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C*-ALGEBRAS ARISING FROM INTERVAL
EXCHANGE TRANSFORMATIONS

IAN F. PUTNAM

1. INTRODUCTION

An interval exchange transformation, or just interval exchange, is a bijective
map of the half-open unit interval which is a piecewise translation with finitely many
discontinuities. (In section 2, we will give a more elaborate definition. We will restrict
our attention to interval exchanges satisfying the infinite distinct orbit condition —
~ see section 2.) There has been considerable interest in such transformations — see
(6, 10, 11, 12, 14, 20, 27, 28)].

At first glance, such maps do not fit into a “topological” context since they
are not continuous. There are two approaches to repairing this difficulty which we
outline in section 2 and refer the reader to [10] and [14] for further discussion. The
first builds a homeomorphism (and thus an action of the group of integers, Z) by
modifying the unit interval resulting in a Cantor set. The second method is to mimic
the flow under constant function construction. This yields a flow F (i.e., an action
of the group of the reals, R) on a compact, oriented 2-manifold (i.e., a surface) M
with a closed transversal N homeomorphic to the circle, S, such that the Poincaré
first return map on N is just the original interval exchange (identifying [0,1) and S*
in the obvious way and modulo the points of discontinuity). The flow F has a finite
number of singularities and we let My denote the complement of these in M. The
flow F restricted to My is minimal.

In section 3, we investigate the C*-algebras associated to these two transforma-
tion groups. In general, if the locally compact group G acts on the locally compact
Hausdorff space X, we denote the transformation group C*-algebra or crossed prod-
uct C*-algebra [21, 16] by C*(G, X) or C*(G, X, ¢) in the case when we have some
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notation, &, for the action. The case of the Z-action on the Cantor set has been in-
vestigated in [18] and [19]. Hore we will concentrate on C*(R, My, F). First, we show
that the two C*-zlgebras are relaved (Theorem 2.2). The main result of this section
(Theorems 3.3 and 3.4) is that C*(R, M, F) is the inductive lmit of a sequence of
“tractable” C*-algebras (which may be described es “non-commutative 1-complexes”
12910, As a comsequence we dorive results concerning the topological stable rank of
these C*-algebras. We also give anr alternate description (up to strong Morita cquiv-
alence) of C*(R, Mg, F') as operators on the Hilbert space £2(0,1).

The same dyunamical properties of (M, F) which yield the construction of the
C*-subalgebras above also allow us to construct an embedding of C* (R, Mg, F) into an
AF-algebre [1; in section 4. Moreover, we show that this embedding induces an order
isomorphism at the level of Ko~groups. This construction leads us to an investigation
of asymptotics. Specifically, we show that a pair of asymptotic points for a dynamical
system (see section 4) in a natural way gives rise to e pair of representations of the

associated crossed product C*-algebra whose difference is compact.

I would like to thank the referee for several helpful suggestions.

2. INTERVAL EXCHANGES AND FLOWS ON SURFACES

An interval exchange is a bijection of the half-open unit interval defined in
the following way. As initial data, we begin with an integer n (at least 2), &
in Sy, the permutation group of {1, 2, ..., n}, and @ = (a1, a2, ..., @y) in
A1 = {(ry, 72, ..., Tn) € R® | 7 > 0 for all § and Zr,- = 1}, the standard

n— 1 simplex in R®. For: =0, ..., n, we define

,3(2) = Zozj, 3!(2) = Z Q.

A o(j)<d

Let I(2) = [B(i — 1), B(2)) and I'(3) = [#'(i -- 1), #(3}) and let

() = Z a; “E&j

o{j)<a(i) j<i
for =1, ..., n. We define 7{%:¢) or just T to be the mapping of {0, 1) defined by
Te =g+ (i), 25

Roughly, 7" partitions [0, 1) iric n subintervals of lenghts oy, ..., @, and transiates
cach so that they fit together to make up [0, 1) iz @ now order determined by 0. Note
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that T(I1(¢)) = I'(o()). For the case n = 2 and o(1) = 2, if we identify [0,1) with
the circle, S*, in the obvious way, T is just rotation through angle 27 as.

We will assume throughout, as in most of the literature, that there isno k£ < n
such that ¢{1, ..., ¥} = {1, ..., k}. The reader can quickly see why the existence of
such a k would mean that our interval exchange is “reducible”. It is worth remarking
that we do not assume that there is no 7 such that o(i + 1) = o(z) + 1 as is frequently
done. If there is such an i, one can rewrite the transformation using n — 1 intervals.
(One simply joins the i*h and i+ 1% together). However, for the topological construc-
tion we undertake in this section, this does make a difference; we refer the reader to

the examples of section 7 of [18].

fa= -71;, cen, % , then, of course, T is no more complicated than ¢. We shall

assume throughout that T' (or (o, @)) satisfies the infinite distinct orbit condition or
IDOC. That is, the T-orbits of the points #(1), 8(2), ..., B(n — 1) are all infinte
and distinct. Recall that the orbit of a point £ under T, or the T-orbit of z, is
{T"(z) | n € Z}. 1t is a non-trivial consequence of this hypothesis that T is minimal
in the sense that the orbit of every point in [0, 1) is dense [6], [10]. We say that T (or
(o, @)) satisfies the integral independence condition or IIC if the set {a;, ..., an} is
integrally independent or, equivalently, linearly independent over the rationals. It is
straight-forward to see that the IIC implies the IDOC, but is not equivalent to it.

Of course, an interval exchange is not a homeomorphism of [0,1). There are
two resolutions to this problem. The first is to construct a Cantor set £ and a
homeomorphism ¢ of X so that [0,1) is densely contained in X (in a natural way)
and so that ¢ | [0,1) = T [10]. We proceed as follows. Let D(T") denote the T-orbits of
B(1), ..., B(n—1), omitting the point 0. We want to consider the set D(T') x {0, 1},
but it will be more convenient to denote (z,0) and (z,1) by z~ and z*, respectively.
Let

£=[0,11- D(T) U {z*,5™ [z € D(T)}.

There is an obvious linear order on X, using 2~ < z*, for all z in D(T). Endowed
with the order topology, X' is a Cantor set since the minimality of T insures that
D(T) is dense. We include [0,1) in £ by mapping z in D(T) to z*. The definition
of ¢ and the fact that it is a homeomorphism are both clear.

The second resolution of the discontinuities of T is to construct an action F' of R
(i.e. a flow) on a compact oriented surface M with a closed transversal N. The flow
will have singularities, but the first return map on N is just the interval exchange T,
except at the discontinuities of T, which flow directly into the singularities.

Begin with P = [0,1] x [0,1]. Let V’(0) = V(0) = {0} x [0,1] and V’(n) =
=V(n) ={1}x[0,1]. Fori=1, ..., n—1,let V() = (8(¢),1) and V'(2) = (8'(5),0).
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We define M to be the quotient cf P obtained by collapsing V(0) and V(n) to single
points and by identifying I(i)~ x {1} with I'(¢(?))" x {0} via T, fori=1, 2, ..., n.
That is, M is approximately the mapping cylinder for . We remark that we will
frequently use co-ordinates in P for the image point under the quotient map in M.

We define oy, a permutation of {0, 1, ..., n} by
0“1(1)-9]_ 1f]=0
oo(j) =< n if j = 0~ }(n)

o Yo(j)+1)—1 otherwise.

We let N(o) denote the number of cyclic components of oo and we let X(e) denote
the image of {V(0), ..., V(n), V'(0), ..., V'(n)} in M. Then it is easy to check
that if ~ denotes the equivalence relation on {V(0), ..., V(n)} generated by V(i) ~
~ V(oo(3)), ¢ =0, ..., n, then V(i) ~ V(j) if and only if they have the same image
in M. It is clear that each V(i) has the same image as some V(j). Thus, we may
identify X (&) with {V(0), ..., V(n)}/ ~ and X{(o) is just N(o) points in M. In fact,
M is a compact oriented surface with genus (n — N(o) +1)/2. Let My = M — X (o).

To construct a flow F on M, (F : Rx M — M) we proceed exactly as in the flow
under constant function construction (Chap. 11 [6]), except that we have a problem
at each V(¢) (in P) which is idertified with several V’'(j)’s by the quotient map. To
resolve this we define F' to be the identity on X (o) {and slowed suitably nearby). In
other words, F' is obtained by integrating the vector field X'(p) = w(p)-(0,1), for p in
M, where w(p) is a certain positve scalar function on M vanishing exactly on X (o)
and (0,1) is in R? whick we may identify with 7, M. the tangent space at p, via P
in an obvious way (at least for p in Mg). The transversal N is the image in M of

0,11 x {%}

ReEMaRK. For a more geometric description of M, including a complex structure

with singularities, see Masur (14,

REMARK. In the case n = 2 mentioned earlier, M is the two-torus.
However, F is not the Kronecker flow, but the Kronecker flow stopped at one point.

3. THE C*-ALGEBRAS

In this section, we examine the C*-algebras associated with the dynamical sys-
tems of section 2, especially C*(R, Mo, F).
We begin by observing that we have the following F-invariant short exact se-

quence

(3.1) 0 — Co(My) — C(M) -— C(X(0)) — 0
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and taking crossed products we obtain [26] the short exact sequence

(32) O—AC*(R,Mo,F)‘—*C*(R,M,F)—>Xﬂ() )CO(R)'_')Oa
-3

also using the fact

CRX(@), )= & 'R {z},F)=®CR).

57
eX(
We also note that if N(¢) = 1, the sequence has an obvious splitting. Since the flow
F on My is minimal, C*(R, My, F) is simple and so we will concentrate our attention
on this C*-algebra.

To begin with, however, we will consider any flow F on a locally compact space
Y, with no periodic points; i.e. F(t,z) = z only ift = 0. Suppose U is any non-empty
open subset of Y. We wish to consider a new flow, which we denote FU, on Y which
is obtained from F by stopping F on Y — U. Welet Y — U = Z. That is, we have a
continuous map vy : Y x R — R such that, for z in U, ¥(z,-) is a strictly increasing
function and for z in Z, y(z,t) = 0 for all ¢ in R. The flow FU is given by

FU(t,z) = F(y(z,t), z)
for all z in Y and ¢ in R. The fact that FU is a flow is equivalent to the condition

¥(z,t) — y(z, ) = v(F(y(z,s),z),t - s),

for all z in Y, ¢,s in R. For fixed U, there are many choices for FU but they will
all have the same orbit structure and give rise to *-isomorphic C*-algebras. We note
that the orbit of 2 in U under FU is just the connected component of the F-orbit of z
intersected with U which contains z. From this point of view, we see that the foliation
of U given by our flow FVU is just the restriction to U of the foliation of Y determined
by F, as in Connes [4]. We want to show that there is a natural inclusion, which we
will denote by p¥, of C*(R,U, FY) in C*(R,Y, F) [4]. The underlying groupoids for
the transformation group (R, U, FU) and (R,Y, F) are R x U and R x Y, respectively
[21]. The map defined by
7(t,2) = ((z,1), 2)

is an isomorphism between R x U and an open sub-groupoid of R x Y, as in 4.4.1 of
Wang [29]. There arises a slight subtlety regarding Haar systems [21]. As a transfor-
mation groupoid R x U has its own Haar system [21] which will differ from that of its
image under 7 in R x Y. There are two resolutions to this problem. First, one can
appeal to I1.2.11 of [21] which asserts that the two systems will give C*-algebras which
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are strongly Morita equivalent, hence stably isomorphic [3!. By [9], both of these C*-
-algebras are already stable and we conclude that they are actually s-isomorphic. A
more conerete procedure is possible if we assume that the function y(z,t) above is
actually differentiable in ¢ and that the derivate y'(2,t) is continouson ¥ x R. In

this case, we can define
. .
PV i CR X U) — Co(R x Y

by
0 if ¢ &£ v(&,s) for any s in R

Y (z,8) 1 f(s,2) ift=viz,s)
Using the property of v above, one can show directly that pU is a *-homomorphism
and extends to a map from C*(R, U, FU) to C*(R,Y, F).

We first want to show that this inclusion, at the ievel of K-theory, is compatible

P D) = {

with Connes’ analogue of the Thom isomorphism 5].

ProrosiTION 3.1. Given (R,Y, F) with no periodic orbits and U C Y non-empty
and open, let (R,U, FV) be as above. Then, for i = 0, 1, the following diagram is

commutative

*

K(C*R,U,FY)) 23 Ki(C*(RY,F))
! !
Kin(Co0) L5 Kina(Co(Y))
where the vertical arrows are Connes’ analogue of the Thom isomorphism and j
denotes the natural inclusion of Co(U) in Co(Y).

Proof. Let CX = (0,1]xY and define aflow CF = idxFon CX. Let V = (0,1)x
xY U{1} x U. Then SY = (0,1) x Y is open and invariant under (CF)". Moreover,
(OF)Y | 8Y is topologically equivalent to SF = id x F. Clearly (CF)V | {1} x U is
just FY | U. So we obtain the (CF)V invariant short exact sequence

0 — C3(SY) ~— Co(V) — Co(U) — ©

and taking crossed-products, using the observations above, we also have the short

exact sequence
0 — C*(R,SY,SF) ~ C'(R,V,(CF)") ~— C*(R,U, F¥) — 0.

Next, O*(R. 8V, SF) 22 Ca(0,1) & C*(R, Y, F). The two sequences above are, in fact,

the mapping cone sequences for the maps j and pY, respectively. So by standard
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mapping cone arguments [25] and the fact that Connes’ map is natural, we obtain
the desired result. u

We digress for a moment, returning to interval exchanges. Specifically, we want
to show that there is indeed a relationship between the C*-algebras C*(Z, £, ¢) and
C*(R, My, F).

THEOREM 3.2. Let (Z,X,¢) and (R, Mo, F) arise from an interval exchange
T(%:%) as in section 2. Then
(i) Ko(C*(Z,Z,¢) =127
Ki(Cc*(2,2,¢) =12
.KQ(C*(R, My, F))= 2"
Ki(C*(R, Mo, F))= 2,
(i) there is an injective *-homomorphism
p:C*(R, My, F)— C*(Z,Z,$)® K,
where K denotes the C*-algebra of compact operators on a separable, infinite
dimensional Hilbert space.
(iii) * using the isomorphisms of (i),
% Ko(C*(R, My, F)) — Ko(C*(Z, 2, ¢))
is given by multiplication by L°, an n X n matrix,
1 ifi>jand o(i) < o(j)
Ly = { -1 ifi< j and o(i) > o(j)
0  otherwise
and .
px: K1(C*(R, My, F)) — K\(C*(Z, 2, ¢))

is the zero map.

Proof. (i) The first two isomorphisms were shown in [18]. In fact, it was shown
that [X[,@(i—l)+,ﬁ(i)-]] , t =1, ..., n, where x denotes the characteristic function,
are generators for the Ky-group. The second pair of isomorphisms are computed via
Connes’ analogue of the Thom isomorphism and the short exact sequence

0 — Co((0,1) x (0,1)) —> Co(Mp) —> élco(.r(i)" x {1}) — 0.

(ii) Let (R, 2", ¢") be the flow obtained from (Z, X', ¢) by the flow under constant
function construction. There is an obvious surjection of £ onto [0, 1] which gives us
a surjection 7 : X" — M. Let U = 7~'(M;). The flow (¢7)V may be chosen so
that « | U is equivariant between (R, U, (¢")V) and (R, Mo, F'). Therefore, we have an

embedding
7 : C*(R, My, F) - C*(R, U, ()Y)
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which we follow by pU and finally a s-isomorphism from C*(R,L",¢") to
C*(Z, ¥,4)® K [3,22] to obtain p.

(ii) Basically, Proposition 3.1 and the description of the generators of the K-groups
from part (i) allows everything to be computed at the level of spaces. The computation

is routine and we omit it. =
We state our next result in a general context.

THEOREM 3.3. Suppose that F is a flow on a ron-compact, locally compact space
Y whose one point compactification is metrizable. Suppose that for each y in Y the
orbit of y under F has infinity as a limit point (i.e., its closure is not compact inY ).
Then there is an increasing sequence of C*-subalgebras of C*(R,Y, F), Ay C A2 C - -,
whose union is dense in C*(R,Y, F) and such that each A; is CCR [16].

REMARK. As will be evident in the proof the analogous result will be true for
Z-actions. The basic idea here is the same as in the construction of Ay in [18]. Here,
Y is just the point at infinity and so Ay is the entire crossed product algebra.

Before beginning the proof of 3.3, we wish to apply the result to our case of the
flow arising from an interval exchange. It would seem that in many specific examples,

the above result may be improvec.

THEOREM 3.4. Let (M, F) be the flow arising from an interval exchange T(%®)
(satisfying the IDOC). Then there is an increasing sequence of C*-subalgebras of
C*(R, My, F), Ay C As C -+, whose union is dense in C*(R, Mo, F') with each A;

CCR. Moreover, for each j, there is a short exact sequence

n 2n—1
0-— _@16})(0, 1)K — 4; — _@1 K—0.

Proof of 3.3. Let Uy € Us C --- be any increasing sequence of open subsets of
Y whose union is all of Y and such that for each j, Uy is compact (here we use our
hypothesis on V). Let A; = C*(R,U;, F Usi). (For convenience will denote FYs by
F;). The containments A; C Az € - - - are clear, as is the fact that the union is dense
in C*(R,Y, F). We will show that the flow (U;, F;) has closed orbits, for j =1, 2, .. ..
It is clear that this flow has no periodic orbits so, by a result of Williams [32], A; is
CCR.

Let y be in U;. We claim that there is ¢ > 0 such that F(t,y) € ¥ — U;y.
If {F(¢t,y) | ¢ > 0} has no accumulation point in Y then the claim is clearly true.
Otherwise, let z be such an accumulation point. By hypothesis, there is » in R so
that F(r,2z) €Y — U;. Then {F(t,y) |t > 7} has an accumulation point in Y — I/~
and as {F(t,y) 10>t > r} is compact, {F(¢,y) | £ > 0} must have an accumulation
point in Y — U;™. The claim follows since Y — Uy is open.



INTEEVAL EXCHANGE TRANSFORMATIONS 239

Therefore,
to=inf{t 20| F(t,y) €Y - U}

exists, as does
ti=sup{t <O | F(t,y) €Y - U }.

Moreover, the Fj-orbit of yis just {F(t,y) |to <t <t;} =U;N{F(t,y) |to <t < t1}
since {J; is open. The set {F(t,y) | to <t < t1} is compact in Y so the Fj-orbit of y
is closed in U;. This completes the proof of 3.3. a

Proof of 3.4. We expand on the idea of the last proof, choosing Uy C U; C ---
with sufficient care so that the A;’s have the desired property. The set U; is chosen
first. Then we describe an iterative procedure for obtaining Uj 41 from Uj.

Choose an integer K sufficiently large so that, foreachi=1, ..., n

{T*(0) |1 <k < K}NI()
has at least two points. Fori=0, 1, ..., n—1let
2(1,3) = inf ({T*(0) | 1 < k < K} N I(5 + 1))
andfori=1, ..., nlet
2(0,7) = sup ({T*(0) | 1 < k < K} N I(3)).

For convienence, let 2 = {0,1} x {1, ..., n —1}U{(1,0),(0,n)}. For each w in £,
let k(w) be the positive integer such that z(w) = T*®)(0). We also define

2'(1,8) = inf({T*(0) | 2 < kS K+ 1}NI'(i + 1))

2'(0,7) = sup({T*(0) | 2 < k < K+ 1} N I'(3))

for appropriate ¢ and &’(w) is such that 7% “)(0) = z'(w) for w in £2. Note that
T{z(w) | w € N} = {2'(w) | w € N}. We define closed sets Z(), Z'(7) in
P =10,1] x [0,1] by

Z(0) = Z'(0) = [0, =(1,0)] x [0, 1]

Z{n) = Z'(n) = [z(0, n), 1]3x [0,1]

Z(i) = [2(0,4), (1, )] x [Z’ 1]

7' = [2(0,5), &'(1, 3)] x [o, ﬂ

fori=1, ..., n—1. Welet U(= U;) be the complement of the union of the images
of the Z (i), Z’(¢) under the quotient map = : P — M.
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1
We make the following claim: The FU-orbits of the points of {(T(O), 2) ,

<a:’(é, i), 5)26 =0,1¢i=1, ..., n— 1} € U, are pairwise disjoint. Moreover, if
we denote by I their union, which is closed (in U) and FY-invariant, then
) ®,I,FY) =R, U 'R, 7)
Gi) R,U - I, FV) 2 R,0(0,1) x R, id x 7)
where %= denotes topological conjugacy of flows [2] and T denotes the canonical flow
on R (i.e. translation).

Notice that once we establish the claim, then we have the following short exact
sequence for A, = C*(R, U, FY)

0-— C*R,U~TIFy— C*'R,U,FV) — C*(R,I',FV) — ¢
and using the conjugacies of (i) and (ii)
C*(R,U~TI' FV) = @oa(o, ek

C'(®, I, FV) = 2’?.15%,

. . 1
As for the claim, let y be one of the peints of the set above; say y = (T"(O), 5),

for some k. Define yt = rglf&m FU(t,y) and y~ = 8lim FU(t,y). It’s clear that
- 00 — — 00
s 1y . : A :
Yy~ = (T k(0), }7{\ in fact; from which, it follows at once that these points all have

o P . . 5 3 .. \
disjoint FU-orbits. Let us consider the point (9@(6, i}, E)’ for some (6,¢). From the
definitions, 2(6,3) = T*®(0) with 1 < &(§,5) < K. Choose k' from {k'(§'i') | § =
=0, 1 & =1, ..., n—1} {1} to be the largest clement of this set less than or

equal to k(8, ¢). Also let y == (T‘r‘*"(@),% . It follows from the choice of &' and the

definition of (4, ) that y+ = <3(65 i), g) What we have shown is that each of the
corners of the Z(2)’s is a y* for some y in our set. There are 2r — 2 such corners and
the conclusion of the claim foilows easily from these observations.

We have produced U; = U satisfying conditions which imply 4; = C*(R, U, })
is of the desired form. We now show how to construct Uy with the same conditions.

As noted above, 2n — 2 points of the set considered earlier flow directly into corners

of the Z(é)’s under F;. One y = (z’(é, i}, %) has y* contained in the interior of

the line segment {2(0, ), 2(1,j); % {g}, for some j. (In fact, (4,¢) is such that
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k'(8,%, = sup{k’(§',¢) | 6 =0,1¢ =1, ..., n—1}.) Let y* = (Tl(o))%)’ for
some £ > 1. Notice that T¢(0) = B(j) is not possible by the IDOC. Redefine the
z(6,1). etc by replacing K by £. (In the case T¢(0) < B(j) and o(j) = n and in
the case T%(0) > B(j) and o(j + 1) = 1, replace K by £+ 1.) Then we obtain
z(6,%).2'(6,%), k(8,%), k' (8,7) as before. Now, define Z(i) = [z(0,7),2(1,7)] x [g, 1]

and Z2’'(¢) = [2'(0,%),2'(1,¢)] x [O,%]. It is clear that U,, defined as before, has
the same properties as U; and A = C*(R, Uz, F») will satisfy the conclusion of the
theorem. It is clear how to continue this process inductively to obtain Us, Uy, etc.
From the fact that the orbit of 0 under T is dense in [0,1) it follows that the union
of all {J; will be Mp. u

REMARK 3.5. The primitive ideal space of one of the C*-subalgebras A; of 3.4
consists of open line segments and points. However, it is not Hausdorff. (The C*-
-algebra A; might be called a “non-commutative 1-complex”.) One may instead form
the “dual graph” of A;, using a vertex for each copy of Cp(0,1) ® K and an edge
for each K in the quotient algebra. This is indeed a graph and if one considers how
it arises dynamically, there is a natural embedding of this graph in Mp which is
transverse to the flow. This is the same construction as in Wang [29], who considered
foliations of the plane. Unlike the situation there, our graphs are not trees — indeed,
they are “transverse” cell decompositions of M. Of course, what is substantially
different here from the situation in [29] is that C*(R, Mo, F') is not associated to such
a decomposition (as in [29]) but is the inductive limit of C*-subalgebras of this type.
We also refer the reader to Wang [30, 31].

As an immediate corollary, we have the following result concerning the topological
stable ranks of the C*-algebras we are considering. We refer the reader to Rieffel [23)
for the relevant definitions.

THEOREM 3.6. Let (M, F) be the flow arising from an interval exchange T(%®),
Then

(i) tse(C*(R, Mo, F)) =1

) 1 ifN(e)=1
tsr(C* =

(it) tse(C*(R, M, F)) {2 i N(o) > 2
Proof. For the first part, from [23]

tst(C* (R, Mo, F)) < lim inf tsr (4;).

The results of [23] also imply tsr(Co(0,1) ® K) = tsr (K) = 1. A straight-forward
argument (see Theorem 3.1 of [19]) using the fact that each invertible element in
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K’ (the C*-algebra cbtained by adding a unit to the compacts) is homotopic to the
identity then gives the result that tsr(A4;) = 1, for all j.

As for part (ii), tsr(C*(R, /4, F)) £ 2 follows from the result of [23], part (i)
above and the short exact sequence (3.2). In the case N(o) = 1, then X(o) is a single
point and sequences (3.1) and (3.2) both split and tsr (C*(R, M, F)) = 1 follows. If
N(o) > 1, ther one considers the six-term exact sequence for K-groups obtained from
(3.2). One can show directly that the index map is non-zero and, by arguments similar
to those in the proof of Theorem 3.1 of [19], one concludes tsr (C* (R, M, F)) > 2. This
completes the proof. n

We remark that, just as in Theorem 3.1 of [19], if tsr(C*(R, M, F)) = 2, then
C*(R, M, F) does not satisfy the cancellation property [23].

We conclude this section by giving a different description of C*(R, Mo, F) which
may be compared to the descripsion of C*(Z, £, ¢) given in [18]. We let Ur denote
the unitary operator on L%(0, 1) defined by

UTgf,{OT_l,

for € in L?(0,1), where T is an interval exchange transformation. We consider func-

tions on (0, 1) as multiplication operators on L2(0, 1).

THEOREM 3.7. Let T be an interval exchange and let (My, F) be the flow
associated with T as before. Let B denote the C*-aigebra generated by Cy(0,1) and
U Co((0,1) - {B(Y), ..., B{n—-1)}). Then C*(R, My, F) and B are strongly Morita
equivalent [22].

Proof. Let G denote the groupoid associated with the flow (Mg, F). Let NV =
={0,1) x {%} C My which is a closed transversal. We use the results (specifically,

‘Theorem 2.8) and notations of Muhly et al. [15]. Letting G¥ be the groupoid as-
sociated with N (see [15])), C*(G¥) and C*(G) = C*(R, My, F) are strongly Morita
equivaient. Moreover, it is readily seen that B is the image of C*{G¥) under ar obvi-
ous representation on L2(0,1). Since we assume T satisfies the IDOC, T is minimal.
Then by I1.4.6 of Renault [21}, C*(G¥) is simple and so the representation on L2(0, 1)
is faithful and hence C*(GY) = B. a

REMARK 3.8. Again for the special case n = 2, one may choose a different
closed transversal N (homeomorphic to S* and not containing the singularity) and
follow the some proof obtaining a C*-algebra B which may be described as follows.
Let  and v be unitary operators satisfying uv = e>"™®2yu. The C*-algebra they
generate is *-isomorphic to the irrational rotation C*-algebra Ao, {26]. Then B is the

J*-subalgebra generated by v and u{v — 1).
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4. ASYMPTOTICS AND AF-EMBEDDING

In this section we examine the question of embedding C*(R, My, F') into an ap-
proximately finite dimensional or AF-algebra. There has been considerable interest
in suck questions (see [13, 17, 18]). Here we show that there is an embedding of
C*(R, My, F) into an AF-algebra which induces an order-isomorphism at the level of
Ko-groups. In fact, we show much more, namely that there is a locally compact space
My with flow F and an equivariant surjection 7 : My — My, so that C*(R, M, }~7‘) is
AF. In particular, as our embedding is really obtained at the level of flows it allows
us to avoid Berg’s technique (see [13]). This is due to the same dynamical properties
which yield Theorems 3.3 and 3.4.

Finaly, we show how the notion of asymptotic points for a dynamical system
relates to pairs of representations of a C*-algebra with compact difference. We exam-
ine the case of C*(R, Mo, F~') and show that there is a pair of representations whose
equalizer is *-isomorphic to C*(R, My, F).

Let T = T(%®) be an interval exchange (with the IDOC). Basically, to obtain

M, from My, we split the F-orbit of (T(O), -;—) into 2 parallel orbits. Note that the
F-orbi} of (T(O),%) is
{(T*(0),5) |k > 1 s €(0,1]}.
since as t approaches —oco, F <(T(0), ;—) , t) converges to
(7(0),0) = (8'(c(1) — 1),0).
Let Do(T) = {T*(0) | k > 1}. As in section 2, let
Do =[0,1] = Do(T) U{zt,z~ | z € Do(T)}

Let M be the compact set obtained from Zp x [0,1], as follows. First, identify the
points (7°(0)*,0) and (7'(0)~,0) and denote the resulting point by (7°(0),0). Identify
each of {0} x [0,1] and {1} x [0,1] to a point. Finally for each i = 1, ..., n identify
[B(i — 1), B(3)] x {1} with [#'(¢(3) — 1), #'(o(¢))] x {0} via T-meaning that for z in
Dy, we identify (zt,1) and (z~, 1) with (T'(z)*,0) and (T'(z)~,0), respectively. Let
F be the obvious vertical flow stopped at the images of (8(:),1), i =0, ,1 .., n,in
M. There is an obvious surjection 7 : M — M and we may choose F so that = is
equivariant; i.e. Foid x7 = w o F' as maps from R x M to M. Let My = 7~ 1(Mp).
Any such equivariant map induces a map at the level of C*-algebras which, in our
case, will be denoted by  : C*(R, My, F) — C*(R, Mo, F).
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THEOREM 4.1,
() C*(®, /iy, F) is an AF-algebra.
(i) m : Ko(C*(R, My, F)) — Ko(C*(R, M, F)) is an order isomorphism.

Proof. (i) We construct a sequence Uy C Uz C --- as in the proof of 3.4 for
(Mg, /E’j'). Using the notation and definitions as in 3.4, we let

Z(5) = [2(0,8)*, 2(1,4)"] x [% 1]

using the fact that each £(0,3), 2(1,4) is in Do(T). We define Z’(i) analogously. We
then define U, as in 3.4 and it is straight-forward to see that

(4.1) C*R,0;, Oy = .{%C(z@-) oK

where each 3; C X is a Cantor set. We inductively define (7,-, forj=2,3,...asin
3.4 and we sec that C*(R, M,, 17’) is the inductive limit of AF-algebras and so is AF.
(ii)) We will first show that m+ maps the positive cone onto the positive cone. Let

k and ¢ be natural numbers and define
Eo = [T*(0)*,7%(0)"] x {%} C Ly x {%} CM.
This set is a closed transversal to the flow; i.e. it is closed and, for some ¢ > 0,
F: Egx (—¢,6) — Mg

is 2 homeomorphism onto an open subset, W, of Mo. As indicated in [4], this set gives
rise to an element in Ko(C*(R, Mo, F)) in the following way. By our earlier results,
we have an inclusion p% of C*(R,W,F%) in C*(R, Mo, F). Moreover, it is clear
that the transformation group (R, W, F%) is conjugate to (R, Eo x R, id x 7), so that
C*(R, W, FW) ~ C(E;) ® K. Letting e be any rank one projection in K, we consider
the class of the image of I @ ey under p%. It is a consequence of the proof of (i)
that every positive element of Ko{C*(R, My, F)) is the sum of elements arising in this
way. So to show surjectivity it suffices to consider such elements. We also suppose
that k, £ arc such that there is no i between k and ¢ with T%(0) € [T*(0), T%(0)].

. 1
Define a map ¢ from Ey to [0,1] by setting ¢ (:c, %) NG (:z;”",l or{|z”,= ) equal

2 2
to (& - TH(OY)(T(0) — T*(0))~*. Since the points (T‘(O)", %) and <Tk(0)‘, %) lie
in the same F orbit, there is v in R so that F (7-, (Te(O)", %)) = (Tk(O)"’, %) For

cach ¢ in {0, 1], we let

e (o () ()] () )
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where the z should have a + or — for appropriate points between T*(0) and T%(0),
a + for z = T¥(0) and a — for z = T%(0)~. From the hypotheses above, each E,
is a homeomorphic image of Ey. The projections in C*(R, My, F) constructed from
these transversals will be homotopic and thus determine the same class in K-theory.
Finally, it is easily seen that w(E;) is actually a closed transversal to F in My and
that #=!(7(Ey)) = Ey. Thus the Ko-class determined by E, is in the image of
Ko(C*(R, My, F)) under m+.

As for the injectivity of m*, let C; be the C*-subalgebra of C*(R, (7, F (71') which
is mapped to EB C ® K under the isomorphism of (4.1), for j = 1, 2, . It i1s not
hard to check that C; C Cj41 for all j, and that the union of the C;’s is dense in
C*(R, Moy, F). Tt is clear that Ko(C;) = I, for all j, and that the embeddings induce
maps Ko(C;j) — Ko(Cj4+1) which are all isomorphisms (of abelian groups). In fact,
using Ko(C;) = Z”, each embedding is given by multiplication by a matrix of 1’s on
the diagonal, one off-diagonal 1 and the rest of the entries 0. Therefore, we see that
Ko(C*(R, My, F)) = Z* and since the map from Ko(C*(R, Mo, F)) = 2" (by 3.2) is
known to be surjective (from part(i)) it must be injective as well. |

REMARK. One of the central questions concerning interval exchanges has been
the so-called Keane conjecture. In [10], Keane asked if every minimal interval ex-
change is uniquely ergodic (i.e. Lebesgue measure is the only invariant probability
measure on [0,1)). For n = 2 and 3 this is true, but Keynes and Newton [12] and
subsequently Keane [11] found counter-examples. Finally Veech [27] and Masur [14]
showed that, for fixed o, the set of & in A"~! such that T(%%) is uniquely ergodic
has full Lebesgue measure in A®~? (i.e., almost all interval exchanges are uniquely
ergodic). Using Theorem 4.1 and a result of Blackadar (pg. 58 of [1]), the computation
of the T{%:®)_invariant measures may be reduced to the computation of the state space
of the simple dimension group Ko(C*(R, Mo, F')) (see[1]). The Bratteli diagram [2]
for the C;’s may be viewed as the continued fraction expansion of (¢, ). In the case
n = 2, it is essentially the continued fraction expansion of a3 as interpreted by Effros
and Shen [8). It is not the same expansion as defined by Rauzy [20] and used by
Veech [27] in his proof of the Keane conjecture.

I will try to be a little more specific without going into great detail. I will only
discuss the case n = 4, comparing tehniques with those of Veech [28]. Consider the
iterative procedure in the proof of 3.4. At the first stage, we have K, z(§,1), etc. Let
iop = 0(1)—1 and consider the following four intervals [z'(0, %p), 8'(%0))], [B(%0), '(1, %0)]
and [2/(0,2),2(1,7)] for i € {1,2,3} ~ {io}. These form the top edges of the boxes
Z'(j)’s. Under F, each will flow into one of the boxes Z(j); in this way we obtain a
map from {i7, i3 }U({1,2,3} - {i0}) to {1,2,3}. We call such a map a configuration.
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It turns out that there are only scven configurations. Along with the configuration,
we obtain & point in 43 by scaling the lengths of the four intervals so they sum
to one. ¥or 2 fixed configuration, the points which arise from a sub-simplex. This
space of pairs, (configuration, point in A3), is our analogue of the space of interval
exchanges. The iteration of the procedure in 3.4 then becomes a two-to-one map of
this space into itself. This is our anaiogue of the Rauzy transform. One can draw
2 schematic diagram as follows: c¢ach configuration is represented by a vertex. The
points on 4? for o fixed configuration go te one of two new configurations (depending
on whether the last iterate of 0 under T which we are considering is to the right or
left of the appropriate 5(¢)) and we draw two corresponding directed edges between
the appropriate vertices. As in [28], we have a 4 x 4 matrix attached to each edge
in the graph so that the following holds: if (v, @) is a point in our space mapped to
(+',a'), then there is an edge v to ' and o' is equal to [A~1a|™1 - A~ 1a, where A is
the matrix associated with this edge and |Aa| denotes the sum of the entries of Aa.

Qur graph looks like

l+e 1+e
<! Cad 1+e,,

ey l+e;,

using e;; to denote standard matrix units. (I have no explanation why the underlying
graph is the same as on page 135 of [281.) In our situation it is easy to write down the
appropricte Gauss measure for the transformation [28]; in fact, on each subsimplex
it’s just (z3292324) " dA, where A denotes Lebesgue measure on A3, To complete
the proof of the Keane conjecture, one must still show that this transformation is
ergodic. With this view, the proof of 3.4 takes an interval exchange and provides an
infinite sequence of points (in fact an orbit) in this space. In fact, if we ignore the
point in A% at cach stage, we get an infinite path in cur graph. The matrices on the
traversed edges give us the Bratteli diagram for the C;’s and information regarding
invariant measures for the original interval exchange. (This also appears in [28]). Of
course, this Al -algebra must be stmple and so the Bratteli diagram must have certain

properties [2]. Towever, if we take an arbitrary infinite path in this graph, it turns out
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to be relatively easy to see if the associated AF-algebra is simple. (Such a statement
seems imposible for the Rauzy transform.) It is then reasonable to ask if every such
path is the expansion of some interval exchange. If this is so, one can presumably
use ideas like those in [8] to produce a path which yields a simple AF-algebra having
more than one trace. Then one would have shown the existence of a non-uniquely
ergodic IDOC interval exchange.

We will now give a different description of C*(R, My, F') as a C*-subalgebra of
C*(R, Mo, ﬁ‘) This will rely on observing the connection between asymptotics of a
general dynamical system and pairs of representations of the associated C*-algebra
whose difference is compact.

We begin with the general situation of a locally compact group G acting on a
compact metrizable space X. We say two points £ and y in X are asymptotic if, for
every open set U in X x X containing the diagonal A = {(z,2) € X x X |z € X},
theset {9 € G| (9-2,9-y) € U} is pre-compact in G. In the case G=Ror G =1,
this is equivalent to the condition

lim d(t-z,t-y) =0,
Jt|~—o00
where d is any metric on X. In the case X is locally compact, we say z and y are
asymptotic if they are asymptotic in X+, the one point compactification of X, letting
G act trivially on the point at infinity.

For each point z in X, we obtain a representation p, of C*(G, X) on the Hilbert

space L?(G) defined by

o= (FEI(E) = / f(s™1t,5 - £)E(s)ds
G

where f : G x X — C is continuous and of compact support and considered as an
element of C*(G, X), € is in L?(G) and ¢ in G [26].

THEOREM 4.2. In the transformation group (G, X) the points z and y are asymp-
totic if and only if p;(a) — py(a) is a compact operator for every a in C*(G, X).

Proof. (=>) It suffices to consider f(t,z) = fi(t)f2(z), (t,2) in G x X, where
fi :G — C and f, : X — C are each continuous and of compact support. If we
define g, in Co(G) by g2(s) = fao(s - z) — fa(s - y) then g(f) — g4(f) = A(g) where
g : G x G — C is defined by g(s,t) = fi(s)g2(t) and is regarded as an element of
C*(G, G) (natural action of G on itself) and A denotes the left regular representantion.
It is well-known that ) is an isomorphism between C*(G, G) and K(L%(G)) [24].

(<¢=) We suppose that = and y are not asymptotic; so we may find a sequence
{tn}$° in G tending to infinity such that the sequence {(t» - 2, t - y)}{° has no limit
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points in 4. Since X7t is compact and by passing to a subsequence we may assume
that ¢, - & converges to o and ¢, - y converges to ¢ distinct point yo. Since zy and
¥o ave distinet, one of them, say =g, is not the point at iufinity. We may find § in
C’o{X') such that f is identically one on ¥y a neighbourkood of zg and zero on Wy a
neighbourhood of 3. We may thea find Z a compact neighbourhood of the identity
in 7 and neighbourhoods Vi and W' of 25 and yp so that Z. V) € ¥ and -7 & W,
Sinee Z is compact and the ¢, tead to infinity, we may again pass to a subsequence
so that 1, - 7 is disjoint from ¢, - Z, for n # m. Let € be any unit vector in AG)
with support in Z. Let &, be £ translated by #,,, for cach n. The sequence {&,}§° is
an orthonormal family in L%{G). If we choose g : G — C continuous with compact
support contained in Z and so that ||g+€ €]z is small, and letting a(t, z) = f(2)-g(t)
in C*(G, X) the sequence
li(p=(a) ~ py(e))éx]

will be bounded below and so p.(a) - p,(e) is not compact. a

THEOREM 4.3. Let (R, My, 17’) be the flow constructed from the interval exchange

7(2:®) as before. Let & = (T(O)" , %) and y = (T(O)*‘, —;—) in My. Then z and y are

asymptotic under . Moreover, they are the unique such pair in the sense that if 2’
and y are any other pair of asymptotic points, then either (a) 2’ = ¢, (b) 2’ = F(r, )
and i = F(r,y) for some r in R or (c) @' = F(r,y) and y = F(r,z) for some r in R.

The equalizer of p, and py,
{a € C'CR’ “@O»F)JP‘%‘(@) = py(a)}

is precisely the image of C*(R, M, F) under «.

Proof. Everything is very straight-forward except the uniqueness statement. We
will give a sketch of the proof of that part only. It is easy to see that (a), (b} or
(¢} is equivalent to the condition #{z'} # =(y) ir My. So it suffices to show that
if #y and 2z; in Mp are asymptotic for F, then z; = z5. This may be deduced
by examing the interval exchange T. If y; and y; are in the same interval I{z), then
[T (y2)--T(y2)l = jy1 —yz|. If 9 is in I{3) and v is in I(i+1) and if ¢(i+1) = #{2)+1,
then again |7'(y1) —t(y2)| = lyy —y2|. However, if c(i+1) # o(2)+1 there are positive
constants 6, and 8, such that ly; — yal < 6 implies that [T(yy) — T'(y2)! > 2. Using
the minimality of T and the facts above one may deduce that 7° has no non-trivial

asyinptotic pairs and then neither will F'. u

RemarKk. For any C*-ulgebra A, a pair of repiesentations of A on the same
Hilbert space, pg,p1 @ A -— £{H), with the property that pole) — pi(a) € K{H) for
all e in A determines an elernent of the Kasparov group K K(A,C), see [T or [1;. it
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is interesting to note that using the universal coefficient theorem [1], Theorem 4.1 (ii)
and Theorem 4.2, the class of (p;, py) of 4.2 is trivial in KK (C*(R, Mo, F),C), while
its equalizer is considerably more interesting.
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