,(a) for every a € A}

is isomorphic to C. If Ho C H¥ is a non-zero invariant (under 7#(A)) closed sub-
module of H¥, then H¥ ¢ H¥ (by Lemma 2.14) is invariant under 7¥(A). Let p
be the projection from H f onto Hg'é . Then p commutes with wg (a) for every a € A.
Since p € B(H¥,H¥), p = 1. Thus HY = H¥. So Hg = {0}. Consequently =¥ is
irreducible.

For the converse, suppose that ¢ is not pure, by Proposition 2.7, there is T €
€ B(H,H#), 12T >0, T # X for any A € C such that T commutes with 7,(a)
for any a € A. It follows from [12, 3.6] that T can be uniquely extended to a map
T in B(H¥,H¥). T commutes with w#(a) for every a € A. Therefore there are
Ti,T> € B(H¥,H¥) such that T, # 0, T £ 0, 'z = T:Ty = 0 and Ty, T
commutes with 7¥(a) for every a € A. This implies that ¥ (A) is not irreducible.

This completes the proof.

COROLLARY 2.19. Let A be a C*-algebra B a W*-algebra and ¢ : A — B a pure
completely positive map. Then =, is irreducible.
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