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SIMILARITY AND QUASISIMILARITY
OF QUASINORMAL OPERATORS

KUNG-YEU CHEN, DOMINGO A. HERRERO and PEI YUAN WU

1. INTRODUCTION

A bounded linear operator T on a complex separable Hilbert space is quasinormal
if T'and T*T commute. In this paper, we study the problem when two quasinormal
operators are similar or quasisimilar to each other.

Quasinormal operators were first studied by A. Brown [1]. Among other things,
he obtained a structure theorem for such operators: T is quasinormal if and only if
it is unitarily equivalent to an operator of the form N & (S ® A), where N is normal
and A is a positive definite operator (denoted A > 0), that is, (Az,z) > 0 for any
nonzero vector z in the domain of A, and

S®A=

(=T =T N )
(=T -}
n o
o

Moreover, in such a decomposition, N and A are uniquely determined by T". N and
S ® A are called the normal and pure parts of T, respectively (S ® A is pure means
that it has no nontrivial reducing subspace on which it is normal).

The question whether two similar quasinormal operators are unitarily equivalent
has been in the air for many years (cf. [13]). It is easy to see that two quasinormal
operators are similar if and only if their normal parts are unitarily equivalent and
their pure parts are similar. To determine when two pure quasinormal operators
S ® A1 and S ® Ay are similar seems quite elusive. In Section 2 below, we reduce
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this problem to that of the similarity of certain nests associated with Ay and As and
completely solve it via the deep result of D. R. Larcon and K. R. Davidson {ef. {6,
Chapter 13]). Specifically, it is shown that S® Ay Is similer to S® Ag if and only if A;
and A, have equal spectra and thelr cigenvalues have equal multiplicities (Theorem
2.1). Thus similar quasinormai operators may not be unitarily equivalent answering
negatively the question asked in [13).

The situation with quasisimilarity is much more complicated. Although the nor-
mal parts of quasisimilar quasinormal epcrators are still unitarily equivalent, ticiv
pure parts may not be quasisimilar as shown by an example of L. R. Williams (cf.
(18, Example 1]). On the positive side, he showed that quasisimilar quasinormal op-
erators must have equal essential spectra (cf. [18, Theorem 3]). (Since quasinormal
operators are subnormal [10, Problem 195], this also foliows from the recently proved
result that quasisimilar subnormal operators have equal essential spectra [22]. That
they have equal spectra follows from a more general result for quasisimilar hyponor-
mal operators {3].) In the literature, quasisimilar quasinormal operators have cften
been constructed to illustrate certain properties of operators not preserved under qua-
sisimilarity; see, for example, [19, Examples 2.2 and 2.3] and [11, p. 1445). In Sections
3 and 4 below, we completely solve the problem when two quasinormal operators are
quasisimilar. (Theorems 3.1 and 4.4). In particular, it follows frorn our main resuit
that every pure quasinormal operator is quasisimilar to a very special one S & D,
where D is diagonal and positive clefinite (Corollary 3.19). We also determine when
two pure quasinormal operators are injectively similar or densely similar (Theorem
3.18).

For operators 77 and T3 on Hilbert spaces Hy and Ho, respectxvely, we say that
11 is densely (resp. injectively) intertwined to Ty, denoted by Ty -< T (resp. Tx «4 ),
if there is an operator X : H; — Hq with dense range (resp. trivial kernel} such
that XT; = T2X; Ty is 2 quasiaffine transform of T3, denoted by 71 < T2, if the
intertwining operator X is a quasiaffinity, that is, it has trivial kernel and dense
range. 11 is densely similar to T (T} gT‘z) i Ty i T, and Tb i Ty; T is injectively
similar to Ty (T1~Tp) if Ty <T» and Tz <Ti; T is quasisimilar to Ty(Ty ~ T) if
Ty < T and Tp < T3. T is similar to T, (T} = T3) if the intertwining X is invertible;
they are unitarily equivalent (T) =t T3) if X is unitary.

We end this section with some additional notation and terminology. If H; and
I3 are two Hilbert spaces, we denote by B(H1, H2) the space of all (bounded linear)
operators from H; to Ha; we write B(H) in place of B(H, H). If T is an operator on
H, we denote 7¢%°) for the direct sum of Ng copies of T (acting on the direct sam
) of Re copies of H). T ¢ BH), o(T), oo(T") and 0.p(T) denote its spectrum,
point spectrum and approximate point spectrum, respoctively, and m{T) its minimum
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modulus, that is, m(1") = inf{||Tz|| : ||zi] = 1}. If H is infinite-dimensicnal, let oo(T)
and [|T|'e denote the essential spectrum and the essential norm of T', that is, the
spectrum and the norm of the image of T in the Calkin algebra B(H)/K(H) under
the natural quotient map, where K(H) denotes the ideal of compact operators in
B(K). If H is finite dimensional, we let ||T||. = 0 for convenience. For any normal
operator N, En(-) denotes its spectral measure.

We write D for the open unit disc in the complex plane C. H? is the Hardy space
of analytic functions on D with square integrable boundary values and H> the Banach
algebra of all bounded analytic functions on D with supremum norm. We denote by
S the (simple) unilateral shift on H? defined by (Sf)(z) = zf(z2),z € B, f € H2. For
1< n g oo, S, will denote the direct sum of n copies of S (acting on the direct sum
HZ of n copies of H?). '

We would like to express our appreciation to Man-Duen Choi, John B. Con-
way and David R. Larson for helpful discussions either orally or in correspondence
concerning the similarity problem for quasinormal operators.

2. SIMILARITY

In this section, we completely solve the similarity problem for quasinormal oper-

ators. Qur main result is

THEOREM 2.1. For j = 1,2, let T; = N; & (S ® A;) be a quasinormal operator,
where N; is normal and A; > 0. Then T is similar to T3 if and only if Ny is unitarily
equivalent to N3,0(A;) = o(Az) and dim ker(A; — A) = dim ker(Az — A) for any
A € o(A).

We start the proof with the following lemma which gives the spectrum and ap-

proximate point spectrum of a pure quasinormal operator.

LEMMA 2.2. If T = S ® A is a pure quasinormal operator, where A > 0, then
o(T) = {z: || < ||All} and 05p(T) = {z : |z} € 0(4)}.

Proof. The assertion on ¢(7) was obtained in [18, Corollary 2] by a direct
method. Here we use instead the more general result on spectra of tensor products of
operators: o(T) = 0(S)o(A) and cap(T) D 0ap(S)oap(A) (cf. [2]); here o(S)o(4) =
= {uv : u € 0(S) and v € 0(A)} and similarly for oap(S)oap(A). Since o(S) = D and
0ap(S) = OD, we infer that o(T) = {2 : |z| < ||A]}} and 6ap(T) 2 {2 : |2] € 0(4)}. On
the other hand, let U be the bilateral shift: (U f)(e't) = 't f(e'*) for f € £L3(0D) and
W = U ® A. Then W is a normal extension of T'. Hence oop(T) C 0up(W) = o(W).
From (2], we have o(W) = o(U)o(A). Since o(U) = 8D, it follows that o(W) = {z :



388 KUNG-YEU CHEN and DOMINGO A. HERRERO and PEI YUAN WU

s |2} € 0(A)}. Thus o4p(T) C {2 : Iz € 6(A)} completing the proof. -

The idea of the proof of Theorem 2.1 is to reduce the similarity of pure quasi-
norimal operators to that of associated nests. Here are the basic definitions and some
of the results we need from the nest algebra theory; the main reference is [6). A
collection N of (closed) subspaces of a Hilbert space H is a nest if

(1) {0} and H belong tc A,

(2) N is a chain, that is, for any M, N in N, eithee M C N or N C M,
and

(3) NV is closed under intersection and span, that is, for any {Na} C N, I Na
and \/ N4 belong to N, :

The nest algebra T(N) associated with a nest A is the set of all operators T
such that TN C N for every N in A. For any positive definite operator A, there
is @ naturally associated nest A4, the one generated by the subspaces {E4[0,\1H :

> 0}. More precisely, N4 consisis of subspaces of the form E4[0, A]H for A € ¢(A)
or EA[0,\)H for A € op(A). As proved in {7] or [14], 7(N4) is the set of those
operators T for which sgpi]A"TA'"lJ < oc. Two nests N and M are similar if

there is an invertible operator X such that M = {XN : N € N}. The Similarity
Theorem of Larson and Davidson says that A" and M are similar if and only if there
is an order isomorphism 6 of A onto M which preserves dimension, that is, satisfies
dim 0(N2)©6(N1) = dim N, © N; for any subspaces Ny, N3 in N with Ny C Na. (cf.
{6, Corollary 13.21]).

Now we are ready for the proof of the main result in this section.

Proof of Theorem 2.1. As the arguments for the proof of {4, Proposition 2.6]
show, T} is similar to Ts if and only if N; is unitarily equivalent to N, and S® A, is
similar to S ® Ay. Thus we may concentrate on the pure parts.

Assume that A; and Aa act on the spaces H; and Ho, respectively. Note that
the similarity of S ® A; and § ® A, implies that ¢.5(S ® A1) = 0ap(S ® A2). Hence
0{A;) = 0(Az) by Lemma 2.2. Next let X = [X;;1¢%_, be an invertible operator such
that X(S® A1) = (S®A2)X. Carrying out the matrix multiplications and comparing
the entries in the strict upper triangular parts of the resulting matrices yield

Koo Ay = < 0 fj>é=0
T\ Ag Xy >z
Since A; has dense range, we infer, for the case ¢ = 0, that Xo; = 0 for all § > 1.

By induction on ¢, we obtain X;; = 0 for any j > ¢ 2> 0. This shows that X is lower
triangular. The same arguments applied to X! show that the same holds for X~1.
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It follows that X;; is invertible for any i. On the other hand, we also have X;;A; =

= AsXi_1,i_1 for i » 1 whence XA} = A}Xoo or Xi; = A§XooAy" for all i. There-

fore, sup A3 Xoo A7™| = sup [|Xanl < [1X . Similarly, sup [|47 X545 "[| < [1X ]I
n20 n20 n20

Let 4 0 0 xa!
A=(0 Az) and Yz(Xoo 0 )
It is easily seen that
0 AP X5t AZ" )
A3 XooAT" 0
with sup |1A”Y A~"|| < max{]|X]|], | X ||} < co. By the remarks preceding the proof,
n

APY A" = (

Y belo;ngs to the nest algebra (N4 ), where N4 is the nest generated by the subspaces
E4[0,)](H1 6@ H2), A > 0. Since N4 consists of subspaces of the form

EAl[O,A]H1®EAQ[0,/\]H2 for A GU(A1)

or
E4, [0, /\)Hl (4] EAB[O, z\)Hz for A € Up(Al) U Up(Az),

we deduce that
Xo00E4,[0,\]Hy = E4,[0,A\]H; for all X € (A1)

and
XooE 4, [O, A)Hl = EAQ[O, /\)Hz for all A € Up(Al) U Up(Az).

In particular, for any A € 0,(A;), the compression of Xoo to Ea,({A})H; is an
invertible operator from Ea,({\})H; onto Ea,({A})H2. Thus dim E4,({A\})H1 =
= dim Ea,({A})H; or, equivalently, dim ker(A; — A) = dim ker(A2 — A) for any A €
€ op(A1). By symmetry, the same holds for A € gp(A2). This proves the necessity
condition.

To prove the converse, let A be the nest generated by {E,;[0,A\]H; : A > 0}, j =
= 1,2. Define 8§ : N7 — N3 by

H(EA1 [O,A]Hl) = EAQ[O,A]HQ for A € O'(Al) = O’(Az)

and
H(EAl [0, A)Hl) = EAQ[O, A)Hz for A € Up(Al) = Up(Ag).

By our assumption, 8 is a dimension-preserving order isomorphism from A onto N>.
The Similarity Theorem says that there exists an invertible operator X from H; onto

H; which implements 6. Let

A_(A1 0) , Y_(o X-l)
“\o 4,/ “\x o /-
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From above, we have Y € 7(NV,) whence sup [[A"Y A~"|i < co. Since
nz0
A"Y A" = ( ° A?X_IA?) ,
AZXATT 0

this implies that sup|A3XAT"|| < oo and sup ||JATX1AT"|| < o0. Let Z, =
n20 w20

= AZXAT" for n 2 0 and

It is easily seen that Z is an invertible operator satisfying Z(S ® A;) = (S ® A3)Z.
This completes the proof. |

We remark that the necessity condition of the preceding theorem can also be
proved using the results in Section 3, viz., Lemmas 3.2 and 3.3 and Corollary 3.10.

It follows from Theorem 2.1 that similar quasinormal operators may not be uni-
tarily equivalent. However, as the next corollary shows, they are the same in special

cases.

CoRroLLARY 2.3. For j = 1,2, let T; = N; © (S ® Aj) be quasinormal, where
N; is normal and A; > 0. Assume further that both A;’s are diagonal. Then T is
similar to Ty if and only if they are unitarily equivalent.

3. QUASISIMILARITY OF PURE PARTS

In this section, we consider tae quasisimilarity of pure quasinormal operators.

Our main result is the following

THEOREM 3.1. Two pure quasinormal operators S® A and S® B with A,B > 0
are quasisimilar if and only if the following hold:

{(a) m{A) = m(B) and dim ker(A ~ m(A)) = dim ker(B - m(B)),

(b) liAlle = |iBlle and dim ker{A - ) = dim ker(B — ) for any X > |{All,
and , in case I'(A) is finite,

(¢} dim ker(A ~ ||Alle) = dim ker(B — || B}jc).

Here for any positive definite A, we let I'(A) = {A € o(4) : X > j{Alle}. The
proof of Theorem 3.1 splitted into a series of lemmas and propositions. We start
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with sorme conditions on operators T} and T3 for which X7} = T3X has no nontrivial

solution.

LEMMA 3.2. Let Ty and T be operators on spaces H; and Ha, respectively, and
X an operator from Hy to Ha such that XT) = T, X. If either m(T2) > ||TA|| or
m(Tf) > “Tz“, then X = 0.

Proof. Since XT1 = T X is equivalent to X*T; = Ty X*, we need only consider
m(Tz) > ||T1||. If W is the left inverse of T3 on Hz with ||W|| = m(T3)~?, then
WXT, = X and hence ||W|| || X]||||T1]] = l|X]|. Therefore || X]||||T1|] =2 m(T2)||X]|.
Consequently, X = 0. |

LEMMA 3.3. Suppose T' and A > 0 are operators on H and K, respectively, and
X is an operator from H to K(®) such that XT = (S ® A)X. If m(A) = ||T}| and
m(A) ¢ op(A), then X = 0.

Proof. Forn=1,2,..., let
1
(3.3.1) K, = Exo([m(A) + ;,oo))K, An = AlK,

and P, be the orthogonal projection from K(*) onto K$. A simple calculation
shows that

(3.3.2) PuXT = (S® An)PaX.

Since m(An) > m(A)+% > ||T|], from (3.3.2) and Lemma 3.2, we infer that P, X = 0.
It is obvious from (3.3.1) and the assumption m(A) ¢ op(A) that P, converges to
Ik (=) in the strong operator topology. Thus we have X = 0. [ |

Using a similar method, we have the following.

LeEMMA 3.4. Let T and A > 0 be operators on H and K, respectively. Suppose
X € B(K(®), H) and X(S® A) = TX. If ||All = m(T) and ||A|| & op(A), then
X =0.

Lemmas 3.2, 3.3 and 3.4 lead us to

COROLLARY 3.5. Suppose T and V' are operators and A > 0.
(a) Suppose T <(S ® A)®V. IfA> ||[T||, then T<V.
(b) Suppose (S® A) ® VIT. A< m(T), then V ST

We first consider necessary conditions for injectively similar pure quasinormal

operators.
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LEMMA 3.6. IfS® A<S® B where A, B > 0, then m(A) > m(B) and
dim ker(A4 — m(B)) < dim ker(B — m(B)).

Proof. Suppose A acts on Hilbert space H. We first show that m(A) > m(B).
Assume m(B) > m(A). Choose § such that m(B) > § > m(A). Let

Hs = E5o([m(A),6))H and As; = A|H;.

Then S® As < S® A< S® B. From Corollary 3.5, we infer that ||As|| > m(B) which
is a contradiction.

Next, to prove that dim ker(A — m(B)) < dim ker(B — m(B)), it suffices to
consider the case m(A) = m(B) = m > 0. Let

Hy = ker(A - m), K, = ker(B — m) and B, = B|K{.

From Corollary 3.5 and S@mlIy, L(S@mlgx YB(S® B,), it follows that S® Iy, <5®
®Ik,, and hence dim H; < dim: K; by [20, Lemma 2]. This completes the proof. B

COROLLARY 3.7. f S® AAS® B, where A, B > 0, then m(A) = m(B) and
dim ker(A — m(A)) = dim ker(3 — m(B)).

Now we consider densely similar pure quasinorinal operators. The following
lenma (whose proof is left to the reader) will be used in the proof of Lemma 3.9.

d
LeMMma 3.8. Suppose A, B > 0 act on H, K, respectively. I S@ A< S® B, then
dim H > dim K.

Recall that if A is a positive definite operator and A € I'(A), then A is an isolated
eigenvalue with finite multiplicity. Thus if I'{A) #@, then we can list its elements,
counting multiplicities, in descending order {; (A)};Sl‘), 1< n(4) < Rq.

LEMMA 3.9. FS® AXS® B, where A, B > 0,then the following hold:
() l14lle > 1Bl
(b) If {A;(B)}7x, are the eigenvalues of B ir (|| Al|c, 00) in descending order, then
(b1) m < n(A) and A;(A) > A;(B) for finite j < m,
and, in case n(A) < oo,
(b2) dim ker(A — [|Alje) > dim ker(B — ||A|lc) ~ n(4) + m.

Proof. Let A and B act on Hilbert spaces H and K, respectively. For any ¢ > 0,
let Ho = Ea{[e,00))H, K. = Eg([e,))K, A. = A|H, and B, = B{K.. From
Corollary 3.5, we infer that S ® A. i S ® B.. Thus, by Lemma 3.8,

(3.9.1) dim K, € dim H..
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(a) Assume |[Blle > ||A]le. Choose A such that ||B|le > A > ||A]le. Letting € = A
in (3.9.1), we have dim K < dim H, which contradicts the fact that dim K = oo
and dim H)y < oo.

(b1) It is obvious from (3.9.1) that m < n(A). Suppose X;(B) > A;(A) for some
J. Let € = Aj(B). Then dim H, < j — 1 and dim K, > j, contradicting (3.9.1).

(b2) Let € = ||A|le. Observe that dim ker(A — [|A|le) = dim H. — n(A) and
dim ker{B — ||A|le) = dim K, — m. Our assertion follows from (3.9.1).

COROLLARY 3.10. If S ® ALS ® B, where A, B > 0, then the following hold:

(2) [|Alle = || Blle,

(b) dim ker(A — A) = dim ker(B — ) for all X > || 4]},

(c) 0e(S ® A) = 0¢(S ® B), and in case I'(A) is finite,

(d) dim ker(A — ||A{le) = dim ker(B — || Bjle)-

Proof. (a), (b) and (d) follow easily from Lemma 3.9, and (c) is a consequence
of (a), (b) and the fact that 6.(S® A) = {A € C : |A| < ||A|le or |A| € o(A)} (cf. [18,
Corollary 2]). n

CoROLLARY 3.11. Suppose A > 0 is compact.
() IfS®A i S ® B, then B is also compact.
(b) fS® ASS® B, then A= B.

Note that (a), (b) and (c) in Corollary 3.10 and (b) in Corollary 3.11 have been
obtained before by Williams [18] for arbitrary Hilbert spaces. Although we only
consider separable spaces, our proof also works for nonseparable ones.

For quasisimilarity of pure quasinormal operators, we start with

ProrosiTION 3.12. If {c; };‘___1, 1 € n < oo, is a sequence of complex numbers
with |cj| > 1, then
n

(a) ) ®¢S<S
j=1

and
(b) S& (Z eacjs) <S.
i=1

CoROLLARY 3.13. If0 < 8 < 1 then S, < B3S.

The above corollary has been obtained by Sz.-Nagy and Foias [16]. The idea
of the proof of Proposition 3.12 comes from theirs. We start with some preparatory
work. )

Recall that a function ¢ in H* is an outer function if M, has dense range, where
M, is the operator on H? defined by M,(f) = ¢f. Let X be a countable infinite
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subset of the unit circle D such that the point 1 does not belong to X but is the
only accumulation point of X. For any e > 0, define

LRt .
9(2) = aexp { / g;,{; log h(t);ii} . where h(t) = %dist(e“,X).

Then g is an outer function, continuous on B\ {1}, [[g]le < @, and g(z) vanishes
exactly for z € X (cf. [9, Section II. 4]). For n > G, let e, denote the function
en(z) = z" on D.

Proof of Proposition 3.12. We first consider the case n = co. To begin with, we
choose a countable infinite subset Y of the unit circle 8D such that the point 1 does
not belong to Y but is the only accumulation point of Y. We label the points of Y
by two subscripts:

Y = {amn : 0 < m, n < o0},

and define, for 0 € j < oo,
Y;={ajn:0<n< 0} and X; =Y \Y;.

Note that Yy C X; if j # &.

o0
Next choose a sequence of positive numbers a;, 0 < j < oo, such that }:af-(l -
i=0
—le;|72)~! < 1. By the remarks preceding the proof, we have a sequence of functions

g;, 0 < j < oo, which are continuous on B \ {1}, analytic on D and satisfy the
following conditions:
(3.12.1) [lgjlleo < 0.
(3.12.2) g;(2) = 0 if and only if z € Xj.
(3.12.3) For every A € Xj, g;(2) = (z ~ A)p(z) for some ¢ in H®,
(8.12.4) g; is an outer function.
Observe that for any function » in H? we have

z dt

u (f) = /_Z eitu(e'®) (ei‘ - —)_1 5 for [z] < 1, [¢| > 1.

Cc Cc

FOI<([wers) ([b-275) -

= lull (1 - Egﬂz)'% < llellz (1 = fef=2) 7%

Hence
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(=]
We infer that if u = Z @®uj € HZ,, then the series

ji=1
o0
PIIOTO!
i=1
converges uniformly on D \ {1} and also in £2-norm, where ug-cj)(z) = uj (;)
)

Indeed, letting d; = (1 — |c;|~2)~ %, we have

|9 (2)u$ ()] € edillujlle,  g5u$? 2 < edjlusll2

and .
3

D asdilluillz < | Y (ajd;)? Sl ] < llull-
Jj=1 j=1 j=1 .

Thus the operator T from H2 to H? defined by
o0
Tu= Z 9j u§°’)
i=1

is such that ||T'|| < 1. Moreover,

o0 o0 [
T Z@c,-S u=T ®(cieru;) | = Eelgjuﬁc") = STu,
j=1 j=1 j=1

o0
that is, T | Y @¢;S | = ST.

j=1

[o ]
We assert that T is an injection, that is, Zgjug.c") =0 for u € H2 implies
=1

o0

v = 0. To prove this, let f(z) = Zgj(z)ug-cj)(z) for z € D\ {1}. Then f is a
j=1

continuous function and our hypothesis says f = 0. In particular, f = 0 on Y, and

hence, by (3.12.2), u; )= 0 for all z € Y;. Thus the analytic function u; vanishes
i\ e J j

3 .
on an infinite set which has an accumulation point inside the unit circle. Therefore

it vanishes identically: u; = 0. Since j is arbitrary, we have u = 0 as asserted.

Note that the range of T' contains the function epg; (0 < 7 < 0) : engn =
=T(cte, @0 ...). Since g; is an outer function by (3.12.4), these functions span
H?. Thus T is a quasiaffinity completing the proof of (a).
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To prove (b), let T and go be as above, and define, for v € H? and u € HZ,,
X(v®u) = Mgv— T
Clearly, X is an operator in B(H#2? ® H2,, H?) with dense range. A simple calculation
shows that X(S & i@CjS) = 5X.

j=1
We assert that X is injective, that is,
o0
dov — zgjugcj) =0 forv € H? and v € HZ, implies v =0 and u = 0.
j=1
Suppose v # 0. Then u{.c") # 0 forsome k > 1. Let A in Y} be such that uic")(}\) # 0.
oo
Our hypothesis says that go(z)v(z) = Zgj(z)ugc")(z) = f(z) for z in D. Since,
j=1
by (3.12.3), go(z) = (z — A)p(2) for some ¢ in H>, we deduce that p(z)v(z) =
= f(z)(z — A)~! for all z in B. Thus f(z)(z — A)~! is a function in H2, which
contradicts the fact that

lim £(2) = £(3) = ge(N)ua (%) £0.

Hence v = 0, and the above proof of (a) shows that v = 0. This completes the proof
for n = co.

For finite n, it is obvious that if we restrict 7" and X to the subspaces H? of H2,
and H? @ H? of H? @ H2,, respectively, then the resulting operators T, and X,, will

n n
be quasiaffinities satisfying T, (Z De;j .S') = ST, and X,, (S &) ZGBCJS) =5X.,.

i= i=1

LEMMA 3.14. Suppose N is a normal operator on an infinite-dimensional space
H and T is an operator on K.

(a) If T has dense range and m(N) 2 ||T|, then S@ N < (SQN)&(S@T).

(b) If T and N are both invertible and m(T) > ||N{, then (S@ N)@ (S&T) <
<S®N.

Proof. (a) Note that m(N) > ||[T}| > 0 implies that N is invertible. Since N
is normal and dim H = oo, there exist, by [10, Problem 142], infinite-dimensional

o0
reducing subspaces H;, j = 1,2..., for N such that H = Z@Hj. Let U; be a
j=1

oo
coisometry from H; onto K. Foreachn > 1 and f = Z ®f; € H, define

i=t

cxa\ 20 1 §=1
(3.14.1) Xo Z@fj =Ye <.§> I
i=1 J=1
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oo 0 1 j-1
(3.14.2) ni|denl=Y (5) Ujf; and Yp4 =TY, N1
j=1

i=1

Clearly, X = X((,°°) is a positive definite operator on H(*) and X(S®N) = (S®N)X.
On the other hand, observe that

00 1 j-1 o0 1 j=1
>(3) wsi<x(3) sis

i=1 i=1
< (f; (;)“) % (gnmx?) g (&) 1,

whence Y; is bounded. Also,

Yassll S ITHIYANIN 7 = HTN IYallm(N) =" < [[¥all-

(o]
ThusY = Z ®Y,, is an operator from H(®) to K(*) satisfying Y(S®N) = (SQT)Y .
n=1

Define the operator Z from H(®) to H(®) @ K(®) by Zf = Xf@Yffor f €
€ H(®) A simple calculation shows that (S® N)Z = Z((S® N) ® (S® T)). Since
X is injective, so is Z. We assert that Z has dense range, that is,

(3.14.3)

o0 [ <]
Z(f @9 =X"f+Y"g=0for f=) @f € H® andg=)_ ®gn € K

n=1 n=1
implies f = 0 and g = 0.
From (3.14.1) and (3.14.2), (3.14.3) is equivalent to

(3.14.4) X3 fa + Y, g = 0 implies f, = 0 and g, = 0 for any n.

To prove (3.14.4), observe that N is invertible and T* is injective. Thus it is
sufficient to show that

o0
(3.145) Xgh+Y{k=0for h= Z@hj € Hand k € K impliesh=0and k= 0.

=t

oo j-1
Since Y}k = E ® (%) U; k, our hypothesis in (3.14.5) leads to

1 Jj-1 1 i-1
0= (5) hj+(§) Uk for all j.

j=1
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3\’ 7*
This implies (5) ||kl = !{h;] . Hence h; = 0 for ali j and k = 0. This completes
the proof of (a).
Since the proof of (b) is similar to that of (a), we only sketch it and leave the
o0

details to the reader. Let X be as in the proof of (a). Define W = E@Wn from
n=1

E() to H{®) by
[e] 1 n-1
Wif = Z@ (-2-) Urf and Wypy = NW,T7! forn> 1.
n=1

Let V(f@® g) = Xf+ Wgfor fin H) and g in K{°°), It is easy to check that V is
a quasiaffinity and V((S@ N)® (S&T)) = (S@ N)V. B
ProposiTiON 3.15. If A, B > Q satisfy any of the following conditions
(2) il4ile > liBii,
(b) llAlle = || Bll and ||B}} & op(B),
(9) I14lle = |Bi} and dim ker(A ~ jAlje) = oo,
then S A< (S® A)® (S® B).
Proof. Suppose A and B act on the spaces H and K, respectively. We shall find
a reducing subspace M for A such that

(3.15.1) SQ(AIM) < (S® (AM))® (Se B).

(a) In this case, let M = E4{[|| B]|,0))H. Then dim M = oo and m(A|M) >
2 ||BJ|. (3.15.1) follows from Lemma 3.14.

(b) Let [m{B),||B|]) = fj [bn, bnt1) where {b,} is a sequence of strictly in-
creasing positive numbers sat;s?;irng K, = Ep([bs, bns1))K # {0}. Let B, = B|K,,.
Choose mutually orthogonal infinite-dimensional reducing subspaces H,, n = 1,2,...,
for A such that m(A|H,) > ||B|X,||. Again, from Lemma 3.14, we have

S® (AlHn) < (S® (A|H,)) @ (S® (B|Ry,)) foreach n> 1.

o0
Let M = ®H,. Clearly, (3.15.1) holds.
n=1
(c) It is easy to see that M = ker(A — ||A]le) satisfies (3.15.1). |
The next proposition generalizes Proposition 3.12. |

ProrosiTION 3.16. If A, B > 0 satisfy either
(a) m(A) > m(B) or
(b) m(B) = m{4) and m(A4) ¢ 5(4),
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then (S® A)& (S® B) < S® B.
To prove the above proposition, we need the following lemma.

LEMMA 3.17. If A > 0 acts ou the space H and m(A) > 0, then ||A||(S ® In) <
<504 < m(A)SQ®INy).

oo n-1
Proof. Let X =) @&(m(A)A™')"! and ¥ = Z@ (” A“) on H(®) It

=1 =1
is easy to see that X’l and Y are quasiaffinities. Anmmple calculation shows that
X(SQ®A)=(S®@m(A)Ig)X and Y(S® ||A|lIr) = (S® A)Y. |

Proof of Proposition 3.16. Assume that A and B act on spaces A and K,
respectively. We shall find a reducing subspace M for B such that

(3.16.1) (S®A)a (S®(B|M)) < SQ(B|M).

(a) Assume m(A) > m(B). If ker(B -- &) # {0} for some a in [m(B), m(4)], let
M = ker(B ~ a). Then, from Lemma 3.17 and Proposition 3.12, we have

(S® A)@ (S (BIM)) < (S®@m(4)) & (S® (B|M)) < S (B|M).

Otherwise, choose 8 > 0 such that M = Eg([#,m(A)])K has infinite dimension.
Since ||B|M|| < m(A), Lemma 3.14 leads to (3.16.1).
(b) Assume m(B) = m(A) ¢ crp(A) Choose {a,} such that ||A]| = a; > a2 >
> .- > an > --- and (m(A),||A4]]] = U (@n+1, @n)]. Let Hy = Ea((angy,an])H and
An = A|lH,. If ker(B — m(B)) # {0} let M = ker(B — m(B)). Then, from Lemma
3.17 and Proposition 3.12, we have

(S® A) & (S ® (B|M)) = (f: &(S® A,,)) & (S ® (B|M)) <

n=1

= (i B(S® m(A,,)IH,,)) ® (S ® (B|M)) < S® (B[M).

n=1
Otherwise, there exist mutually orthogonal reducing subspaces K, for B such that
if B, = B|K, then m(B,) < m(A,). Thus (a) implies that (S® An) ® (S ® Bn) <
=]
< S® By, and hence M = E @K, also satisfies (3.16.1). [ |
n=1
Proof of Theorem 3.1. The necessity follows from Corollaries 3.7 and 3.10.
To prove the sufficiency, assume that A and B act on spaces H and K, respec-
tively. Let

Hy = ker(A — m(A)), Hi = Ea((m(A), ||All)H, Hz = Ea((ilAlle, |AIDA,
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Ko =ker(B ~m(B)), Ky = Ep((m(B), |Bll:)X, K2 = Es((|IBlle, I BIDK,

and

A; = AlH;, B; = BiK;, j=0,1,2.

Observe, from Propesition 3.16, that

(3.1.1) (S®A)D(S® A1) <S®A =SBy if Ho# {0},
and
(3.1.2) (5®A)e(S®B1)<S®B; if Hy={0}.

Assume I'(A) is infinite. From Lemma 3.14, we have

(3.1.3) S@A2=250B: <(S® B;) @ (S® By).

Then (3.1.1) and (3.1.3) lead to
SRA=(SQAND(S@ANB(SQA2) <

<(S®Bo)®(S®B1)®(S®B:)=S®B if Ho # {0},
and (3.1.2) and (3.1.3) lead to

SRAZ(SRA)G(SRA)<(SQRA)D(S®B)B(S® Bz) <

<(S®B)@®(S®B;)2S®B if Hy = {0}.

On the other hand, if I'(A) is finite, then we can easily reduce our analysis to
the case when H, = K3 = {0} and either dim ker(A - l|A]lc) = dim ker(B — || Bile) =
= 0 or dim ker(A — ]|A)l¢) = dim ker(B — ||Bjl¢} = oc. From Proposition 3.15, we
have

(3.1.4) S® 41 < (S®A)®(S® By).
Then (3.1.1) and (3.1.4) lead to
SQAZ(S®A)O(S®A)<(S®A)B(SQ®A)B(S®By) <

<(S®B)®(S®B)=S®B if Hy# {0},
and (3.1.2) and (3.1.4) lead to

SQAZS@A; <(S®A)S(S®B)<SeB, =2S®B if Hy= {0}.
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Thus we conclude that S® A < S ® B. By symmetry, the proof is complete. ]
Using similar methods, we can prove the following result.

THEOREM 3.18. Suppose T} = S®Aand To=SQ®B, where A, B> 0. Then
(a) Ty < T} if and only if m(A) > m(B) and dim ker(A — m(B)) < dim ker(B —
-m(B)).
(b) Ty ~ T3 if and only if m(A) = m(B) and dim ker(4 — m(A)) = dim ker(B —
—m(B)).
(c) Ty X Ty if and only if the following hold:
(c1) llAlle > l|Blle-
(c2) If {A; (B)}]v, are the eigenvalues of B in (|| Alle, oo) arranged in descending
order, then m < n(A) and )\;(B) < A;(A) for any finite j <
(cB) If n(A) < 00, then dim ker(B — ||4]|e) — n(A) + m £ dlm ker(A — ||A]le)-
(d) T ATy if and only if the following hold:
(1) 14l = 1Bl
(d2) dim ker(A — A) = dim ker(B — X) for A > ||A]le.
(d3) If I'(A) is finite, then dim ker(A — ||A||e) = dim ker(B — || B||¢)-
(e) T\ < T» if and only if T} -<T2 and Ty -<T2

In particular, the preceding theorem generalizes the corresponding result for uni-
lateral shifts (cf. [20, Lemma 2] and [5, Proposition 1.4]).
To end this section, we give the following corollaries.

COROLLARY 3.19. For every pure quasinormal operator T, there exists a diagonal
positive definite operator D such that T is quasisimilar to S @ D.

COROLLARY 3.20. Suppose T) = S® A and T2 = S® B, where A,B > 0. Then
the following hold:

(a) Either T} -< T or Ty < T1

(b) e T2} # {Th} & {T2}".

(¢) XTy = T>X has no nontrivial solution if and only if

(i) m(B) > ||All,
(i) m(B) = ||Al} & op(A), or
(iii) m(B) = || Al| € op(B).

Proof. That (a) follows from Theorem 3.18 (a) and that (b) from (a) are imme-
diate. As for (c), one direction is proved in Lemmas 3.2, 3.3 and 3.4. To prove the
other, assume that m(B) < ||4|| or m(B) = ||A|| € 6p(A) Nop(B). In either case, we
shall find nontrivial reducing subspaces L and M for A and B, respectively, such that

(3.20.1) S® (A|L) %S ® (BIM).
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Suppose that A and B ac: on H and K, respectively. If m(B) < JjAll, let
L = Ea((c,||A|l})H and M = K, where m(B) < ¢ < {|A||. Then m(A|L) > m(B) and
{3.20.1) follows from Proposition 3.16. For the case m(B) = ||A]] € o,(A4) N opx{B),
let I and M be any one-dimensional subspace of ker(A — ||A]||) and kex(B — m(B)),
respectively. Clearly, (3.20.1) also holds. |

4. QUASISIMILARITY IN GENERAL

We start with a well-known result on normal operators (cf. {8, Lemma 4.1]).

LEMMA 4.1. The following are equivalent for two normal operators Ny and Ny:
(a) Ny L Ny
(b) Ny £ N
(¢) Ny ~ Na;
(d) }\71 ~ Nz;
{e) Ny = Ns.
The next lemma slightly generalizes [18, Theorem 2] with a simple proof. Note

that a more gencral resnlt is true with § @ A replaced by any pure hyponormal
operator (cf. [17]).

LEMMA 4.2. Suppese T is cohyponormal on H{TT* 2 T*T) and A is an injection
on K. X € B(H, K} and XT = (§ ® A)X, then X = 0.
Proof. Let P, be the projection from K(®) onto {0}@...® {0} ® Kh ®{0}e...
nt

and X, = P, X. A simple caiculation shows that
XiT=0 and X,T=AX, forn2 1.

Using induction, we have X, 4:7™ = A" X;. Thus X,417™+! = 0. Since T is cohy-
ponormal, ran T and ranT?*! have the same closure. It follows that 0 = X, 1T =
= AX, for » > 1. The injectivity of A implies that X,, = 0 for all n. Therefore,
X = 0. N

An immediate consequence of Lemmas 4.1 and 4.2 is

COROLLARY 4.3. Suppose Ny and N» are normal and A,B > 0. If T} = N1 ©®
O(S®@A) and Ty = N2 ® (S® B) are quasisimilar, then Ny = N, and S®ALS®B.

It follows from the preceding corollary and Corollary 3.10 that quasisimilar quasi-
normal operators have equal essential spectra, the main result in [18]. It also suggests
thet to study the problem when twe quasinormal operators Ty and T3 are quasisimilar,
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|

it suffices to consider that

(*) Ii=N&®(S®A) and T, = N & (S® B),

where N is normal, A,B >0, and S® ARS ® B.

Before stating the principal results, a few terminology and notations are needed.

Any contraction can be decomposed as U; U, @ T, where U; and U, are singular
and absolutely continuous unitary operators and T is completely nonunitary (c.n.u.),
that is, T has no nontrivial unitary direct summand. For a c.n.u. contraction T and
J € H®, the functional calculus f(T') is well-defined. We say that c.n.u. contraction
T is of class Cp if there is a nonzero f in H* such that f(T) = 0. For these and
other properties of contractions, readers are referred to {15].

Let N be a normal operator acting on the space H and E(-) be its spectral
measure. Then N can be decomposed as a direct sum

(**) ) N=N0$Na®Ns®N1

on H=Hy® H,® H, ® Hy, where Ny = N|E(D)H, N; = N|E(C\D)H, N,® N, =
= N|E(OD)H, and N, and N, are absolutely continuous and singular unitary oper-
ators. Note that Ny is a c.n.u. contraction and some of these summands may not
appear.

Our main result is the following.

THEOREM 4.4. Let Ty = N® (S® A) and T = N & (S ® B) be as in (x). Let
a = min(m(A), m(B)) and d = max(dim ker(A — a),dim ker(B — «)). Then T; and
T, are quasisimilar if and only if one of the following conditions holds:

(a) S® A~ S ® B;

(b) d = 0 and o(N) has a limit point in aD;

(c) d > 0 and the absolutely continuous unitary part of (1/a)N does not vanish;

(d) d > 0 and the c.n.u. part of (1/a)N is not of class Cy.

Note that Theorem 4.4 implies that a quasinormal operator quasisimilar to an
isometry is actually unitarily equivalent to it (cf. [21, Proposition 4.2]).

We split the proof of Theorem 4.4 into lemmas and propositions. The next two
propositions take care of c.n.u. normal N. Recall that an operator T is algebraic if
p(T) = 0 for some nonzero polynomial Pp.

PROPOSITION 4.5. If N is normal, nonalgebraic and |N|| < 1, then S, ® N < N

foranyn, 1 { n < oo.

Proof. By the spectral theorem for normal operators, it is sufficient to assume
that N = N, where u is a regular Borel measure on the complex plane C with
compact support X and N,(g)(z) = zg(z) for g € L2(y).
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Since N is nonalgebraic, K = o(IV) hes a limit point, say, 29 in D. Cheose
positive numbers ¢n, m = 0,1, ..., decreasing to 0 such that the sets Do = {z: 2z =
= zg OF [z — 29] > ¢p} and D, = {2z : ¢ < |2 — 2] € cm-1} all have positive

(e o]

measure. Let f = Z(u(Dm))"fxD exp (.{;;) Then f is a positive bounded

m=0 i

measurable function. Observe that if p € H? and z € K then
wy = [ ol <o o
=T

and hence
lp(2)] < flolia(1 - (215,

We infer that / lpidp < ap(EK)ljgll3, where e = max{(i — |2|?)~!: 2 € K}. Thus
(4.5.1) X(p@g)=9+fg

is an operator from H? @ L2(u) to £2(p). Obvicusly, X(S® N) =
We assert that X is an injection, that is,

(4.5.2) o+ fg=0for pc H? and g € £3(y) implies ¢ = 0 and g = 0.

If ¢ # 0, write ¢(2) = (2 — z)"Q(z), where n > 0 and @ is an analytic function on
B with Q(z0) # 0. Choose § > 0 such that |Q{z)| > § on some neighborhood of z.
Our hypothesis in (4.5.2) implies that

lgll? = /! }du /}f

exp () 2
62 2n D 62 2n ( ) ,
(D) = S exp (=
which is a contradiction for sufficiently large m. Thus ¢ = 0 and hence ¢ = 0.

From (4.5.1) we see that the range of X contains fg for any g € £*(u). Since f is
positive and bounded, these functions are dense in £3(u). Thus X is a quasiaffinity.

This proves our assertion for n = 1. Using induction, we have S, ® N < N for any

finite . If n = oo, choose @ such that 1 > g > ||N||, then S & (N) < N and

/ 82z — 20| £(2)]2dn(z) >

B g
Seo < BS (Corollary 3.13) lead us to S ® N < 3SE& N < N. |

PROPOSITION 4.8. If N is a normal operator such that o(N)ND = {a;} satisfies
Z(R —lag}) = oo, then S, @ N < N forany n, 1 £ n < oo.

In order to prove the above proposition, we need the following two lemmas.
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LEMMA 4.7. If A C D is a compact neighborhood of a € D and k > 0, then there
exists a universal constant 6(a, A, k) > 0 such that

|B(a)| > é(a, 4, k)
for any Blaschke product B with zeros {2, } satisfying

Y -lzm) <k and {z}NA=0.

Praof. Choose € > 0 such that A includes a closed disc centered at a of radius €.
Let 7 be the greatest integer les: - 2k/(1 — |a]). Our assumption Z(l ~lzal) < k
n

implies that (1 + |a|)/2 > |z,] * 108t 7 indices n. Because

lin —al  lzn]=le’ sl l-lz'd)
> . — ) 2 =
T—%na] > 1= faalle, ~  TAT=l) 2P (7o)

for |za| 2 (1 + |a|)/2, a straightforward computation shows that

8@ =] I"" > (5) e [-I—_i‘ﬁ Z(l-lz,.n] >
> §) o (-r2m).

Thus 6(a, 4, k) = (¢/2) exp [-4k/(1 — |a})] satisfies
|B(a)| > é(a, 4, k)
completing the proof. . [
LEMMA 4.8. Let {ar} be a sequence of distinct points in D such that Z(l -

)
~lax|) = oo and {ai} only clusters on 8D. Then there exists a bounded sequence
{bx} of positive numbers such that

limsup |B(ag)|/kbe > 1
k—ro0

for any Blaschke product B.

Proof. Let A be the closed disc centered at a; of radius -l-dlst(ak, DU{an}ngr).
It is immediate that

(4.8.1) AnNAr=0 ifh £k,
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and

{4.8.2) Y -lm)=oc if{m}CDend{z}"A:#0 forall k> k.

Define
by = 6{ax, Ar, k)/E,
where 8(a, 4, k) is the function given by Lemma 4.7.

Let B be a Blaschke product with zeros {counted with multiplicity) {z,}. (4.8.1)
and {4.8.2) imply that {z,} N A; = @ for infinitely many £. On the other hand, if
{zn}NAr=Qand k > Z(l — {znl), then (by Lemma 4.7)

7

|B(ax)l/be > k.

We conclude that
limsup |B{ex){/kbs 2 1. [ ]
k—s00

Proof of Proposition 4.6. Clearly, we can restrict our attention to the case when

N is the diagonal normal operator with distinct eigenvalues {a;}. We can always

o

decompose {ai} as a disjoint union |J {aj;} in such a way that Z(l — |lag,j|) = o0
=t k

for all j > 1, and write N = Z@Nj, where N; has eigenvalues {a; ;} ( = 1,2,...).

Observe that S @ N; < Nj Jfor all j imply that Seo ® N < N (the case when
1 < n < oo can be similarly analyzed). This reduces the proof to the case n = 1.
The operator N can be identified with the multiplication by the variable on the
space £%(p), where p is the discrete positive Borel measure defined by u({ar}) =
= (1~ |ax?)/k% (k > 1) and p(C\ {a;}) = 0. Let

flar) = b exp[—(1 - jax])~?],

where {b;} is the sequence given by Lemma 4.8. Trivially, f € L®{p).
As in the case of Proposition 4.5, we define

X(p®g)=9+fg

from H? @ L2(p) to L?(p). Observe that

fﬂso!zdu =D lp(a)Pui{ar}) < Hlelif D_(1 = lael) (1 - fas[*)/k* <
k

< liglls )1/,

g.
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so that X is bounded. Clearly, ran X contains {fg : ¢ € £3(p)}, which is dense in
L3(p), snd X(S® N)=NX.

It only remains to show that X is injective. Assume that ¢ + fg = 0 for some
nonzero ¢ € H? and some g € L%(u), and let ¢ = BV be the canonical factorization
of ¢, where B is a Blaschke product and ¥ is in H2 which never vanishes on D. Then
¥-! is in the Nevanlinna class, and therefore

1#(2)7!| = O(exp{c/[1 - |2[1})
for some ¢ > 0 and z € D (cf. [9, Section I1.5]). Thus,
Jim | @ (ar)|(1 — Jag|?)3 / exp[~(1 — lax]) ™) = co.

Since g € £?(u), the sequence {g(a; )(1—|ax|?)%/k} is square-summable, and therefore
bounded. But the above observation and Lemma 4.8 indicate that

lim sup |g(ai)|(1 = Jax ) /k =
= lim sup{(ax)l/f(ax)} - (1 - lag|?)5 /k =

= 1ig§£p{lB(ak)l/kbk} {1 ®(ar)l(1 — |ar*)3/ exp[—(1 - Jai}) 2]} = oo,

a contradiction. Thus, ¢ = 0 and hence ¢ = 0, whence we conclude that X is a

quasiaflinity. . |

LEMMA 4.9. Suppose N is a normal operator on H with m(N) = 1. J{fN =M
or Ny @ N in the decomposition (xx), then the equation XS = NX has no nontrivial
solution in B(H?, H).

Proof. Let E(-) be the spectral measure of N. For each n = 1,2, .o let Py =
=F ({z (12| €1+ %}) From Lemma 3.2 and the fact that m(N|P}H) > 1+

+;; > 1, we have
X=P,X and P, XS=NP,X.

Since F, converges to P = E(dD) in the strong operator topology, it follows that
X =PX and PXS=NPX.

(a) If N = Ny, then P = 0 whence X = PX =0.
(b) If N = N, @ Ny, then PXS = N, PX. It follows that X = PX = 0 (Cf. {8,
Theorems 2 and 3}). L
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The next proposition will be used to settle the cases (c) and (d) in Theorem 4.4.

PROPOSITION 4.10. Let N = No@ N,® N;® Ny be as in (). Then the following
conditions on N are equivalent:

(a) Ny does not vanisk or Ny is not of class Cp;

(b) S, @ N < N foralln, 1 < n < oo;

(¢) S ® N < N for somen, 1 < n < co.

Proof. That (a) implies (b) follows from [12, Corollary 3] and Propositions 4.5
and 4.6. Indeed, in the latter case, if o(Np) has a limit point in D, then, choosing
a, 0 < a < 1, such that oD contains this limit point and letting N, = No!E(aD}H,
we have, by Proposition 4.5, S, @ N, < N, whence S, ® N < N. On the other
hand, if ¢(Np) has no limit point in © and N is not of class Cy, then S, @ N < N
follows from Proposition 4.6. That (b) implies (c) is trivial. To prove (c) implies (a),
note that if V, vanishes, then Lemima 4.9 implies that S, -i< Np. Thus N is a ¢.n.u.
contraction not of class Cp. »

ProprosITION 4.11. Suppose {¢, : » = 1,2,...} is 2 sequence of complex nurnbers
such that |a,,| > o = inf{ja,|: n = 1,2,...} for all m, and N is a normal operator.
Then the following statements are cquivalent:

00 .
(a’) Z @(ZMS I< N;

n=l

(b) e(N) has a limit peint in oD;
(c) N@ Z@anS) <N.
n=1

Proof. Suppose N acts on H and has spectral measure E(-).

(a) implies (b). Assume that o(N) has no limit point in oB. Choose § and m
such that 8 > Jan,| > & > 0 and o(NV) has no limit point in 8D. Let Ny = NHE(,BD)H
Note that N is algebraic and [[Ng|| < 8. From Lemma 3.2, we have that amS-< Ng
which contradicts the fact that S is nonalgebraic.

(b) implies (c). We shall find a reducing subspace M for N such that

(4.11.1) (NiM)® (ieans) < N|M.

n=1
Let zo be a limit point of o(N) in aD. Let {F, : n = 1,2,...} be a sequence of
mutually disjoint Borel subsets of o(N) such that T, = N|E(F,)H is nonalgebraic
and
sup{|z — 20| : 2 € F} < |@n]| — |20].
We have
Tall < 1T = 20l] + l20] < (lanl = 1201 + |20] = |an].
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00
From Proposition 4.5, we have that a,S®T, < T, for every n.Let M = E( J F,,) H.

n=1
Clearly, M satisfies (4.11.1).
(c) implies (a). Trivial. |

Now we are ready to take care of the case (b) in Theorem 4.4. T

PROPOSITION 4.12. Let T} = N& (S® A) and T = N @ (S @ B) be as in ().
Suppose m(A) > m(B) and m(B) & o,(B). Then T ~ T> if and only if o(N) has a
limit point in m(B)D.

Proof. From Theorem 3.18 and our assumption in (%), we have
(4.12.1) S®A<S®B.

Moreover, by Corollary 3.19 there exists a diagonal positive definite operator T such
that

(4.12.2) ; S@B~(S@A)a(SeT)

and
(4.12.3) m(B) = m(T) < T < m(A)

Assume Ty ~ T3. Then N®(S® A)®(S®T) < N®(S®A). Thus S®T< N &
&(S® A). From (4.12.3) and Corollary 3.5, we have S® T'< N. Therefore, o(N) has
a limit point in m(B)D by Proposition 4.11.

Conversely, assume that o(N) has a limit point in m(B)D. Proposition 4.11
implies that |

(4.12.9) N (S®T)< N.
It is obvious from (4.12.2) and (4.12.4) that
Th~No(SRA)BSST)<NO(S® A) =T.

This, together with (4.12.1), implies T} ~ T5. ]

.LIEMMA 4.13. Suppose T is a c.n.u. contraction and 0 < n < m < oco. If
Sm <T@ Sn, then T is not of class C.

Proof. The case n =0 (i.e., Sm < T) is trivial. Assume from now on that n > 0.
Suppose T acts on the space H and X is an injection such that XS, = (T ® Sp)X.
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Let P be the projection from H @ H? onto H ® {0}, X1 = PX and X, = (1~ P)X.
An easy calculation shows that

(4.13.1) X18m =TX,
and
(4.13.2) X228, = SpXo.

From (4.13.2) and the assumption that n < m, we infer that X, cannot be injective
(cf. [20, Lemma 2]). Hence therc exists ¥ in /2 such that

(4.13.3) Xa(F) =0 and ¥ #0.

Suppose f € H* such that f(T) = 0. From (4.13.1) and (4.13.3), we have X {(f ¥} =:
=0 and Xp(f¥) = 0. Thus X(f¥) = 0. Since ¥ # 0 and X is injective, we conclude
that f = 0. Thus T cannot be of class Cp. |

Proof of Theorem 4.4. That {2) and (%) imply T3 ~ T4 follows from Theorem
3.18 (e). If (a) is false and d = 0, then (b) is equivalent to Ty ~ T» follows from
Proposition 4.12. For the rest of the proof, we assume that (a) is false and d > 0. In
this case, o > 0. For convenience, we may assume that & = 1. Let n = dim ker(A~1)
and m = dim ker(B - 1). Since S® A and S @ B are not injectively similar, Theorem
3.18 (b) implies that n # m. Assume that n < m = d. Then from Theorem 3.18 and
(*), we have

(4.4.1) SA<S®B.
Note that there exists an operator T > 1 such that
(4.4.2) S®A~S, ®(S®T) and SRB~ S5, ®(SQT).

Let N = No @ N, ® Ny @ N; be as in (#). If (¢) or (d) holds, then Proposition 4.10
implies that

(4.4.3) N @ Sm-n < N.

It is obvious from (4.4.2) and (4.4.3) that To ~ N&®S,,, &(S®T) < NS, ®(SQT) ~
~ Tj. This, together with (4.4.1), yields T ~ T5.

Conyersely, assume that T} ~ T%. If N, does not appear, then Lemma 4.9 implies
that Sy, -l< No © S, and hence Ny is not of class Cp by Lemma 4.13. This shows that
Ty ~ T4 implies {¢) or (d) (under our assumption that (a) is false and d > 0). a
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