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INTERMEDIATE HANKEL OPERATORS
ON THE BERGMAN SPACE

SVANTE JANSON and RICHARD ROCHBERG

1. INTRODUCTION AND BACKGROUND

Let D be the unit disk of the complex plane, L? = L?(D,dzdy) the Lebesgue
space, and A? = L2 N Hol the associated Bergam space. Let P be the orthogonal
projection of L? onto A? and let @ be the orthogonal projection onto AZ = {g € L2 :
g € A%, g(0) = 0}.

For a conjugate holomorphic function f defined on D, define the small Hankel
operator, H}™%!, to be the linear map from A? to AZ which takes g to H }"“‘”(g) =
= Q(fg). Define the large Hankel operator, Hfb’.g , to be the map from A? into A%+
which takes g to H;i" (9) = (I — P)(g9). There are various ways to think of the names.
Note that the “small”Hankel operator involves projection onto the space A2 which
is a rather small subspace of the space A% used in the definition the “large” Hankel
operator. Alternatively we can introduce the partial order < between operators from
A? into L? by

R < Siff (R*Rf, f) < (S*Sf fyVf € A%

We then have Hj™a! < H}"'g .

One of our main interests in this paper will be with some operators which are
intermediate between these two; that is, R for which H }"‘“" < R < H, whence the
title.

For 0 < p < oo denote the Schatten - von Neumann ideal by S, and the Besov
space of holomorphic function in the disk by Bp. The starting point for this paper is
the contrast between the following two theorems.

THEOREM 1.1. Let f be holomorphic. For 0 < p < oo the small Hankel operator
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H;-mau is in Sy if and only if f is in the Besov space By.

The corresponding result for the large Hankel operator is

THEOREM 1.2. Let f be holomorphic. For 1 < p < oo the large Hankel operator
.;."g is in Sp if and only if f is in the Besov space B,. Forp < 1, H;’g is in Sp if and
only if f is constant.

This change in behavior at p = 1 is sometimes referred ti as a “cut off”. A cut off
for certain commutators acting on L?(R™) was demonstred in [6]. Since then similar
phenomena have been noted for variety of Hankel operators and commutators (the
two calsses are closely related) in ([5], [4], [13], {1], [3])- It had been our hope that
by considering operators intermediate between the small and large Hankel operators
intermediate between the small and large Hankel operators, that is, intermediate
between an operator with cut off at 0 and one with cut off at 1, we would gain some
insight into this intriguing phenomenon and perhaps even find an instance in which
the cut off was strictly between 0 and 1. Although we did not find such an example,
the operators we considered did show various interesting types of behavior and that
is what we present here.

In the next section we set up notation. In Section 3 we consider an intermediate
operator for which the cut off is at 0, that is, for which an analog of Theorem 1.1
holds. The results in Section 4 are a variation of those in Section 3. The operators
considered in Section 5 and 6 are not actually intermediate in the sense described
above; however, they are of the same general sort. The class of operators considered
in Section b never contains compact operators (in effect, it is cut off at infinity). The
class of operators considered in Section 6 contains operators in Sy for all p but the
criteria for membership in S, is different from those in Theorems 1.1 and 1.2, For
those operators we will also show that the boundedness criteria are different from
those generally encountered when studying Hankel operators - neither membership
in BMO nor membership in the Bloch space is the correct necessary and sufficient
condition, the correct result is somewhere between.

(Since this work was done, several instances of Toeplitz and Hankel operators
have been found which have a cut off between 0 and 1. Some of these operators
are intermediate between the large Hankel operator and the operator we consider in

Section 3 ([9], {7, [12], [8]). )

2. NOTATION

Let L? = L?(D, pa) = L? (D, a_:-_l (1-12%)* dzdy) where —1 < & < o0 and
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« is fixed throughout. (a = 0 is typical for our considerations.) We will be working
with operators defined on various (closed) subspaces of L. A prime example is the
Bergam space A2 = L2 N Hol. Another is A2 = {g € A? : g(0) = 0}.
' For any closed subspaces Z of L? let Pz be the orthogonal projection onto Z.
For any function f defined on D we denote by M; the operator of multiplication by
f. Given two closed subspaces, X and Y, of L2, and given a function f we define the
operator Hy = H}“’ mapping X to Y by ny(g) = Py(fg). (We will also, when
convenient, abuse notation and use the same expression for the operator Py M;Px
which maps L? to itself.) (Actually, of course, we must restrict f to be, say, in L?
- and start with- H¥Y densely defined. However such issues cause no trouble in our
contexts and we will say no more about them.)

Examples of such operators include Toeplitz operators, (X = Y = A?), the
small Hankel operator, H }’"“” , (X =A? Y = A7 (or Y= Zg)) and the large Han-
kel operator, H;ig , (X = A2, Y = A%, (or Y = A%‘L)). The one dimensional dif-
ference in the choice of Y doesn’t matter for us. What is crucial is that A3 C
c A% (and A? ¢ A%J') and hence Hy™* < HIY. If X = A? and Y satisfies A2 C
C Y C A?! then the associated Hankel operator is “intermediate” in the sense we
described; that is, H3™e! < HXY < H}Y.

We will work with the space

T={feL®: f(re') € HY(T) for a.e. r} =

(ho S

=span{:"7" : n = m}.

fa(r)

2
r(l - r¥)%dr < co} =

Note that
-1 . o ) 9
T+ = {Z fa(r)e™: )" / le}"’(r)| r(1 - r?)%dr < oo}
jpod 5 Jo
and that
— L & s, 2
T= Zf,,(r)e‘"' : Z/ f,,(r)' r(1—r?)%dr < oo} =
— 00 o VYO
= TJ- @ Lx?a.d
where

L,={felL?: f()=f(2I)}

(We note in passing that the subspace of T' consisting of functions in T which
are continuous on the closed disk is a Banach algebra whose maximal ideal space
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can be identified with the cone {({,r) : 0 < [{|] < r < 1}. Specifically, for f =
= 2"7™, f((',r) =nmeim)

All the spaces we will consider are invariant under rotation and hence have a
Fourier decomposition X = é Xn where X,, = {g € X : g(re'*) = f(r)ei"?}.

For 0 < p < oo we ta];emas known the definitions and basic properties of the

Schatten—von Neumann ideals, S,, and the Besov space of holomorphic function in
the disk, B, = ;/ P. We should note that we will write S, for the bounded operators.

3. AN INTERMEDIATE HANKEL OFPERATOR

In this section we consider the case X = A%, Y =T or TL. In this case we have
H}ma" < H}YY < Hj:ig.

THEOREM 3.1. For —1 < a < 00, 0 < p < o0, and holomorphic f, the interme-
- . T L )
diate Hankel operators H}—QB’T and H}_a’,r are in S, if and only if f is in B,.

25 L .
Proof. There are two cases, HT‘f‘ T and H-;;‘ T , but they are almost identical so

we only provide the details for the first case. Set HT = H}_An’rf. If HT is in S then
the small Hankel operator also belongs to S, and hence f € B, (see [11]). Similarly,
if f € By and 1 < p < oo then, by [1], the big Hankel operator is in S, and hence so
is H}'

We now consider f € B, 0 < p < 1. For such f we have the atomic decomposi-
tion

£(2) =) Xieg(2)

for sequences {(;} C D, (X;) € i* where

oet) = -0
(see [11]). Thus
EAE, < D 1Pl Hee 5,
and it suffices to show that ”HE”% is uniformly bounded in ¢. Furthermore it

certainly suffices to consider the case of ¢ real and positive. Thus we are reduced to
the following lemma.

LEMMA Let 0 < p < oo and g(2) =
< (1 —a?)7t.

1 .
1= a3’ 0 < a< 1 Then ”Hgllsp <
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Proof. We may assume p < oo. If n 22 0 then

g(z (Z ak-lc n) Za —k e - Zan+1—-n+1 e

k=0 k=n

Hence, since Z™+% 2" | 77+ »" whenever k # 7,

H,(z™), H,(z™)) = amtignti(zmtd ,m gntiny =
g g P
i=0
m 3 .
=Y amtnet [ fapmn g, o) =

i=0

o 1 ,
= Z amtntl j 1R (] — )% + 1)dt.
: o

Define . .
o k425 E+ie1 _ o3¢ = kpk — $)%dt.
by ?_Oja /0 (1 — £)*dt fn aktf —p (1 - 1)%dt

Thus, with respect to the orthonormal basis {2"/]|2"||}7%0, the operator H; H, has

the matrix representation
o0
HyH, o 2 = ((@+ Dbminll2 112" 2)S3
9. mI? " m+n mmn=0"
“z ” ”z ” mn=0

Hy € Spifand only if H;H,; € S,2. Thus after estimating the norm of the monomials
the issue becomes whether

(bmin(m+ D (0 + 1))

m,n=0

defines an S,/, operator on 2. By the results of Peller [10] and Semmes [14] this
holds if and only if

B(z) = Zb * € BIptety '

in fact
1/2 1/2
1H5lls, = IH; Holls7, < cllBEarpen
P,
Using the definition of b; we find

o0 1
B(z)=Y 2 i aF (1~ 1)%dt =
0

1
1
= e —1)dt.
_/;1——atzl azt(l )
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We now estimate the Besov norm of B(z). Let r = p/2. Fix an integer m >

>lfr+a+1. Let s=rm—ra—r—2.

B s/rtots = / (IB()" + D™ B()[") (1 — |2?)° dedy <

lz]<1
< |

/1 (@)™ (A-t)*
|z|<1 0 |

(1 —atz)m+! 1—a?t
<e / / QS S k)
= o [1=atzmtl 1-a

|zf<1

r

(1- [z[z)u dzdy £

r

(1- |z|2)8 dzdy.

To estimate this weset a =1—§, t = 1 — u, and z = (1 — z)e'’. Using the fact that
|1 = atz| 2 6 + u + z + |6| we obtain

1 * 1 r
1B()|G1sr404: < C / / ( / (6+u+z+ |9|)-m-16-1u°du) z’dédz <
r 0 J-n 0

0 pO0 o0 r
QC/ / (/ (6+u+:z:+0)""‘16‘1u°‘du) z*dfdz <
o Jo 0
5%,
(The last inequality follows by homogeniety as soon as we note that the integral is
finite). As we noted, this estimate of the function B(z) implies the required Schatten

ideal estimate on the operator. Thus the proof of the lemma, and also of the theorem,
is finished. '

4. ANOTHER INTERMIEDIATE HANKEL OPERATOR

For 8 with 0 < 8 < 1 define Ty = §pan{z"z™ : fn > m > 0}. Any f in this

space can be written

f(re“) - ka(r)eikt
[+}
Bk

where f; (r) = r*Pi(?), P; a polynomial of degree at most ———, and

=y
2/0‘1 lfk(r)lzr(l - r%)%dr < oo.

Thus
AzﬁTUCTpCT1=T.
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THEOREM 4.1. For 0 < 8 < 1, 0 < p < oo and holomorphic f, the intermediate
For
Hankel operator H.? % is in S, if and only if f is in By.

Proof. This is an immediate consequence of the previous result and the unclusions
A2 cTycT.

One reason for mentioning yhis result iszto Point to arelated question for which we
don’t know the answer - what is true for .H; %9 Using the inclusion A2 C Ty C A*
and the results in the introduction we find the (expected) answer for 1 < p < oo but
the case of p € 1 remains open.

5. A VERY BIG HANKEL OPERATOR

In this section we consider thecase X =T, Y =T (or Y = T). Bacause X D A?
the Hankel operator associated with this pair of subspaces is not intermediate in the
sense we described earlier. We denote the classical Hankel operator mapping H%(T)
to H2(T) by H%‘“. We denote the intersection of H? with the space of functions of
bounded mean oscillation by BMOA and recall that BMOA = L®(T)/H§®.

TaeoreM 5.1. For holomorphic f the intermediate Hankel operator HZ':‘F is

bounded if and only if f is in BMOA. In fact “H.}”T” - | Hges

= |l peerysmz

H}T’Tis not compact unless f = 0. Similar statments hold for H}"’-"T.

o0 L o]
Proof. Any f in T can be written f(rel*) = z fa(r?)e™. Let b(z) = Zbkz"
0 o

and H = Hg T, We now compute H{f).

had o oo
q (Z fn(r*’)e“‘*) - R (Z Zzzrke—-iktf,,(r2)einz) _
0 0 o
oo 00
= Z sz+nrm+ne-—imtfn (7’2).
0 0
The map from f to (f,) gives an isometry of T onto

éL’ ((a+ 1)(1 — z)*dz).
0

Using this we find that H is unitarly equivalent to the matrix (M=D 3 m+,,) acting

on @ L?. Here we are using M, to denote multiplication by z. This operator equals
MH;M where M(f,(z)) = (2% fa(z)) and Hj is the Hankel matrix (bpn4n) acting
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pointwise on @ L? = L2(1?). Thus ||M|| = 1 and ||Hjf = |Hg#]|. In fact equality
holds. To see this consider, for large N, the subspace with f, =0 for n > N and for

ngN
0 z<l—¢

constant l1l—eg< a2 <1,

f@) = {
Letting € go to zero and N get large gives the required result.
Now suppose H is compact. If b is not identically zero then for some k, by # 0.
By the computations in the previous paragraph, we would then have that E:Mf 1% i
a compact operator on L2 ((1 — z)®dz). This contradiction completes the proof.

6. A BAD HANKEL OPERATOR

We now return to the spaces 75 = span{z"z" : fn > m 2 0} with0 < 8 < 1
and consider the situation X = T, Y = Tp. Our partial results in this case are quite
different from other known results about Hankel operators.

The operator H;.f’T" has finite rank and hence there will be operators of the

form H>*'"™® in all §,. However the rank is ~ n? in contrast to the estimate ~ n

for the small Hankel operator. This suggests that the usual criterion for membership

in Sp would no longer holds. In fact that what we now show. We only present the

case of the unweighted Bergman space (a = 0). We have not investigated the general

situation.

H;f"T” o~ n3/4, Consequently, for holomorphic f, ;‘"T’ €
2

THEOREM 6.1. |
€ S; if and only if f € B3/*,

Proof. Let Py, be the space of polynomials of degree at most k. Set v = 8/(1-3).
The individual terms in the Fourier decomposition of the space Tj are of the form

m = {z"‘? (121%) : p € Pym} .

Let

denote this isomorphism. Then

L 1/2
”Up”X — ”Up“L?(D,r"dmdy) = ([J r2m|p(r2)|22rd‘r') =

= (/: z™ lP(z)[dz) v = ”z’"/zp

L3(0,1)



INTERMEDIATE HANKEL OPERATORS ON THE BERGMAN SPACE 145

Similarly,

: ot = ¥,
(6.2) [ sllze = |5,

Let M, denote multiplication by = on L?(0,1) and regard P; as a subspace of L2(0, 1).
By (6.1) U is a contraction from Psny to Xp. Furthermore, if n > em (for some ¢
which depends on ), then Hymg = 7"g Vg € X,,,. Thus :
|
18zl m,¥) = || M llsa( 2y 2
2 || Mzn U] 52(250m,22(0,10)-

The last equality by (6.2). Now using Lemma 6.1 (which is stated and proved at the
end of this section) we see that, if n is large enough,

nim 2

o
2 _ | 2
15,02,y = ; |Hz [5y(x.0,v) 2 Sa(Pom 1201 ©

£1n
>Z W,Zcﬁ en®/

(Here we are, of course, following the custom of using “¢”to denote various inessential

positive constants, not necessarily all the same.)
m+1

] and let = zm'Ppm C FPrinm-
By (6.) l0pllxn > [=™2| | VP € Pesaymn. Thus [UMz™ 0] > ldlle Vo € @

N1
Hence (UM;”" ) : Xm — @) is a contraction. Thus

In the converse direction, let m' = [

[z | 55(X 0, 22) S || Mz |l55(X0,22) €

-1
M UM™ Mo™ ) <
Soc{Xm @)

& T

6.3 52(Q,L3)
( ' ) Mz'nUM;m‘ .~

53(Q,L%) - S2(Q,L3)

1/4
< em?f? (f—_l) .
SQ(P(v-i-l)mst) 2

Here the final equality used (6.2) and the final inequality used Lemma 6.1 again.
Thus, for n > 0,

<[

Hzm 13, 0x,2) < Z 1Bz 113, 0x.0,£9) <

n
m- af2
<C+CZI:\/—£SC'II/.
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This proves the first assertion, the second follows because the Hankel operators gen-
erated by the monomials are orthogonal.

We do not know if there is a similar characterization of the Hankel operators in
Sp for p # 2, but we doubt it. The next result shows that in contrast to the results
for more familiar types of Hankel operators, neither BMOA nor the Bloch space, B,
characterizes the class of symbols for which these operators will be bounded.

THEOREM 6.2.

BMOAG {f: f € Hol, H;"’T; is bounded} ¢B.

Proof The inclusion follow from the previous result and the inclusions A C Ty C
C T. In order to see that the inclusions are strict we use lacunary series. First,
assume that f is holomorphic and that H5 1s bounded. Let N > 0, and let m = [¢N],
where c is sufficiently small so that Hzng =2"gforall g € Xp,, n 2 N. Let p € Py
be such that ||pljzae,1) = 1 and

px)y2eym>2eNon [1=(ym) % 1] D [1-N"21].

(That we can find such polynomials is shown in Lemma 6.2 below.) Let g = Up € X,
Then ||g||x <1 and for all n between N and N? we have

1Bzl = 2> = "5
1
P / " tMp(2)?dz > eN2N~"? =¢.
1~N=2

2
=
|L3(0,1) =

Here we used the estimate p(z) > ¢N and 2*+™ > ¢ when z > 1— N2, Furthermore
Hsag € L% _,, and thus {Hzg} are orthogonal. Consequently

i 1/2
BEE

|77l > |27l = (i |7tz
N2 R 2
> (Z |7m)] )
N
for some constant ¢ that is independent of N. That is /

N2 2
sup{§|f(n)| weo } .
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oo
It follows that, for instance, if f(z} = 222“ then Hy cannot be bounded although,

0
as is well known, f is in the Bloch space.
[=e]

k
On the other hand, if f(z) = Y22 then f is not in BMOA (it is not even in

0
H?) but, as we now show, Hy is bounded.
Set X = Xo @ X;;and for k=1, 2,

22* 1
0= @ X

m=22F-1

- .
Thus X = @ X®), Let Y®) = X*) and H;’f—’l = PywHyPxw. Note that for

0
positive k and I, this operator only depends on the terms 2" with

22kvl-—1 < 221:-1 +221-—-1 s n< 22k +221 < 22kvl+1 < 22kvl+1

3

and thus, for positive k and [ and for f; = zzzj, }‘ ! = H%’, s = kv 1 Trivially

HH ” /fslz = 1. Furthermore, if I > k > 0 and 22*™* < m < 22 then
(6.4) “

< " XL
“S@(Xm,Lz 1 Sﬂ(r mi 2) =
)

/4 —l_gim
€ emt/? (22 ) £ g 2 -2 < 2%,

where we used (6.3). (Actually, the remark after Lemma 6.2 below implies a better
bound but we have room spare.)

Is,(x,,.,Lz) < " HfT[

Because H_. = f_ ! decomposes into orthogonal parts H me, 22" Lm<

", (6.4) 1mp11es
a7

If £ > 1 then, by duality, "H ” = H L < ¢2=(E=D_ Consequently, for all positive

2705 ISk > 1.

X&),y @

k, ! ”H & k" < ¢2-1¥=il, Hence, by orthogonahty, for every integer j,

S c2_'j|.

>

kele=j

Thus, summing over all positive k and I produces a bounded operator. It only remains
to check that the two “edges”,

09 oc
Z H%z and Z H}}i’o,
k=1

I=0
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are bounded operators. This follows, for instance, because f isin L? and X ©) ¢ g,

In the previous proof we needed certain facts about polynomials. We now state
and prove those lemmas. It seems quite plausible that some of these facts, in particular
Lemma 6.3, are in the literature, but we were not able to find them. If these lemmas
were extended to cover weighted Bergman spaces (using Jacobi polynomials in place of
Legendre polynomials) then the previous proof would extended to weighted Bregman
spaces. However we have not pursued the issue.

LEMMA 6.1. Forall X\, n 2 1,

. n nlf? ‘
|22 | 5,p, 1y < min (W’ W) =9

and the implicit constants do not depend on n or A.

LEMMA 6.2. For each positive integer n there is a p in P, such that ||p||r2 € 1
and p(2) 2 cn when1—n~2 2 < 1.

REMARK. With p as in Lemma 6.2,

"3)‘1’“ Zc (/1 zz)‘nzdz)liz P (cn2 (i A l))ln
L3~ 1—n-9‘ = | \ 2 Y .

Consequently (using Lemma 6.1 for an upper bound when A > n?) we have
1 A

A - i L
121 <im0 585) = {

Is it true that y
A o n n ?
[ 2 “S,,(P,.,L’) < min (A1/2’ (»/2) )
for all p greater than 2? What happens if p is less than 27 Less than 17

The proof of these two lemmas uses orthogonal polynomials. In order to conform
with the usual notations in the subject we will work with polynomials in

1
L? ((—1, 1), §dz) . Those polynomials are related to the P, we have been considering

by the elementary changes of variables z — ﬁ, orz—2z—1.
The Legendre polynomials {P,(z)}32, are orthogonal on [—1, 1] with respect to

Lebesgue measure. Using the standardization in Erdely et al ([2] Chapter 10. 10)
1
2

(but using the normalized measure ~dz) we have

1
2n+1

P =1, [P20)T =



INTERMEDIATE HANKEL OPERATORS ON THE BERGMAN SPACE 149

hence an orthonormal basis is given by B, = \/2n + 1P, and the reproducing kernel

for polynomials of degree n is given by

n

Ku() =3 Bi@)B) = 325 + DP() P ).
0 i)

Proof of Lemma 6.2. Let
1 n

Then
1 n
llpllrs = m;(% +1)=1

and p(1) = n + 1. (In fact, p is the polynomial of degree n which maximizes p(1)
subject to ||p||L,(( 1,1), 48) € < 1.) Furthermore, by [2] (10. 18. 6),
1 n
' (z)] < —1 2(2’0 + 1) [Pe(z)] <

Z (2k + 1)k(k + 1) = ?i’lili("—*“’)

\n+1

Thus, if 1 - 2n~2 < 2 < 1 then, for n > 2,

() 3 2(1) =207 [Pl = (0 1) (1= 52 ) 5 .

For n < 2 we can take p identically one. To get the required polynomial on (0, 1) we
take p(2a: —1). The proof is done.

Before proceeding to the proof of Lemma 6.1 we need a technical estimate on the
reproducing kernel associated to the Legendre polynomials.

LEmMa 6.3.

(6.5) Kp(z,z)x<n ((1 - xz)_llz A n) .
The implicit constants are uniform in x and n.

Proof. We start with the generating function ((10. 10. 39) of [2])

[a o]
ZPn(z)z" =(1-2z2+22)"Y? ze[-1,1], |2| < 1.
0
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Differentiation gives

00
nel_ z—z
;nPn(z)z = 020 1 70

Hence, by Plancherel,

ko T N
1 [ = re!

6.6 2p (7)2p2(n—1) _ _/
( ) ;ﬂ. ﬂ(x) r 21]’ - ﬂl — 221.&1'.: + rzezitla

t|2

1
for z € [-1,1], 0 € » € 1. For simplicity we now assume that 0 < z < 1, 3 £r«l
and write y = 1 -2, § =1 — r. By symmetry we need only consider the integral in
(6.6) for positive ¢. Furthermore, if Tﬂ' €t 7 then

Re (1 —2zre' + rleft) » 1

and thus

x _ peit]?
/ = re®l gt < 4T

3z |1 - 2zreitr2elit]® 4

37

Hence we will assume that 0 <t < T

1= 2zre" + r?e® = (1 — r?)(1 — %) + €*(1 — r? + 2r? cost — 2zr).

which is bounded away from

For0<t< -i—w the angle between 1—¢'* and & is —
0 and 7 and hence
[1—2zre” + r%e®| x (1~ r?) |1 — €| + |1 — #% + 2+% cost — 2zr|.
i ot u?
We set u = |1 —e'] = 2sin 3 and hence cost =1 — 7
|1 —2zre® + r2e®| x (14 r)6u + [6% + 2ry — #?u?| <
X Su+ (6% + 2ry — ru’ + réu?| <
= bu+ |62 + r(2y — u?)|.
Furthermore
|- rei‘l2 = (z — rcost)? + r?sin?t <
2y 2
(6-7) = (:c —-r+ r% +ri? <
<@E-r)?+ul=(-y)?+u’
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Thus

&0 2sin 3 (6 — )2+u2
2 2,2(n~1) o Y du =
Srmerre <o+ [ G e

-_./2 (6sy)2+u2 du =
T Jo (6ul8? 4 2ry — ru2))®

= fo 2 p(u)du,

say. If u < 6 then ru? £ u? < du and thus

() x =W +u’ G-yt
PO = Gur iz~ (B +9°

and

53
5 86—y’ + — 546
(6.8) /0 p(u)du < GERE 3 o~ o ;’;2

For the remaining part of the integral we consider two cases. Case (i) is y < 262.
In this case, for v > §, §2 + 2ry < 56u and thus

2 2
u —4

~ u ~ —
o) = ety = s =
Hence
2
/ o(u) < 673,
8
By (6.8) we also have
5
/ p(u)du < 63
0
and thus
2
f o(u)du < 673,
0
Case (ii) is y > 262 and, still, u > 4. In this case

y2+,u2 y2+u2

Gut 2y =D ™ (sut (Vo4 ) Vo= ]

P(u) =<
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Hence
VIy-4§ V-4
/ p(u)du =< / v’ + o zdu <
d s (valva -’
VI -8
< / ___ 3y zdu=0 (y“’”é‘z) ,
SV
VIy+é
/ e(u)du = y 726 = 26~ 2y~ 12
V-5 (5/9)
and
2 2 uz
f p(u)du =< / ——————du
VZy+é vEr+s (u|y/2y — u|)
2 du
VT+s V(= V2y)? ( )
Also by (6.8)
§ 3 3
LB+t ) § _ 1242
/otp(u 7 <y1/265+§—0(y é ),
and thus

2
/ p(u)du < y~1/2672.
0

We have proved that for 0 < y < 1, 0 < § < =, we have

DI b=

o0
(6.9) 143 02 Pa(2)?r* =1 < min (5-3, y'1/26’2) .
1

. . . . : 1
It is clear from the integral representation that this estimate extends to 3 <dég1
We now multiply (6.9) by r and integrate:

[e+]

o
S @r+1)Pu(z)? < 1+ Z nPn(z)%%" =
0
— 1+2/ anp (z)z 2n— 4p =

= 1+£-tmm (5-3 y~ 1262 )dé:

~ min ((1 _ t)_z,(l _ z)—1/2(1 - t)—l)

(6.10)

for0<z, t<1.
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. 1
We conclude the proof with a standard Tauberian argument. Take t = 1 — o

and we obtain (for n > 1)
Ka(z) =Y (2k+1)P(=)’ <
0
n 1 2k
< CZ(2k+ 1)Pe(z)? (1 - ;) £ Cmin (nz, n{1 - z)'“z) .
0

For the converse taket = 1~ Y where 7 is a large constant which will be chosen later.
Then (with C’s independent of ¥ and with n > 2v)

¥~*min (n2, n(l - 3)1/2) < min ((g)z,u — z)~ U2 (g)) <

< Ci(% +1)Py(z)? (1'— %)“ <
1]

oo (G+1)n

SCK(2)+CY. Y, @k+1)Pu(2) (1 n) <
j=lk=jn41
€ CKn(z) +C Y Kjpnl(2)e” €
i=1
w Iy
€ CKn(z)+ C'Z(J' +1)2e~%"min (nz, n(l - z)‘llz) )
i=1

If « is large enough then the right hand side is
£ CKn(z)+ %7‘2min (nz, n{l — :'z':)"1/2)
and hence, for ¢ between 0 and 1
Kn(z) < min (nz, n(l - z)‘”z)
and we are done.

Proof of Lemma 6.1.

A — |l as2 =
| a2 "s,(P..,La) = "M‘—t—'- I‘sz(p’“La((_lll),%i)) -

“ 1+2\* 4 ?
=3 Pi(z)]
0 ( 2 ) lz3((-1.1).%)

1 2x
_ 14z dz
.._/;1( 5 ) K,.(z,a:)?.
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By Lemma 6.3 we can continue with

1 1+z)2‘\ 0 -
— nmin {n, (1 — z)~1/2 dzxn/ 2 min (n, (1 —t)"*/?) dt
[ (52) i -7 g2 [ P 1)

Hence

and

n2
HM:"SQ(P,,,Li) < 0"2/0 tPAdt = Ta

1
M2 < Cn f $9(1— £)=1/248 s nA-12,
[4]

1
||Mé\|‘|5, Z C'n/ 4 min (n, (1- t)‘lfz) dt =
J1—-

—C’n/:lxmm(n 3—1/2)d8>0n/jnnn( Tl )ds
2

X

4

= n%n’un (A”Z ) min (A—n— %—)

and we are done.

11.

REFERENCES

. Arazy, J.; FISEER, S.; PEETRE, J, Hankel operators on weighted Bergman Spaces,

Amer. J. Math., 110(1988), 989-1054.

. ERDELYI ET AL, Higher transcedental functions, McGraw Hill, 1953.

FELDMAN, M.; ROCHBERG, R., Singular value estimates for commutators and Henkel
operators on the unit ball and the Heisenberg group, analysis and partial differ-
ential equations, C. Sadosky ed. Dekker, 1990, 121-160.

JANSON, S., Hankel operators between weighted Bergman spaces, Ark. Math., 26(1988),
205-219.

. JANSON, S.; PEETRE, J., Paracommutators — boundedness and Schatten-von Neuman

properties, Trans. Amer. Math. Soc., 305(1988), 467-504.

. JANSON, S.; WoLF, T., Schatten classes and commutators of singular integral operators,

Ark. Mat., 20(1982), 361-310.

. PENG, L., Ha-plitz operators on Bergman space, preprint 1990.
. PENG, L.; ROCHBERG, R.; Wy, Z., Orthogonal polynomials and middle Hankel operators

on Bergman spaces, preprint 1990.

. PENG, L.; ZHANG, G, Middle Hankel operators on Bergman space, preprint 1990.
. PELLER, V., Hankel operators of class Sp and their applications (rational approximation,

Gaussian processes, and the problem of majorizing operators), Math. USSR-Sb.,
451(1982), 443-479.

ROCHBERG, R., Decomposition theorems for Bergman spaces and their applications, in
Operators and Function Theory, S. C. Power ed, Reidel, 1985, 225-278.



INTERMEDIATE HANKEL OPERATORS ON THE BERGMAN SPACE 155

12. ROCHBERG, R.; SEMMES, S., End point results for estimates of singular values of singular
integral operators, in Contributions to Operator Theory and its Applications,

Gohberg et al eds, Birkhiuser, 1988, 217-232.
13. SEMMES, S., Trace ideal criteria for Hankel operators and applications to Besov spaces,

Integral Equations and Operator Theory, T(1984), 241-281.

SVANTE JANSON RICHARD ROCHBERG

Department of Mathematics Department of Mathematics
Uppsala University Box 1146, Washington University

Thunbergsvagen 3 St. Louis MO 63130

5-752 38 Uppsala USA.
Sweden.

Received June 3, 1991.



