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ON THE EXPONENTIAL RANK AND EXPONENTIAL
LENGTH OF C*-ALGEBRAS

SHUANG ZHANG

INTRODUCTION

Let H be a separable Hilbert space, and let K, L(H) be the algebras of all compact
operators and all bounded operators on H, respectively. If X is a compact Hausdorff
space, then the C*-algebra C(X, L(H)) consisting of all norm-continuous maps from
X to L(H) is *-isomorphic to L(H) ® C(X). Concerning the structure of the unitary
group of C(X, L(H)), J. R. Ringrose recently proved the following estimates on the
C*-exponential rank and the C*-exponential length in [22]:

cer(C(X, £(H))) <3 and cel(C(X, L(H)) < o,

where “cer(C(X, L(H))) < 3” means that every unitary v = u(-) in C(X, L(H)) can

be written as a product of at most three exponentials; i.e.,
u = exp(ih;) exp(ihs) exp(ih3s)

for three norm-continuous maps h; = h;(-) (1 << 3) from X to bounded self-adjoint

operators, while “cel(C(X, L(H)) < 57” means that 5% is the supremum of

1nf{§fl€1£|,hz(t)|l tu = exp(ihy).. .exp(ihn)}

as u runs over the unitary group of C(X, L(H)).
For an arbitrary unital C*-algebra A (consider the unitalization A of A instead
in case A is non-unital) the C*-exponential rank of A, denoted by cer(A), is defined
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[21] to be the smallest integer n (or n + €) such that every unitary element in the
identity path component can be written as (or, respectively, can be approximated
in norm within any positive number by) a product of at most n exponentials. The
C*-exponential length of A, denoted by cel(A), is defined to be the supremum

sup {inf {Z l|hil| : w = exp(ih1) .. .exp(ihl)}} ,
i=1

where h;(1 <7< n) are self-adjoint elements in A and sup is taken as u runs over the

identity path component of the unitary group of A. The reader is reffered to the

survey article [21], also to [22], [19], [20] for more information.

Our first main result in this article is Theorem 1.1, which improves and generalizes
Ringrose’s results mentioned above. For any o-unital C*-algebra A and any unital
C*-algebra B we consider £ (H4) ® B, where £ (H,4) is the C*-algebra of bounded
operators on the Hilbert C*-module # 4 whose adjoints exist. We will prove that

cer(C(Ha)®B) <3, cel (L(HA)®B) £ %1 if A is unital; and

cer(L(Ha)® B) <3+¢, cel(L(Ha)® B) <3x if Ais non-unital.
Theorem 1.1 covers almost all pairs (A, B) of C*-algebras. In particular, if B = C(X),
we conclude

cer(C (X, L (Ha))) <3, cel(C(X,L(Ha))) < 5; if A is unital; and

cer(C (X, L(Ha))) <3+¢, cel(C(X,L(Ha))) <37 if A is non-unital.

N. C. Phillips recently proved [19] that if A is a purely infinite, simple C*-algebra,
then
cer(A)<1+¢; and cel(A) = 7 in case A has a unit.

Dealing with the C*-algebra of norm-continuous maps from X to A, we assert, The-
orem 1.2, that

cel(C (X, A)) < 5%, cer(C (X, A)) <3 if A is unital; and

cel(C (X, A)) <2m, cer (C(X,A)) <2+¢ if A is non-unital.

Theorem 1.2 includes many interesting special cases; for example, all type III factors,
the Cuntz algebras 0,(2 < n < ), simple Cuntz-Krieger algebras 04, and many
generalized Calkin algebras. The reader is reffered to §1 for detailed statements and

corollaries.
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0. PRELIMINARIES

Let A be any C*-algebra. An .4-valued inner product is defined on the set of

norm-bounded sequences in A4 by

({ai}, {&:}) Ea*b

H 4 denotes the set of all sequences such that ({a;}, {a;}) exists as an element of A.

Naturally, (.,.) induces a norm

lI{ai}il = l1{{ai}, {ai}) 31l = (Z a?ai) V{ai} € Ha.

In this way, H4 forms a Hilbert (right) .A-module. If A is the algebra of complex
numbers, then H 4 reduces to a separable Hilbert space . However, for certain
operators on H 4 the adjoint operator 7™ on H 4 defined naturally by

(T*{a:}, {b:}) = ({a:}, T{t:}) for all {a;}, {b:} € Ha

may not exist. Let £(H4) denote the set of all bounded operators on H 4 whose
adjoint operators exist, equipped with the naturally defined operator norm, then
L(Ha) is a C*-algebra which is *-isomorphic to the multiplier algebra M(A ® K)
({11]). Here we point out that each element in £ (H 4) can be identified with a bounded
infinite matrix whose entries are elements in A (if A has a unit). For each pair of

elements x and y in H 4, a bounded operator of rank one is defined by
Oz y(2) =2y, 2) for any z € H 4.

Let K (H4) stand for the closed linear span of all operators with rank one. Then
K (H4) is a C*-algebra which is *-isomorphic to 4 ® K. It is quite natural from
the construction to call K (H ) the algebra of compact operators on H4. Then

correspondingly

L(Ha) /K(Ha) (=MASK)/ABK)

is called the generalized Calkin algebra associated with 4. This general setup plays
important roles in advanced mathematics; for example, the extension theory, K-theory
and KK-theory of C*-algebras. The reader is reffered to [1, 11] for more details.
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It is clear that a x-isomorphic copy of £(H) is embedded in £ (H 4) via
L(H) = 1@ LMH) — L(Ha),

where ‘1’ is the identity of A (or M(A)). Similarly, L(X) is embedded in £ (H4)® B
by
LMH)—10LMH)®1— L(H4)®B,

where the second ‘1’ is the identity of B. There are two important topologies on
L(H4). One is the norm topology and the other is the strict topology, defined in
analogy with *-strong operator topology on L (H4), by
trictl '
sr g iff max{||(zx — 2)a||, |la(zr ~ 2) ||} = 0 Va € K (Ha).
If B = C(X), then
LHAQRC(X)=C(X,L(HA)),

where C (X, £ (H.4)) is the C*-algebra of all norm-continuous maps from X to £ (H4).
In this particular situation, there is only one C*-norm on £ (H4) ® C(X). Actu-
ally, our results in this article hold for any C*-norm on £(H4) ® B in case there
are more than one. We will often use the notation u = u(-) to denote an element
in C(X,L(H4)). In particular, a unitary in C (X, L(H,)) is regarded as a norm-
continuous map from X to the unitary group of £ (H.), while every element in £ (H )
is regarded as a constant map on X.

1. MAIN RESULTS

In this section, we state our main result and corollaries. The proofs will be given
by a sequence of lemmas in the next section. Throughout, we will denote the unitary
group of a unital C*-algebra B by U(B) and the identity path component of U(B) by
Uo(B). X denotes a compact Hausdorff space.

1.1. THEOREM. Let B be any unital C*-algebra.

a) If A is a o-unital C*-algebra, then every unitary element in £L(H4) ® B can
be approximated (in any C*-norm) by products of at most six symmetries (two of
which are in 1® L(H) ® 1), cel(L(Ha) ® B) <37, and cer(L(HA)® B) <3 +¢.

b) If A is a unital C*-algebra, then every unitary in £ (K 4) ® B can be approx-
imated (in any C*-norm) by products of at most six symmetries (three of which are
in1® L£(H)® 1), cel(L (Ha) ® B) < 52—" and cer(£ (H.4) ® B) <3.

N. C. Phillips recently proved [19] that if A is a purely infinite simple C*-algebra,
then cer(A)< 1+e¢. If, in addition, A has a unit, then cel(4) < 7. Considering the
C*-algebra of all norm-continuous maps from X to A instead, we have the following:
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1.2. THEOREM. Suppose that A is a purely infinite, simple C*-algebras.

a) If A is unital, then every unitary in Uy (C (X, A)) can be approximated by
products of six symmetries (three of which are elements of Up(A)), cel(C (X, A)) s%,
and cer(C (X, A)) <3.

b) If A is non-unital, then every unitary in Up (C (X, A)) can be approximated by
products of four symmetries (two of which are elements of Ug(A)), cel(C (X, A)) <2,

and cer(C (X, A)) <2+e.

We recall that a simple C*-algebra A is said to be purely infinite if there exists an
infinite projection in z.4z for each nonzero element z in A ([4, 25]). There are a dozen
equivalent conditions in [16] characterizing purely infinite, simple C*-algebras. The
author proved [27] that a o-unital, purely infinite, simple C*-algebra is either unital
or stable. The author also proved [27, 30] that a simple C*-algebra is purely infinite
if and only if RR(A) = 0 and every nonzero projection in A is infinite. Particular
examples include the Cuntz algebras 0, (2 < n ), certain Cuntz-Krieger algebras,
the Calkin algebra £(H)/K, all generalized Calkin algebras associated with o-unital,
purely infinite, simple C*-algebras ([26, 27], [24], or [16] together with [13], or [14]).

Several corrolaries are in order. If we take B = C(X) in Theorem 1.1, then the

following corollary generalizes a recent result of [22] for the special case H4 = H.

CoROLLARY 1.3. If A is a o-unital C*-algebra and X is a compact Hausdorff

space, then
cel(C (X, L(HA))) <37 and cer(C(X,L(HAa))) <3 +e.
If A is a unital C*-algebra, then

cel(C (X, £ (H))) <52—7r and cer(C (X, £ (Ha))) <3.

If A is the algebra of complex numbers and hence H 4 = H, then a recent result
of J. R. Ringrose [22] is included; i.e.,

cel(C (X, £ (H))) <52—" and cer(C (X, £ (H))) <3.

If we take B in Theorem 1.1 to be the complex numbers, we have the following

quite general result.

COROLLARY 1.4. If A is a o-unital C*-algebra, then

cel(L(Ha)) <37 and cer(L(Ha)) <3 +e.
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If A is unital, then

cel(£ (Ha)) <3 and cer(£ (Ha)) <3.

CoROLLARY 1.5. If A is o-unital and B is unital, then the unitary group of
L (H4) ® B is contractible (in any C*-norm).

Proof. Since C(X,L(Ha)® B) = L(Ha)® B® C(X), it follows from Theorem
A that every unitary element in C (X, L (Ha)® B) can be written as a product of
three exponentials exp(ih1) exp(ih2) exp(ih3) for three self-adjoint elements by, b and
hg. Then the standard path

{exp(ithy) exp(iths) exp(iths) : 0<t <1}
connects the unitary with the identity.

REMARKS 1.6. (i) It was proved in {17, 7] that if A is o-unital, then the unitary
group of C (X, L (Ha)) is connected for any comact Hausdorff space X. It follows
that the unitary group of £ (H.4) is a contractible topological space. This result also
follows from Corollary 1.5, for which our proof in the next section is rather elementary,
not involving K-theory.

(i1) In [19] N. C. Phillips proved that cer(C(S*,.A)) > 2 if A is a purely infinite,
simple C*-algebra with trivial K; (in particular if A = O;). By a similar argument
he pointed out to us via an e-mail that cer(C(S*, L(H))) >2. At this stage, we do
not know whether the upper bounds we give in Theorem 1.1 and Theorem 1.2 can be
improved to cer(-) = 2 or cer(-) <2+ € in general except for some special classes of
C*-algebras [32].

(iii) If A is a o-unital, simple C*-algebra such that A ® K contains a nonzero
projection (most known simple C*-algebras satisfy this condition), then 4 @ K =
= A, ® K for a unital, hereditary C*-subalgebra A; of A ® K. Hence

LMHA)Q@B=L(HA,)®B.

Therefore, Theorem 1.1(b) covers all the cases. Particular examples include simple
AF algebras, C*-algebras of real rank zero (unital or not), all von Neumann algebras.

For some special cases of Theorem 1.1, we can reach better estimates for the
cer(,) and cel(:) than the ones in Theorem 1.1 with more techniques involved [32].

Now we turn to some corollaries of Theorem 1.2.

COROLLARY 1.7. If M is a type III factor (von Neumann algebra), then

cel(C(X,.M))S%7£ and cer(C(X, M))<3.
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COROLLARY 1.8. If 0,,(2 < n < 00) are the Cuntz algebras, then

cel(C (X, 0n)) < 5—2’5 and cer(C (X, 0,)) <3.

CoROLLARY 1.9. If A is a o-unital, purely infinite, simple C*-algebra, then

cel(C (X, £ (Ha) /K (Ha))) < o and cex(C (X, £ (Ha) /K (Ha))) <3.

2. THE PROOFS

In this section, we will prove Theorem 1.1 and Theorem 1.2 by a sequence of
lemmas, which have a interest in their own.

First of all, we point out that if the identity of a unital C*-algebra B is a (finite or
infinite) direct sum Zpi of mutually orthogonal projections, called a decomposition
of the identity, then element = can be written as Zp;zpj. It is easy to show that

i,J
the map defined by
pTpy piZp2 pixps
P2Tp1  pP2Zp2  p2%P3

p(z) = "l vzenB
p3xpr p3Zpz p3xp3s ...

is a #-isomorphism, where we use the same rules of matrix operations as the ones in
the matrix C*-algebra over B. p(z) is said to be the matrix form of x with respect
to the decomposition 1 = Zpi. The following Lemma 2.1 is useful for investigating
the unitary group and the space of projections in an infinite C*-algebra.

LEMMA 2.1. Let D be a unital C*-algebra and p be a nontrivial projection in D.
If a unitary element in D has the matrix form

(s 2)

with respect to p @ (1 — p) = 1, then we have the following:

(1) a,b and c are partial isometries in D such that aa* = p, b*b = p, bb* + cc* =
=1-p,a*a+c*ce=1~p,ac* =0 and b*c=0.

(ii)(ba +c)(ba+c)* = (ba+c)*(ba+c) = 1 —p. In other words, ba+c is a (local)
unitary in (1 — p)D(1 — p).

(iii)

b* 0
sy = (0 ) and sp = ( . N ) are symmetries of D.
a* ¢

b cc* *e
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(iv)
o) G 0)=6 06 &)=( wie)

Proof. (i) follows from the equalities vu* = v*u = 1 and matrix multiplication.

Using the identities in (i), one can easily show that
(ba +c)(ba+c)* =(ba+c)*(ba+c)=1—p, s; =5 and sl =1 (:=1,2).

Hence, (ii) and (iii) are clear. (iv) follows from (i) and the matrix multiplication.

From now on, the notation ‘p ~ ¢’ is reserved for the Murray-von Neumann

equivalence between two projections in C*-algebra.

LEMMA 2.2. Let A be a C*-algebra. If p is a projection in £ (H4)® B equivalent
to the identity and u is a unitary in £L(H ) ® B with a matrix form

0
(g u) (with respect top+ (1 —p) = 1),

then there exists a unitary w and four symmetries in £L(H ) ® B such that
w*uw = 51525384,

where 52 and s3 are symmetries in 1® L(H) ® 1.

Proof. Let {ex}j=; be a sequence of infinite dimensional, mutually orthogonal
projections in £(H). Obviously, we can write the identity of £(H4) ® B as the

following sums
oo o0
Yleael=1® (Zek) ®1,
k=1 k=1

where 1 ® e; ® 1 is of course equivalent to the identity. Since p ~ 1, we can choose
projections pr (k>1) in £ (H4) ® B such that

o0
l1-p<p and 1—pr = p,
k=2

where pi ~ 1 for each k> 1. Of course u(1—p;) = (1 —p1)u=1—p;. Foreach k>1,
let vz be a partial isometry in £ (H ) ® B such that

vpvp = pr and vivp = 1Qep® 1.
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o0

Set w = Z vg. Then w is a unitary in £ (H4) ® B such that
k=1

o0
wruw = u1@21®6k®1;
k=2
where u; is a unitary of (1Qe; ® 1)L (H4) ® B(l ® e1 ® 1). With respect to the
oo

decomposition 1 = Z(l ® ex ® 1) we write
k=1

w*uw = $1598354,

where s1, 52, 53 and s4 are four symmetries whose matrices have the following forms:

/0 73] \ 01
uj 0 10
0 u 01
s1 = ut 0 y 82 = 1 0
\ )

S3 = 0 y S4 = 0 ui‘

k 10 . ug 0

It is a routine to show that s; € £L(HA) ® B, s; = s}, s = 1(i = 1,2, 3,4). Clearly,
s2 and sg are elements in 1® L(H)® 1.

LEMMA 2.3. If A is a c-unital C*-algebra and p is a proper projection in £ (H4)®
®B (i.e.,,p~1—p~ 1), then every unitary u in £L(H ) ® B with the matrix form

0
u= (b a) (with respect top+ (1 —p) = 1)
¢

can be written as a product of five symmetries in £L(Ha) ® B, say u = 5152635455.
Furthermore, s = ws'w* and s3 = ws”w* where w is a unitary in £L(H4) ® B and
s',s" are symmetriesin 1@ L(H) @ 1.

Proof. It follows immediately from Lemma 2.1 that

G )= )@ sse)
b ¢/ \b cc*/)\0 ba+c/’
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b* .
Set 57 = b . |- By Lemma 2.2 there exist a unitary w and four symmetries
ce

si(i=1,2,3,4,5) in £L(H4) ® B such that
p 0 ) (A *
= wshshshstw
(0 ba+c 293493 s
where s and s, are symmetries in 1 ® £ (H) ® 1. Set sy = wsjw*, s3 = wshw*,s4 =
= wshshshshsyw*, and ss = wsfw*. Then u = 5152535455, as desired.

The following Lemma 2.4 was first observed by M. Rgrdam ([23).

LEMMA 24. If D is a unital C*-algebra and sy, s» are two symmetries in D, then
cer(sis2) < 1+e¢.

LEMMA 2.5. Let B be any unital C*-algebra.

(i) If A is a o-unital C*-algebra and if p and q are two projections in £ (H4)® B,
then for any positive number ¢ there exist proper projections p’ and ¢’ in L(H4)® B
such that p' <p, ¢ <¢ and ||p'¢|| < €.

(ii) If A is a unital C*-algebra and if u is a unitary in £L (H A)®B, then there exist

two sequences of mutually orthogonal, rank one projections {en, n,} and {em;m;} in

o0 o0
K such that (Z e'n.',n.-) Eemj:m:‘ =0 and

i=1 j=1
0o
uil® Zemi,mi 1|l <e.
ji=1

e (Senn) o1

Here {e;;} is the set of matrix units in L(H) with respect to an orthonormal basis of
H.

Proof. The proof for (i) uses the proof of [7, Lemma 4] with minor modifications.
We leave it to the reader to go through the details. We give more details for (ii), since
we will use the explicit construction later.
oo} o0
Let e = Zezi_l,gg_l and f = 2625’25. Then e @ f is the identity of L(H).

=1 i=1
Since 1 @ e, converges to zero in the strict topology of £ (H.,4), for any fixed i we

have
nlirrgo (1 Q@ enn ® 1)u(l @ e2i2®1)|| =0; and

Jim [[(1®e3i-1,20-1 @ Du(1@enn @ 1)[| = 0.

Thus, we can find a subsequence {e,; n;} of {€2i-1,2i~1} and a subsequence {em,.)m J.}
of {e2;,2;} such that
€

”(1 ® €n;n; ® 1) u (1 ® e”‘irmj ® 1) ” < 25'+j :
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It follows that

2]

o0 .
1 ® (Z en.-,n;) ® 1] 1‘4 1 ® Evem,-,m,» ®1 =
i=1 . o

| J=1

= Z(l ®eén;n; @) u (1 Qem;m, ®1)[| <e.

(5

2.6. THE PROOF FOR THEOREM 1.1.

The proof for (a). Assume that A is a o-unital (not necessarily unital). Let p be
any proper projection and u any unitary in £ (H4)® B. Set ¢ = upu*. Using Lemma,
2.5 (i), for any positive number é one gets two proper projections p’ and ¢’ such that

P'<l-p, ¢<q and [|p'q]| < V6.
Set u*q’u = pg. Then
Po<p, upou* =¢ and ||p'upou’|| < V6.

It is obvious that p’ ~ ¢’ ~ po and p’po = 0. Let v’ be a partial isometry in £ (H4)®B
with initial projection p’ and final projections pg. Set

so=v +v" +1-p —po.
Then sp is a symmetry in £ (H4) ® B such that sopgsp = p'. It follows that
|lposoupou™sopol| < 6.
If 6 is small enough, we can find, by [9, 2.1], a unitary ug such that
fluo — 1|| < € and p1:= ugsoupou™souo < 1 — po.

Here we point out that there is a symmetry sf, in £ (H4)®B such that sjsoupou*sesh =

1 " .
=p1<l—poaslongasé< 3 (see [33, Proposition 3], for example), since
[p1 — soupou®sol| < 2||lue — 1|| < 26 < 1.

This observation is irrelevant to the proof here but is useful in [33].
Now let us continue the proof for (a). With respect to the decomposition pg &
(1 = po) = 1 we write the following matrix forms

" u (Z‘ (l) d Do 0
= an = .
Ho%0 b oc =10 o
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GGG D-6n)

we immediately conclude that zz* = 0, and hence £ = 0. It follows that

0 a
U = SoUgp b e .

Appllying Lemma 2.3, we can write

Using the relation

U = 8§0UQS15283848s,

where s; (0 < k <5) are symmetries in £ (H4) @ B. Furthermore, sys3 = ws’s"w* for

some unitary w in £ (H 4)® B and two symmetries s’ and s” in 1Q L (H)® 1. Rewrite

(*) u = (iso)(uo)(is1)(5253)(is4)(iss5)-

Then
1sp = exp(iho), uo = exp(ihy), is1 = exp(ihy),
5383 = exp(ihz), isq = exp(ih3), and iss = exp(ihy),

where hy, ho, by, ha, hs and hy are self-adjoint elements in £ (K 4)® B. Since ||uo —1||
can be arbitrarily small, we can choose hy such that |[hf|| be as small as desired. We
can choose hy in 1® £ (H) ® 1 such that ||hs|| < 7 (see [22]) and choose hg, h1, hs and
hs with ||hg|] < 7/2 for k = 0,1, 3,4. (This is clear, since the spectrum o (exp (ihx)) =
= {—i,1}.) Thus we have

cel(w) < {IIBoll + llholl + |lRall + [lh2li + {lBall + {lAall] < lAol} + 3.

It follows from the definition [22] that cel(u) < 3w. Since u is an arbitrary unitary in
L (Ha) ® B, we conclude that

cel(£ (Ha) ® B) <3m.

Since u can be approximated in norm by products of six symmetries as in (%), it
follows from Lemma 2.4 that

cer(L(Ha)®@B) <3 +e.
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The proof for (b). Assume that A is unital. Let § > 0 again be any number and
u any unitary in' L (H.4) ® B: Using Lemma 2.5 (ii), there are two disjoint sequences

0 oo :
{n;} and {m;} such that (Z eni,ni) Zemi,mi =0 and

i=1 i=1

oo [ )
l:l by (Z em,ni) ® 1} u|l® Zemj,mj ®1 < \/g

i=1 ji=1
0

o0
Let p=1@Q® (2 Cn.-,n.-) ®landpr=1Q ( em,»,m,-) ® 1. Then
i=1 i=1

llpupou*p|| < 6.

Since ppo = 0 and p ~ po, we can define, in a standard way as in the proof for (a), a

symmetry v in £L(#) such that
(o] o0
o (Senin) o= Semim
i=1 j=1

Set so =1 ® v ® 1. Then s¢ is a symmetry in 1 ® L(H) ® 1 such that sppeso = p. It
follows that
|lposoupou™sopol| < 6,

and hence there exists a unitary ug arbitrarily close to the identity norm (as long as
6 is small enough) such that ugsoupou”soue <1 —po ([9, 2.1]). Here again there is a
symmetry sf, such that sjsoupou*soue <1 — po (see [33, 3]). It follows that

. ( 0 a )
U Sou =
b ¢
with respect to the decomposition po+ (1 —pg) = 1. Now by Lemma 2.3 we can write
U = SpUPS18528354S5.

Here, first, we can assume that s; and s; are symmetries in 1 ® L(H) ® 1 (by a
permutation of s, sp, s3); and, secondly, we can take the unitary w in Lemma 2.3 to
be the identity, since pg € 1 ® L(H) ® 1. Rewrite

u = (isouoso) (S08152) (is3) (is4) (iss) =

= exp(iho) exp(ihy ) exp(ihz) exp(ihs) exp(ihs),
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where 595152 is a unitary in 1® L(H) ® 1 and ki (0 < k < 4) are self-adjoint elements
with
lsll <, el < 5 for b =2,3,4,

while ||ho|| can be arbitrarily small (see [22] for the existence of hi). Therefore, we
conclude that 5
mwmﬂ®m<§.

It follows from [22, 1.8, 1.9] that

cer(L (Ha) @ B) <3.

Before giving the proof for Theorem 1.2, we point out that u in £ (H4) ® B can
be written as a product of at most seven symmetries sos55182535485 if one replaces
the unitary up above in the proof for Theorem 1.1 by a symmetry sj. Since this
observation will be useful in [33], we single it out as Corollary 2.9 later.

To prove Theorem 1.2, we borrow an idea of N. C. Philips in [19] to prove the

following lemma.

LemMa 2.7. Suppose that B is a unital C*-algebra and p is a projection in B such
that n[p) <[1 — p] for any integer n>1 (in other words, 1 — p contains n mutually
orthogonal subprojections equivalent to p for any integer n>1). If u = u(-) Is a
unitary in C(X, B) such that u(1 — p) = (1 — p)u = 1 — p and pup € Uo(C(X, pBp)),
then for any number ¢ > 0 there are four symmetries sy, s2, s3, and s4 in C(X, B)
such that ||u — s1s28354|| < €, where we can choose s1 and sy from Uy(B).

Proof. Let {w;:0<t< 1} be a continuous path of unitaries in Up(C(X, pBp))
such that wy = p and wo = pup. Let 0 = t9 < t; <t3 < ...<t, =1 be a subdivision
of [0, 1] such that

maXxX U; — Ui— <é¢
1<.:<n”‘ i-1]l <e,

where w;,: = u; for 0 i< n. Set p; = p. Choose subprojections pa,ps, ..., p2n4+1 of
1 — p and partial isometries vz, va, ..., U241 in B such that

pip; =0 (1Ki<j<2n+1), viv] =p; and vjv; = p (1Ki<2n +1),

where vy = p;. Set

n 2n
1= Z (vai-1iv3; + v V3;_q) + (1 - ZP&) )

i=1 i=1

n 2n
T2 = Z (1125—1”;5 + ”2:'”5;‘-1) + (1 - Zp;) s
i=1 i=1
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n 2n+1
23 =p1+ Y (vaiuf vy + vaig1wivy) + (l - p;) )
§=1

i=1 :

i=1 i=1

n 2n+41
Tg=p1+ Z (vziv§i+1 + vzi+1v§;) + (1 - Z Pi) .

It is easily checked that z; = z7, z? = 1(: = 1,2,3,4). Moreover, z2 and zg are
actually in Ug(B). Furthermore, one can check by computation that

n
Z vai—y (U; — uj—1) v3;_4

i=1

= max |lu;—uici|<e.

u— T12223T4)| =
i 12223%4|| 22X

To verify this estimate, the reader may consider the matrix forms of u and z; (1< i< 4)

2n+1

with respect to the decomposition p; + pz + ...+ pen—1 + (1 - Z Pi) =1, or by
i=0

direct computation. Set s; = z3, s2 = 23, §3 = T3ZT2T122L3, S4 = T4, as desired.

2.8. THE PROOF FOR THEOREM 1.2.

The proof for (a). Assume that A is unital. Let u = u(-): X — U(A) be any
unitary element in Up(C(X,.A)) and let € be a given positive number. Let p be any
nontrivial projection (i.e., p # 0,1) in A. It follows from the proof for [31, Lemma
2.4] that for any number § > 0 there exist projections 0 £ ps<pand 0 # g <1—p
such that

llgoupou®qoll < 6, (ie., sup llgou(t)pou(t)* gol| < 6).

Since A is purely infinite and simple and pggg = 0, there is a partial isometry v € A
such that vpov* < go. Let 53 = v+ v* +1 — po — vpov*. Then s; is a symmetry of
Uo(A) such that s;pgs1 = vpev* < go. It follows that

[lpos1upou*s1pol| < 6.

By [9, 2.1], if 6 is small enough, there is a unitary ug = uo(-) € Up(C(X, A)) such
that

|lwo — 1|| < & and ugsiupou®siug <1 — po.

Here we notice that the role of ug can be replaced by a symmetry sj. It is easy to
check as in (2.6) that with respect to the decomposition pg + (1 — pg) = 1 we can

write ugsiu into a matrix with the form

(o)
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where

a=a(-): X = poU(A)(1 - po),
b="5(-): X — (1 = po)U(A)po,
¢=c(-): X = (1 - po)U(A)1 -- po)

are norm-continuous mappings. Set

_ {0 ¥ )
52 = b et/
Then it follows from Lemma 2.1 that

u—sus(“ 0)
— o1nen2 0 ba+ec/’

Since A is purely infinite and simple, it is clear that n[1] < [po] for any n > 1 ([5, 1.5)).
Po

0 ba+ec
a product s3zsssssg of four symmetries from Up(.A). Then u is approximated by a

Hence, Lemma 2.7 applies. We can approximate ( within ¢ in norm by

product of six symmetries within ¢, since ||ug ~ 1|| < €. Thus, there exists a unitary
w1 in C(X, A) such that ||u; — 1|| < € and

U = U1515253545556 = (uy)(i515354) (15453525354 )(155)(is6)-
If ¢ is small enough, for an arbitrary small positive number §y we can write
U = exp(iho) with “ho“ < by,

is15354 = exp(ihy) with [[hy] < =,
18483825384 = exp(ihz) with ”hg” < g,
. . . s
iss = exp(ihsa) with ||hs)| < =,

iss = exp(iha) with |Jha]| < g

where h; (0 <7< 4) are self-adjoint elements of C(X, A), and & is an arbitrarily small
number. In fact, since is1s3s4 is a unitary of Up(A), we use the recent result of [19];
viz., every unitary in Up(.A) can be approximated by unitaries of finite spectrum. It
is then clear that such an h, exists. It is obvious that h; (¢ = 2,3,4) can be chosen
with ]|h;)| < . Therefore, we conclude that

cel(C(X, A)) < 57"
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It follows from [22, 1.8, 1.9] that

cer(C(X,A)) 3.

The proof for (b). Assume that 4 is not unital. It was proved {27, 30] that
RR(A) = 0 and hence A has an approximate identity consisting of projections. If
u = u(-) is any unitary in U(C(X, A)) where A is the C*-algebra obtained by adjoining
an identity to A4, then by the proof for [31, 2.6] there exists a projection py € A such
that u is close within any given number ¢ > 0 in norm to another unitary ug in
C(X, A) such that uo(1 — po) = (1 — po)uo = A(1 — po) for some complex number A
with jA| = 1.

Assume that u is any unitary in Up(C(X A)). Using the same argument as in
the proof for [31, 2.9], we can properly choose pg so that poupe € Us(C(X, poApo)).
Of course n[pg) <[1 — po] for all n>1. It then follows from Lemma 2.7 that Au
can be approximated with ¢ in norm by a product of four symmetries in C(X, fi),
say S1828384, where s; and s; can be chosen from Uo(./i). Then it again follows
from [19] that Asysy = exp(ihy) with hy = h] and ||h1||< 7. It is clear that iss =
= exp(ihs), isq4 = exp(ihs) with hy = h%, hg = h% and ||hs||, ||ka]| < -72£ Therefore,

cel(C(X, A)) <2m and cer(C(X,A))<2+e.

Now we have finished the proof for Theorem 1.2.

We conclude the article with the following by-products, which is significant and
will be useful in [33].

COROLLARY 2.9.

(i) Let A and B be as in Theorem 1.1. Then every unitary in £L(H 4)® B can be
approximated in norm by products of six symmetries and can be precisely written as
a product of at most seven symmetries.

(ii) Let X and A be as in Theorem 1.2. Them every unitary in the identity path
component of U(C(X,.A)) can be approximated by products of six symmetries.

(it1) £ (Ha) ® B 1is generated algebraically by projections; and C(X,.A) is gener-
ated by projections.

Proof. The conclusion of (i) follows from the proof of Theorem 1.1, if the unitary
uo is replaced by a symmetry s wherever ug appears. The conclusion (ii) is involved
in the proof for Theorem 1.2. The conclusion (iii) follows from the fact that every
element in a unital C*-algebra is a linear combination of unitaries in the identity path

component [10, 4.1.7].

Partially supported by NSF.
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