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ELEMENTARY ROTATIONS OF LINEAR OPERATORS
IN KREIN SPACES

TIBERIU CONSTANTINESCU and AURELIAN GHEONDEA

1. INTRODUCTION

The elementary rotation of a contraction in a Hilbert space is a unitary operator
extending the given contraction. Under suitable minimality conditions this unitary
operator is essentially unique and it plays a central role in dilation theory, as empha-
sized by P. R. Halmos [13] and B. Sz.-Nagy and C. Foiag [21].

Beginning with the theorem of B. Sz.-Nagy [20], the existence of minimal unitary
dilations has been proved for more and more general classes of operators (cf. C. Davis
[9], P. Sorjonen [19]) this culminating with the result of T. Ya. Azizov [3] (see also
[4]) which states that any bounded linear operator in a Krein space has a minimal
unitary dilation). Implicitly, this result contains the existence of elementary rotations
of any bounded operator in Krein space.

Motivated by investigations in lifting of operators, the possibility of using an
elementary rotation which can be described explicitly in terms of the given operator
was pointed out in [6] for contractions in Pontryagin spaces, while in [2] such a
description is obtained for any operator in Krein spaces.

The purpose of this article is to illustrate a technique of induced Krein spaces
and an abstract scattering theoretical interpretation of elementary rotations in Krein
space. Briefly speaking this means that first one associates a certain selfadjoint oper-
ator A to the given operator T, then considering two dual indefinite factorizations of
A one obtains two unitary operators £, and £2_ and S = 2, 2! is an elementary
rotation of T' (see Theorem 3.3 and its lemmas).

In [2], the existence of elementary rotation follows as a consequence of the so-
called link operators. We can show that the converse is also true, once the elementary
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rotation is obtained, the existence of link operators and their properties follow.

In Theorem 3.12 we obtain a spectral characterization of those operators which
possess unique elementary rotation, up to unitary equivalence. In connection with
this we should mention that, during a short visit to Bucharest that he paied at the
end of July 1990, M. A. Dritschel informed us about a geometric characterization
of operators which have unique Julia operators, this being a result from a paper,
which at that time was in preparation. Since Julia operators, as introduced in [12],
define the same object as elementary rotations, Theorem 3.12 can be considered as a
counterpart of their result.

Elementary rotations and unitary dilations are closely related. Using the elemen-
tary rotation R(T") we gave in [7] the Schiffer form of the minimal unitary dilation.
Due to the nonuniqueness of minimal dilation (early remarked by C. Davis [9]), the
problem of characterizing those minimal unitary dilations prot'iuced by elementary
rotations is natural. We have considered this problem in Section 4. Here the usual
difficulties encountered in the geometry of Krein spaces, illustrated by the savage be-
haviour of shifts on Krein spaces (see paper of B. McEnnis [17]) show up. Finaily, a
discussion on characteristic functions, from the point of view of the approach used in
this paper, is considered.

In Section 2 we present preliminary results concerning the geometry of Krein
spaces and their linear operators, a boundedness criterion for isometric operators, the
construction and the basic properties of induced Krein spaces, as well as of indefinite
factorizations which produce unitary operators. For basic results concerning linear
operators on Krein spaces we recommend, T. Ando [1], J. Bognar [5] and T. Ya.
Azizov and I. S. Iokhvidov [4].

2. NOTATION AND SOME PRELIMINARY RESULTS

2.1. Geometry in Krein spaces. Let K be a complex vector space and
{-,] an inner product on K (i.e. [-,-] is linear with respect to the first variable and
antisymmetric). K is called a Krein space if one of the following equivalent conditions
holds:

(i) There exists a linear operator J : K — X such that J~! = J and denoting

(2.1) ()1 =z, =zyek,

(-, )7 is a positive definite inner product on K such that (K, (-, -)s) is a Hilbert space.
(ii) There exist two subspaces K* C K such that K= Kt +K~, KT LK~ (ie.
[¢,4]=0, z € K*, y€ K~) and (K*,[,]), (K™, =, ]) are Hilbert spaces.
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(iii) There exists a positive definite inner product (-,-) on K such that (K, (-,-))
is a Hilbert space and, denoting by || - || the associated norm, we have

(2.2) lzll = sup |fz,3}l, z€K.
i<

Let (K,[-,"]) be a Krein space. An operator J : K — K satisfying the property
(1) is called a fundamental symmetry (in brief £.5.). With respect to the Hilbert space
(K,(-,)s) J is a symmetry, i.e. J* = J=J" 1. K =K+ + X~ is a decomposition of
K as in (ii), then it is called a fundamental decomposition (in brief f.d.). Fundamen-
tal symmetries and fundamental decorpositions of the Krein space are in bijective
correspondence: If J is a f.is. let J = Jt — J= be its Jordan decomposition and
Kt =JtK,K~ =J K. Then K = Kt 4+ K~ is a f.d. Conversely, if K = K+ + K~
is a f.d. then define J : X — K by

(2.3) Jet+z)=2t -2, z*ek:
Jisafs of K.
A norm on K satisfying the property (iii) is called a unitary norm on K. Any
unitary norm || - || on K is of the form
(2.4) Izl = [Te, 2]}, zeKk,

where J is a fs. of K. Aﬁy two unitary norms on K are equivalent. The strong
topology of the Krein space K is the topology defined by an arbitrary unitary norm
on K.

Let £ and £, be subspaces of the Krein space K (i.e. £, and L, are closed
linear submanifolds of K). If £1 L £, and the algebraic sum £; + £» is direct and
closed then we use the notation £;{-+]Ls. In particular, a f.d. of K will be written
K =K*[+]K-.

If £ is a subspace of the Krein space K we denote by £+ = {z € K|[z,y] =0, y €
€ L} the orthogonal companion of £ and by £* = £ N £* the isotropic subspace of
L. The subspace L is called nonnegative (positive) if [z,z] 2 0, z € L([z,2] >0, z €
L\ {0}). The subspace £ is called uniformly positive if for some unitary norm || - ||
(equivalently, for any unitary norm) on K, there exists & > 0 such that

(2.5) [z,2] > a]|x|]2, ze L.

Similarly one defines nonpositive subspaces, negative subspaces and uniformly nega-
tive subspaces.
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Let £ be a nonnegative subspace of the Krein space K, K = K*+[+]K~ be a f.d.
of K, J the corresponding f.s. and J = J* — J~ be its Jordan decompoition. Then
D, = J*L is a closed linear manifold in KT, the operator K € £(D4,K™) defined
by

(2.6) K(J*z)=J"z, =z€L,
is a Hilbert space contraction, and L is the graph of K
(2.7) L=GK)={z+ Kzjz € Dy}.

The operator K is called the angular operator of the nonnegative subspace £. More-
over, the subspace £ is positive (uniformly positive) if and only if its angular operator
K is a strict contraction, i.e. ||Kz|| < ||z, 2 € D4 (respectively, K is a uniform con-
traction, i.e. ||K|| < 1), where || -|| denotes the unitary norm associated to J. Similar
statements hold for nonpositive, negative and uniformly negative subspaces.

With the notation stated above, the nonnegative subspace £ is maximal nonneg-
ative (i.e. there exist no proper nonnegative extensions of £) if and only if J*£ = K+,
Also, £ is maximal nonnegative if and only if £* is maximal nonpositive.

A subspace £ of the Krein space X is called regular if K = L[+]£1. A nonnegative
subspace is regular if and only if it is uniformly positive. The subspace £ is maximal
uniformly positive if and only K = L[+]£* is a f.d. of K.

LEMMA 2.1. Let M and N be subspaces of the Krein space K such that M is
uniformly positive, N is nonpositive, M L N, and M + N is dense in K. Then M
is a maximal uniformly positive subspace and N = M*.

Proof. Let us first notice that the subspace A is negative. Indeed, let z € N
such that z L A. Then z L M + N, hence z L K. Since K is nondegenerate this
implies z = 0.

Using the extension theorem of R. S. Philips [5], it follows that there exist M a
maximal positive subspace, and A a maximal negative subspace such that M 2 M,
NDONand M LN.

Using the same extension theorem of R. S. Philips, there exists a f.d. K =
= K*[+]K~ such that M C K*. Let J be the corresponding f.s. and K € L{K*,K7)
be the angular operator of M. If z € K+ © M, then 2 + Kz € M N ML hence
z+Kz L M+N. Since M+AN D M+XN is dense in K, from here we obtain z = 0. We
have proved in this way that M = K+ is a maximal uniformly subspace. This yields
N C K~ is uniformly negative, in particular M[+]JN =K, hence N = M+ =K~. B

REMARK 2.2. In order to prove that M is a maximal positive subspace in K,
the assumption in Lemma 2.1 that M be uniformly positive is essential, as shown by
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the example of H. Langer [15] of two subspaces M and N, M positive, N negative,
M L N, M+ N dense in K but neither M is maximal positive nor A is maximal
negative.

2.2. Linear operators in Krein spaces. Let X1 and K5 be Krein spaces and
T densely defined in K; and valued in K. One defines the adjoint operator of T,
denoted T#, as follows

(2.8) D(T*) = {y € K2|D(T) 3 2 — [Tz,y)] is bounded }

[T.’t, y] = [m,T#y], re D(T)» ve D(T#)

Let Ji and J; be fis. of K, and, respectively, X2. Considering T the adjoint
of the densely defined operator T : D(T)(C K1) — K2 with respect to the Hilbert
spaces (K1, (+,-)7,) and (K2, (-,-)1,), we bave D(T#) = J,D(T*) and

(2.9) T# = 1T J>.

In the following we denote by £(K1,K3) the set of bounded (with respect to
arbitrary unitary norms on the Krein spaces K1 and K2) linear operators T : Ky — Ka.
An operator T' € £(K1,K>) is contractive if

(2.10) [Tz,Tz) € [£,2], =z €Ky,
equivalently I — T#T is a nonnegative operator, i.e.
(2.11) [(I=T*T)z,2z] 20, z€k;.

T is called doubly contractive if both of T and T# are contractive. T is called
expansive if T#T — I is nonnegative, and it is called doubly expansive if both of T
and T# are expansive.

A (possibly unbounded) operator V : D(V)(C K,) — K3 is called isometry if

(2.12) Vz,Vyl =[z,4], =z yeDV).

If V € L(K1,K2) then V is isometry if and only if V#V = I;. An operator U €
€ L(K1,K,) is called unitary if it is isometric and surjective, equivalently U#U = I;
and UU# = Iz.

Let K be a Krein space and K = K*[+]K~ be a f.d. of K. The cardinal numbers
k*(K) = dim(Kt) and s~ (K) = dim(K ™) are called, respectively, the positive signa-
ture and the negative signature of K. They are independent on the f.d. The cardinal
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member x(K) = min{x+(K), £~ (K)} is called the rank of indefiniteness of the Krein
space K. If k(K) is finite then K is called a Pontryagin space.

Given two Krein spaces Ky and Ky, in order to exist unitary operators U : K; —
— K3 it is necessary and sufficient that £+ (K;) = s*(K3) and £~ (K1) = ™ (Ka).

LEMMA 2.3. Let V : D(V)(C K1) — K2 be an isometry with dense domain and
dense range. Assume that there exists a f.s. Jy of Ky such that 1 D(V) € D(V). I
at least one the linear manifolds J{+D(V) and J7 D(V) is closed, then V is bounded
and thus, 1t can be uniguely extended to a unitary operator in L(K1,K2).

Proof. Let V : D(V)(C K1) — K2 be an isometry such that D(V) is dense in K,
and R(V) is dense in Ky. We prove first that V is injective.
Indeed, let z € D(V) be such that Vz = 0. Then

0=[Vz,Vy] = [z,y], wyeDV),

hence, since D(V) is dense in K;, from here we obtain z = 0.
We can consider now the linear operator V= : R(V)(C K3) — K1, which is also
an isometry. Let z € R(V) and denote y = V~1z. Then we have

[Vz,2] = [Ve,Vy] = [z,y] = [z, V" 12], zeDV),

hence V=1 C V#*. Since D(V~1) = R(V) is dense in K, it follows that D(V#)is also
dense in K5, hence V is closable.

Let now J, be a fis. of Ky such that J;D(V) C D(V). Then the following
decompositions holds

(2.13) D(V) = JFD(V) + I-D(V),

where Ji = J} — J[ is the Jordan decomposition of J;. Since JFD(V) € KF and
JiD(V) C K3, where K1 = K1[+]K7 is the f.d. corresponding to J{, then JD(V)
is uniformly positive, J;D(V) is uniformly negative, and JFD(V) L JFD(v).

If, let us say, the linear manifold J; D(V) is closed, it follows that VIID(V) is
bounded (since V is closable and J;D(V) C D(V)). We claim that VIID(V)isa
maximal uniformly positive subspace of K.

Indeed, consider on K; the unitary norm associated to J2 and on K3 we consider
an arbitrary unitary norm. Then, for any vector z € D(V) we have

1
VIl
hence VJ}D(V) is uniformly positive. Since JID(V) is closed and V[J}D(V) is
isometric and bounded it follows that VJ¥D(V) is also closed, hence VIID(V)is a
uniformly positive subspace of K.

VI 2, Vite] = [T}z, Ite] = T 2| > VI 2|,
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On the other hand, since V is isometric we have
R(V) = VI DV)+ VIID(V),

where VJID(V) L VI D(V) and VI D(V) is negative. Since R(V) is dense in K2

and VJFD(V) is a uniformly positive subspace, application of Lemma 2.1 proves that

VJ}FD(V) is a maximal uniformly positive subspace and, in addition, VJy D(V) =

= (VJFD(V))?! is a maximal uniformly negative subspace. The claim is proved.
Consider now the f.d. of K>

(2.14) Ky = VIFD(V)[+VII D(V),
and denote by J, the corresponding f.s. From (2.13) and (2.14) it follows that
(2.15) Vi = JaV.

We change now the unitary norm on K5 to be that induced by J2. Then, using (2.15),
it follows that

Vz||? = (Vz,V2)s, = [JaVe, Vz] = V2, V] = [1z,2] = ||z|?, € DV).

This shows that V is bounded, hence it can be (uniquely) extended to a unitary
operator in £L(K1,K2).
In case J; D(V) is closed, the reasoning is similar. n

2.3. The Krein space H 4. Let K be a Krein space and A € £(K) be selfadjoint,
i.e. A= A*. If Jis a f.s. of K then JA is a selfadjoint operator on the Hilbert space
(K, (+,-)1), hence we can consider its polar decomposition

(2.15) JA = S5alJA|,

where Sy4 = sgn(JA) is a selfadjoint partial isometry such that ker Sy4 = ker A.
Then Sy4 is a symmetry on the Hilbert space (R(JA),(-,-)s). We denote by Ha
the Krein space (R(A), [, ]) where the indefinite inner product [-, -] is induced by the
symmetry Sj4,

(216) [z,y] = (SJAz)y)J: zayEHA-

Let us remark that the linear manifolds R(|JA|) and R(}JA|?) are dense in H4 and
that the strong topology on the Krein space H 4 is inherited from the strong toplogy
of the original Krein space K.
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Apparently, the definition of the Krein space X4 depends on the fs. J. We
postpone the proof of the fact that if a different £.s. is used, the Krein space obtained
by a construction similar with that of H4 is actually unitary equivalent to H4 (see
Corollary 2.8), in particular, this observation justifying our notation.

A particular case of this construction occurs when starting a Hilbert space H
and a selfadjoint operator A € £(H). An even more particular situation is in case the
selfadjoint operator A is a symmetry. This kind of construction is usually used in the
definition of direct sum of Krein spaces.

Let (K;)ics be a family of Krein spaces. Fix on each K; a f.s. J; and consider
the direct sum Hilbert space @) K;. Let J be the symmetry @ Ji on this Hilbert
space. We denote by [+] K; tﬁfzJKrein space induced by this S):xfgnetry.

A special case of t:]ii construction is the Krein space of the type ?(K) (i.e. in case
the index set 7 is N). On the Krein space {2(K) the forward shift S of multiplicity
K acts.

2.4. The Krein space K4. Let K be a Krein space and A € LK), A= A*
Define an inner product on K,

(217) [za y]A = [.AZ, y}; z,y € K:y

where [+, ;] denotes the inner product of the Krein space K. Notice that ker A is the
isotropic subspace of the inner product space (K,[,-]a). Fix J afs. of K and denote
K = J(ker A)* (ie. K is the orthogonal of ker A with respect to the inner product
(*s+)7)- Then consider the Jordan decomposition of the selfadjoint operator JA with
respect to the Hilbert space K, ()0

(2.18) JA = (JA); — (JA)-
and denoting Ky = (JA)4 K and K_ = (7 A)-K, we have the decomposition
(2.19) K=K +K_.

Notice that (K4, [-, ] 4) and (K_,—[, ‘]a) are pre-Hilbert spaces and denote by K}
and, respectively, K their completions to Hilbert spaces. Define

(2.20) Ka=Ki[+HKs,

where the inner product is the extension by continuity of the inner product [-,]4.
Then (K4, [,-]a) is a Krein space and (2.20) is a f.d. of K 4.
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LemMMA 2.4. Let || - || be the unitary norm assciated to the fis. J. Then the
unitary norm on K 4, corresponding to the f.d. (2.20) is the extension by continuity

of norm
K5z |[|JAP=].

Proof. Let z be a vector in K. According to (2.19) we represent z = z4 + z—,
where 2z, € K4 C K%. Then

(24, 24]a — [z-2-]a = ((JA) 424, 24)5 + (FA)-2-,2-)5 =

= (JA) 4+ + (JANz4 +2-), (24 +2-))5 = ([TAl(z4 +2-), (T4 +2-))5 =
= (|JAl%z,|JAbz); = || [T A5 2>

This shows that the unitary norm, corresponding to the f.d. (2.20), when restricted
to K coincides with the norm |{|JA{#z||. The rest follows from the density of K
in K A |

We can now clarify the relation between Krein spaces Ha4 and K 4.

ProposITION 2.5. If A € L(K) is selfadjoint, K a Krein space, the the Krein
spaces H, and K5 are unitary equivalent, more precisely, if J is a f.s. used in the
definitions of M 4 and K 4, the linear operator

Ka2Kdze |JA z e R(JAIY) CHa,

extends uniquely to a unitary operator K4 — Ha4.

Proof. Let V denote the operator defined by (2.21). We first prove that V is
isometric, considered as an operator V : D(V)(C K4) — Ha. Indeed, forany z,y € K
we have

Vz,Vy) = [I[TAlEz, [T A Y] = (S1alJAldz, |T AR, =
= (JA.’E, y)J = [A:t,y] = [mx y}A'

Using Lemma 2.4 it follows that V is bounded hence, since D(V) = K is dense in K4
and R(V) = R(|JA|?) is dense in H4, V extends uniquely to a unitary operator in
L{(Ka,Ha). |

We record now an important result of M. G. Krein [14], W. T. Reid [18], P. D.
Lax [16), and J. Dieudonne [10]. In this paper we shall use a slightly more general
variant of this result, equivalent with that considered by A. Dijksma, H. Langer, and
H. S. V. de Snoo [11]. For the reader’s convenience we give a proof following the

original one.
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LEMMA 2.6. Let Ky and Ky be Krein spaces and A € £L(K;), A = A* B ¢
S L:(K:z), B= B#, T e [:(’Cl, ’Cz), and T € ﬁ(xg,xl) be such that

[Tl‘x) y]B = {21 T2y]44, E A S le Yy € K:'Zl
or equivalently,
(2.22) T#A =BT.

Then Ty and T, induce uniquely determined operators T) € L(K4,Kp) and Ty €
€ L(KB,KA) such that

(2.23) [Ti2,4)s = [z, Toyla, z€Ka, yeks.

Proof. Fix f:s. J1 and J; on K; and, respectively 2. Then (2.22) becomes
(2.24) T, 1A = JoBT;.

Considering the unitary norms associated to J, and Js, we shall prove that for any
z € K; the following inequality holds

(2.25) 1 172B|5T1z|| < || 17:BI¥ T3 S5, 4To S5, 8Th||% - [ |1 AR Th2)).

Indeed, using (2.24) and Schwarz inequality for the nonegative operators |J; A|
and |J2B| on the Hilbert spaces (K1, (-,-),) and, respectively, (K2,(:,)1,), it follows
easily

I172BI5 Thel| < || |1 Al 2]l - | |72 B3 Tuz|)? - || |12 BIE TSy, 4 ToS s 5 Th 2|}
Iterating this inequality it follows that for arbitrary n € N it holds

I 1J2BIE Tial| < || 171412 2|2~ G727 || |, B Ty 21727,

2.26 2n
(2:26) |1 J2BI3T1 8y, aT2 81, 8T 2|2~/

Further, if [JoB[3Tiz = 0, the inequality (2.25) is clearly true, so let us assume
[72B[¥Tiz # 0. If ||z|] < 1 then we obtain (2.25) by letting n — oo in (2.26). If
llzll > 1 then use (2.25) for the vector z/||z]|. Thus (2.25) holds for any z € K;.
Now, from (2.22) it follows that T; ker A C ker B, hence 7} factors to an operator
Ty :K1(CKa) — K2 CKp. Using Lemma 2.4, from (2.25) it follows that 7} extends
by continuity to an operator T} € L(K4,Kg). Similarly it can be proved that T}
induces an operator T3 € £(K,K 4), while the property (2.23) is clear. |
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2.5. Indefinite factorizations. Let A € L(K1), A = A* and B € L(K»),
B = B¥ be given. We are interested in factorizations of the type

(2.27) A=C¥BC,
where C € L£(K1,K2). Under certain conditions, this kind of factorizations produce

unitary operators acting between the Krein spaces induced by A and B.

LEMMA 2.7. Let A€ E(ICl), A= A#, Be C(’Cz), B=B#% andCE&€ £(lCl,iC2)
be such that (2.27) holds and, in addition, assume that there exist a regular subspace
L of Ko such that

(2.28) R(B) € £ C R(C).

If ]y isafs. of Ky and J is a f.5. of K3 such that JoL C L (always exists such a Jo)
then:

(i) C induces a unitary operator in L(Ka,Kg).

(ii) There exists a uniquely determined unjtary operator V € L(Ha,Hp) such
that

(2.29) VI|J1Al3 = |13 B|C.

Proof. Let C~1 : R(C) — K1 be an operator such that CC~1z =z, z € R(C).
C~! is closed hence, from (2.28), it follows that C~!|L is bounded. With respect to
the decomposition

Ka = L[+)C*

consider the operator X € L£(K3, K1) defined by
X =[C-lc 0]

Then CX = P € L(K;), where P has the properties P#¥ = P = P? and PKy = L.
Multiplying on left with X# we have

X*A=X*C*¥BC = PBC = BC.

Using Lemma 2.6 this shows that C induces an operator €' € £(K4,Kp). From (2.27)
it follows that C is isometric. Also, we have

R(J2B) = JLR(B) C JoL C £ € R(C),

and, since R(J2B) is dense in Kp, it follows that R(C) is also dense in Kp, hence

is unitary.
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(i) Using the identifications of the Krein spaces # 4 with K4 and of Hp with Kg
(see proposition 2.5) and also using the unitary operator € € L{K 4,KB), it follows
that the linear operator V : R(|J1A|3)(C Ha) — Hp defined by (2.29), extends
uniquely to a unitary operator in L(H 4, Hg). [ ]

CoROLLARY. For any operator A € L(K), A = A*, where K is a Krein space,
the induced Krein spaces K4 and M, are unique, modulo unitary equivalence, with
respect to the f.s. .J used for their definitions.

Proof. Let J be a f.s. of K. We first remark that K4 can be viewed also as the
Krein space K14, induced by the selfadjoint operator JA acting in the Hilbert space
(X, (- -)a)- Tt follows that we have to prove that, if G is another fs. of K, then the
Krein spaces K4 and Kg4 are unitary equivalent.

To this end, notice that the following relation holds

(2.30) JA = (JG)GA),

and that the operator JG is the adjoint of the identity operator acting (K, (-,-)s) —
— (K,(:,")¢). Applying Lemma 2.7 to the factorization (2.30) it follows that the
identity operator induces a unitary operator in £(Kga,K14).

The uniqueness of the definition of the Krein space H4 follows now from the
Proposition 2.5. [ |

We can introduce now the signatures of the seladjoint operator A € £(K) by
(2.31) kE[A] = k*[K4), x°[A] = dimker A.

Using Corollary 2.9 it follows that these definitions are correct, i.e. they do not
depend on the f.s. J used in the construction of K 4. Also, as a consequence of
Proposition 2.5 we have

(2.32) k% [A] = k*[H 4] = dimker(] F Sy4).

3. ELEMENTARY ROTATIONS

3.1. Existence of elementary rotations. Let K; and K, be Krein spaces and
T € L(K1,K2). An elementary rotation of T is a triple (U; K1, K5) where K{ and K
are Krein spaces, the operator U € L{K;[+]K}, K2[+]K}) is unitary and extends T,
ie.

(3.1) P UKy =T,
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and one of the following equivalent minimality condition hold
(3.2) K2VUK; = Kq[+]K5, Ky V U*Kqy = Ky [+]KY-

We need now some more notation. Fix J; and J f.5. on K; and K3. Then we

can define the defect operators

(3.3) Dp = |Jy = T*1I,T|%, Dpe = |Jo— THT'|3,
and the sign operators

(3.4) Jr =sgn(Jy — T*JeT), Jp« =sgn{Js — TJ1T*).

Using these, one defines the defect spaces Dy = W and Dy« = m)-: con-
sidered as Krein spaces with indefinite inner products determined by the symmetries
Jr € L(Dr) and, respectively, Jr+ € L(Dr+).

Notice that, with respect to the definition of the Krein space M 4 from Section 1,
we have Dr = H;_rap and Dp+ = H;_pps, when J; and J; are f.5. used in the
construction of the induced Krein spaces. In the following an important role will be
played by the selfadjoint operator A € L{K;[+]K2)

#
(3.5) A= [Il T ] .
T I
The Krein space H 4 is constructed using the f.s. J on K;[+]K
Ji 0 ]
3.6 J = .
(36) 15 .

LeMMA 3.1. There exists a unitary operator £2_ € L(H 4, K1[+]D7+), uniquely
determined such that

I, T#
3.7 02_|JAF = [ ] i
(37) A=
Proof. Consider the factorization
L 0114 0 I T#]
3.8 A=
38 [T Iz][o Iz—TT#][O I
. L T*] . . .
and notice that the operator 0 I is invertible. Then apply Lemma 2.7 and
2

obtain that the relation (3.7) determines uniquely a unitary operator

2. € L(Ha,Ki[+]D7-). [ ]
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LEMMA 3.2. There exits a unitary operator 2y € L(H,Dr[+]K;), uniquely
determined such that

(3.9) 2,74} = [DT 0 ] .

T I

Proof. Consider the factorization

I I T#T 0 I 0
L0 Iz 2 T I
and notice that the operator ;, I is invertible. Then apply Lemma 2.7 and

2
obtain the unitary operator 24 € £L(Ha, Dr[+]K3), uniquely determined by (3.9). =

Keeping a certain analogy with the abstract scattering theory, the operators 2_
and {2, can be considered as wave operators associated with the selfadjoint operator
A. Then it is natural to introduce the scattering operator

S(T) € LK1 [+]Dr+, Ka[+]Dr)
defined by

(3.11) S(T) = 2. 0°

THEOREM 3.3. The triple (S(T); Dr-,Dr) is an elementary rotation of T

Proof. Let S(T) be represented by the block-matrix

S 512}
S(T) = l,
@ [521 S22 |

with respect to the decompositions Ky[+]Dr- and K,[+]Dr. Using this, from (3.7),
(3.9), and the definition of S(T") (see (3.11)), we obtain

[
S21 S22110 Drsj Dr 0
and then, performing the product and identifying the corresponding entries in (3.12),
we obtain S1; = T and S;; = Dy.
Since £24 and £2_ are unitary operators, the same is S(T'). Also, S(T) is an
extension of T since
Px;,S(T)lxl = 511 = T

and the first minimality condition in (3.2) holds

KaVE(TK, =KV 81Ky = Ko[+]DrK; = K:[+]Pr,
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while the latter minimality condition in (8.2) is a consequence of the first, using the
fact that S(T) is a unitary operator. u

‘We can obtain now, as a first consequence of the existence of the unitary operator
S(T), an important relation concerning the defect signatures of 7.

COROLLARY 3.4. For any operator T € L(K,,K2), the following relations hold

(3.13) kT [K1] + k%[ — TT*] = [, — T*T) + £*[K2)
and
(314) ICO[IZ = TT#] =&’ [I1 - T#T]

Proof. Since $(T) € L(K1[+]Dr+, K2[+]Dr) is a unitary operator, we have
KE[K1] + 6% [Dr+] = £¥[K] + £*[Dr]
and then, using the fact that
kE[I - T*T] = x*[Dr], &*[l, — TT*) = £%[Dy.],

(see (2.32)) we obtain (3.13). As for (3.14), this follows directly form the factorizations
(3.8) and (3.10), since

ko[l — TT*] = k°[A] = &°[[; — T*T)
|

3.2. Link operators. The elementary rotation R(T). In [2], the existence of
elementary rotations was obtained using the existence of the so-called link operators,
which, roughly speaking, are the substitutes of the classical defect relations TDp =
D7+T, which are no longer true in Krein space. We show now that the existence
and the properties of the link operators can be obtained using the same pattern
which produced the elementary rotation S(T'). As a consequence, another elementary
rotation denoted R(T) is obtained.

We continue to consider Krein spaces K; and K2 with fixed f.s. J; and J,, and
an operator T € L(K1,K>).

PROPOSITION 3.5. There exists uniquely determined operator Ly € L(Dr, Dr.)
such that

(3.15) LrDp = Dp-JoT,
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and, similarly, there exists an operator L+ € L(Dr+, D7), uniquely determined such
that

(3.16) Ly« Dpe = Do J1T™.

Proof. We consider the Hilbert spaces (K;,(-,-)s;) and the selfadjoint operator
Hel(KioKsy),

Jy ™
H=
[T Jz}

which has two dual indefinite factorizations

. i L 0114 0 ] [I1 Jﬁ""]
3.17 H = 1 ,
( ) [T.}l Iz] [ 0 Jo—-TAHT* 0 I3
and

ILi T*LY[L—-T*J.T 0O ] [ I 0]

.18 H= .

(3.18) [0 I, ] [ 0 Jo) LT Iy

Using Lemma 2.7, from (3.17) we obtain a unitary operator (of Krein spaces) w_ €
€ L(Hp,K1[+]Dr+), uniquely determined such that

(3.19) w4Hﬁ=[h th,

0 Dp.
and, from (3.18) we obtain a unitary operator (of Krein spaces) wy € L(Hz, Kd+]Pr),

uniquely determined such that

Dr 07
3.20 +HE = .
(3.20) wrlgp =27 1]
Then consider the unitary operator U € L(K1[+]Dz-,K2[+]Dr)

U= w+w:1A

Representing U as a block-matrix with respect to the decompositions Ki[+]Dps and

K2[+]Dr
Un Ulz]
U= .
{Uzl Uz
from (3.19) and (3.20) we obtain

[Un Um} [11 J1T*]_[J2T 12]
Un Usal O Dpe]l | Dr 0}’
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and then, performing the product and identifying the corresponding entries, this imply
Uy = JoT, Uy = Dy, Uyp = Jo Dp+ Jr+, and

—Ugs Dpe = DTJlT*.

Denoting Lp- = =Usz € L(Dr-, D7), this proves the existence of the operator Lr+
such that (3.16) holds, and, since Dp«Ky = D+, we obtain also its uniqueness.

The statement concerning Ly follows in a similar way, using the unitary operator
U# = w_w;l. |

The operators Ly and Ly. are called link operators associated to T, J; and Js.

CoroLLARY 3.6. The link operators Ly and Lp+ have also the following prop-
erties

(3.21) (Jr — DrJ1D7)|Dr = Ly JrLr,
and, respectively

(3.22) (Jpe — Dpe Jo Dy )[Dpe = Lo JrLpe.
Moreover, Lt and Lt. are related by the following equality

(3.23) Lye = JpLy Jpe

Proof. As an outgrowth of the proof of Proposition 3.5, we have the unitary
operator U € L(K1[+]Dr+, Ko[+]Dr)

T Drpe Jpe
U=[J2 J2Dr T]

3.24
(3.24) Dr  —Lpe

and, since U# = U~! = w_w] !, the following equality also holds

w20 o

DT- —LT
Since U is isometry we have

[ ™Js Dr ] [Jz 0] [JzT JzDT-JT-] _ [Jl 0 ]’

JreDpeJy Ly |0 Jp)flDr  —Lr- | LO Jp.

and performing the products and identifying the lower-right entries we obtain (3.22).
Similarly, by writing that U# is isometric and using the representation in (3.25) one
obtains (3.21).
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From (3.24) and (3.25) we also have

[J1 o] T*J, JDT'HJ2 0]_[J1T* JIDTJT]

0 Jrpe Jre Dpe Jo —~Lpe 0 Jr - D —Ly

and from here, performing the products and identifying the lower-right handed entries,
we obtain the relation (3.32). |

REMARK 3.7. The relation (3.23) is equivalent with
LT' = L#)

which emphasises better the duality between Ly and Lyp..

REMARK 3.8. Since Dy and Dr+ are one-to one in the spaces Dp and, respec-
tively, Dr., we have

Ly 2 DFiT1\ Dy, Ly- 2 DF'TJyDr-.

Also, it is easy to see that DZ17J, Dy is densely defined in Dy and Dy 17* 1, Dp.
1s densely defined in Dr., hence, the existence of the link operators means that the
operators D;.ITJIDT and D;lT* JoDpe are bounded.

On the other hand, if the interwining relation 77, = JoT holds, then Ly =
= JoT|Dr and Ly- = JyT*|Dr-. In this case, the relations (3.15) and (3.16) read
simply Dy+T = TDy and DrT* = T* Dy., the classical “defect relations”.

As a consequence of Proposition 3.5 and its Corollary 3.6, the operator R(T) €
€ L(K1[+]Dr+,K2[+]D7) defined by

(3.26) R(T):[T re ]

Dy —LpJ

is an elementary rotation of 7. This elementary rotation is explicitly computed in
terms of T" and it plys a role in the dilation theory.

3.3. The spectral conditions (a); and («)-. In connection with the problem
of uniqueness of elementary rotation of a given operator, we introduce now a spectral
property. We need first to fix some terminology.

Let M be a Hilbert space and A € L(H), A = A*, and let o(A) denote its
spectrum. A real number ¢ is isolated on the left (on the right) with respect to o(4)
if there exists £ > 0 such that (¢ —¢,£)No(A) = @ (respectively, (t,t+£)No(A) = ).

Also, in the following A = A* — A~ will always denote the Jordan decomposition
of A.
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Consider again T € £(K1,K2) and fix J; and J; f.s. on K1 and respectively K.
The spectral properties ()4 and (a)- are introduced thus:

(a)+ 0 is isolated on the right with respect to o(J; — T"JoT).

(a)- 0 is isolated on the left with respect to o(Jy — T* JoT).

LEMMA 3.9. The properties (a)+ and (o) do not depend on the fs. Jy and J.

Proof. Let G; and G5 be two others f.s. on K1 and X3. Then
(327) G- 1]1(]1 - T*JQT) = Gl - TOGQT,

where T° denotes the adjoint of T with respect to 1 and Ga. Denote X = G1Ji :
: (K1, (-,)5) = (K1,(-,-)g,) and notice that X is the adjoint of identity operator.
Then (3.27) means that J; — T*J,T is congruent with Gy — T°G3T, via an invertible
operator. The rest of the proof now is a simple exercise in spectral theory of selfadjoint
operators in Hilbert spaces. =

In view of Lemma 3.9, the properties («)+ and {a)- are associated only with
the operator 7. These properties are also selfdual. More precisely, let us consider the
dual properties

()% 0 is isolated on the right with respect to o(J3 — TJ1T*).

(a)x 0 is isolated on the left with respect to o(J2 — TJ1T™).

LEMMA 3.10. T has the property (a)* (the property ()3 ) if and only if it has
the property (a)_ (respectively, the property (a)4).

Proof. Consider the Hilbert spaces (K, (-, )s,) and the selfadjoint operator H €
€ L(K1 & K2) as in the proof of Proposition 3.5. From (3.17) it follows that T has
the property (a)* (the property (a)%) if and only if 0 is isolated on the left (on the
right) with respect to o(H). Using now (3.18), the latter holds if and only if T has
the property (a)- (the property (o)4 ). =

In the following we will need other equivalent characterizations of the properties

(a)+ and (a)- which are consequences of spectral theory.

LemMMA 3.11. For any operator T € L(K1,K2) the following assertions are
equivalent:
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(i) T has the property (a)_ (the property ()4 ).

(i) (J1 —T*JoT)~ (respectively (J1 — T*JoT)*) has closed range.
(iii) J7 Dr (respectively J;} Dr) has closed range.
(iv) 0 is isolated with respect to o(J3 Dr) (respectively o(J} Dr)).

3.4. Uniqueness of elementary rotations. Two elementary rotations
(U;K1,K%) and (V;K1{,K4) of the same operator T € £(K;,K3) are called unitary
equivalent if there exist unitary operators ¢; : Ki — H,, 92 : K4 — H} such that

I 0] [Il 0]
U=V .
[0 P2 0

THEOREM 3.12. An operator T € L(K,,K;) has unique elementary rotation,
modulo unitary equivalence, if and only if T has either property (e)_ or property
(@)+.

Proof. Let (U;K1,K5) be an elementary rotation of T and assume that T has
either the property (a)_ or the property (2)+. Let U be represented by the block-
matrix

(3.28) U=[§Zﬂ

with respect to the decomposition K1[4]K} and Ko[+]K%. Fix fs. Jy, Jo, J{ and Jj
on K1,K3,K1, and respectively K£3. We consider the elementary rotation R(T) (see
(3.26)) and we will prove that I/ is unitary equivalent with R(T).

To this end, notice first that since U/ is isometric we have

(3.29) Jy —T"J,T = B*J.B.

Then notice that, by the first minimality condition in (3.2), it follows that B has
dense range hence, from (3.29) it follows that

(320) B= ‘P2DT:

where ¢ : R(Dr)(C Dr) — K}, is isometric and has dense range. Since JrR(Dr) C
C R(Dr) and according to Lemma 3.11 either J7 R(D) or JER(D) is closed, from
Lemma 2.3 it follows that ¢, extends to a unitary operator in £(D7, K5), also denoted

by 2.
We use now Lemma 3.10 to conclude that T has either the property («)% or the

property ()} and proceeding similarly as before we obtain

(331) A= DT“PI:
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where ¢, € L(K{,Ds») is unitary.

Since U is isometric we also have
T*J, A+ B*J4C =0,
whence, taking into account of (3.30), (3.31), and p3J5 = Jrys we obtain
T*JoDpepr + DpJre3C = 0.
From here and Proposition 3.5 we infer
(3.32) C = —paLyJpeipr.

Putting together (3.30), (3.31), and (3.32) we conclude that (U;K{,K%) is unitary
equivalent with (R(T); Dr.,Dr).

Conversely, let us now assume that the operator T has neither the property
(e)- nor the property (a)4. First we prove that there exists an isometric operator
V : R(Dr) — Dr with dense range, such that V is unbounded but ¥V D7 is bounded.

Indeed, using Lemma 3.11 it follows that there exists a decreasing sequence of
values {in}n>1 C 0(JF Dr), 0 < pp < 1, such that u, — 0 (r — 00), and also there
exists a decreasing sequence of values {¥s}ny1 C 0(J7 Dr), 0 < v, < 1, such that
vp = 0 (n — o0). Let {en}n>1 and {fa}n>1 be orthonormal systems of vectors in
Dr such that

en € B((p2 11, p2])K1,  fn € E([-v2, =2 ))K1, n 21,

where F is the spectral measure of J; — T*J,T.
We remark that there exists a sequence {As}n31 C C, 0 < Ay < 1, such that
An — 1 (n — o0) and

(3.33) , max{fin, vn}

8uj
n?I; V 1 - llﬂlz

(Indeed, |A,| = max{y/1 — p2, /1 — v2} works).
Consider now the regular subspaces of the Krein space Dy

< 0.

Pn = (cen 57 Cfn) C R(DT): nzl,

and the isometric operators X,, € L(F,)

1 =i
1 [ "}, nzl.

Xp = ———eee
SV us W EN VS |
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Using these define the increasing chain of regular subspaces of Dy
n
E,—, = [+] ¥ C R(DT), nzl,
k=1

and the sequence of isometric operators V,, € £(L,),

n

Vo=[+Xs, nzl
k=1

Then consider Dg = leJ1 Ly CR(Dr) and define V : Dg — Dr by
Vi€n=Va, nxl
Since VDy C Dy and JrDy € Dy hold, we have
R(Dr) = Do+(D(Dr) N Dy’)
and let V : R(Dr)(C Dr) — Dr be the extension such that
VIR(Dr)NDE = IIR(Dr) NDE.

Then V is isometric, it has dense range, it is unbounded (since op(V)2 U o(X,) is
n21

unbounded), and using (3.33) it is easy to see that
B =VDr € L(K1,Dr).
Further, since V is isometric it follows
J1 = T*J,T = B*JrB,

and then considering the operator T, = [T B € L(Ky,K2[+]Dr) from here it
follows that T is isometric , in particular R(T:) is a regular subspace of Ka[+]Dr.
Let K; denote the orthogonal complement of R(7%)

Kal+1Dr = R(T.)HIKS.
If R denotes the inclusion X} < Ko[+]Dr then

[Jz 0

3.34
(3.34) 0 Jr

] - T.\T; = RJ{R",
where J] is a fixed f.s. on K{. Defining U € L(K1[+]K{, K2[+]Dr)

U=[T. R],
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we claim that (U; K4, Dr) is an elementary rotation of T
Indeed, U is an extension of T and it is isometric since
Ja 0 ' J2 0
R* R= J', R [ ] T.=0
[ 0 JT] ' 0 sl
hold. Using (3.34) it folows that U# is also isometric. Now the analog of the mini-
mality conditions (3.2) hold since B has dense range and U is unitary.
Finally, the elementary rotations (U; K4, Dr) and (R(T); Dr-,Dr) are not uni-
tary equivalent since V' is not bounded. [

4. THE ROLE OF ELEMENTARY ROTATIONS IN DILATION THEORY

4.1. Minimal unitary dilations. Let X be a Krein space and T € L(H). A
unitary dilation of T is, by definition, a pair (I/; K), where K 2 H is a Krein space
extension of M, U € L(K) is a unitary operator, such that

(4.1) PEUH =T, n>1l
Notice that if (4.1) holds then
(4.2) PEU*H =T**, n>0.

A unitary dilation (U;X) of T € L£(H) is a minimal unitary dilation (in brief,
m.au.d.) if

(4.3) K=\ U
nel

Begining with the theorem of B. Sz.-Nagy [20], the existence of a minimal unitary
dilation has been proved for more and more general classes of operators by C. Davis
[9], P. Sorjonen [19], and T. Ya. Azizov {3] (see also [4]). In [7] we generalized the
Schiffer form of a minimal unitary dilation of an arbitrary bounded operator acting
in a Krein space.

In the following we fix a Krein space H, an operator T € L(H), and a f.s. J
on H. With respect to these, the defect operators Dy and Dr-, the sign operators
Jr and Jp., and the Krein spaces Dy and Dr. will be considered (see Section 3).
Also, recall the definition of the Krein spaces of the type I2(¥) (see 2.3). We begin
by realizing a minimal unitary dilation as an elementary rotation.

PROPOSTION 4.1. We consider the trivial extension of T (with 0), denoted
T : H[+)3(Dr) — H[+)i*(Dr-). Then, identifying naturally the Krein spaces



150 TIBERIU CONSTANTINESCU and AURELIAN GHEONDEA

Dr[+)13(Dr) with 12(Dp) and Dr.[+]i*(Dr-) with 1>(Dy.), the pair (R(T);K) is
a minimal unitary dilation of T, where

(4.9 K = 3(Dp)[+H[+HB(Dr).

Proof. With respect to the decompositions H[+]i*(Dr) and H[+]{%(Dr- ), T has
the representation

(45) =[5 o
hence
(4.6) Dz = [%T III"’?‘DT)] y Dre= [Dg. Illz((;?r-)]

and then obtain Dy = Drp[+]i%(Dr) and Dj. = Dy« [+)I3(Dr-). From (4.5), (4.6),
and the uniqueness of link operators it follows that Ly is the trivial extension of Lr.
and then, identifying naturally D4 with {?(Dr) and Djz. with I>(Dr.), the elementary
rotation R(T) € £(K) has the representation

I0 0 0 00
0 I 0 0 00
4.7) R(T) = 00 Dr T oo
0 0 —Lgdre | Dr 0 O
00 0 0 I 0
00 0 0 0 I
i : 200

with respect to the decomposition (4.4). R(T) is unitary (since it is an elementary
rotation) and the axioms (4.1) and (4.3) can be readily verified. -

We shall refer to the minimal unitary dilation constructed in Proposition 4.1. as
the canonical minimal unitary dilation of T'.

The construction used in Proposition 4.1 is actually more general, more precisely
to any elementary rotation of 7' one can associate a minimal unitary dilation of T
which is an elementary rotation of a trivial extension of T. In order to characterize
the m.u.d. of this type we need some more notation.

Let U € £(K) be a unitary operator . A subspace £ C K is called wandering for
U is £ is nondegenerate and

(4.8) UPL LU, pg€l, p#q.
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Since U is unitary, (4.8) is equivalent with
(4.9) UrCLL, nel, n#0.
If (U;K) is a m.ud. of T € L(H), one defines the subspaces £ and Ly in K,
(4.10) L=-T)H, Ls=(U*¥ _T#H,
and also the subspaces

(4.11) ML) =\ UL, M_(Ly) =\ ULy
Ao ng0

LEMMA 4.2. For any m.ud. (U,K) of T, the subspaces £ and Ly introduceed
in (4.10) are wandering for U. In addition, the subspaces My (L) and M_(Ly) are
nondegenerate, mutually orthogonal and orthogonal to H, and

(4.12) K =M_(Le) VHV Mp(L).

Proof. Let h,k € ‘H be arbitrary and consider n a positive integer. Then, using
(4.1) we have

[U™(U — T)h, (U — T)k] = [U"t h,Uk] — [U"Th,Uk] - [U™**h, Tk]+

+[UTh, Tk] = [T"h, k] — [T"h, k] = [T***h, Tk] + [T"+'h, Tk] = 0.

From here we infer that (4.9) holds.
Also, for h,k € H and n > 0, we have

[U™U = T)h, k] = [Uh, k] - [UTh, k) = [T+ h, k] - [T A, k] = 0,
hence
(4.13) ULL1H, n2z0.
Similarly it can be proved that the following hold
(4.14) ULy LLy, n€EZ n#0
and

(4.15) U#"Ly LH, n20.
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Moreover, we have

(4.16) UPL LU*Ly, p,¢>0,

and, using the definition of the spaces £ and Ly, it is easy to prove that
HVUHV..VU"H=HVLY..VU*"IL, 23>0

and
HVU*HV .. .VUH =HVL, V.. VU*DL, 030

From (4.17) and (4.18), it follows that the minimality condition (4.3) implyes
(4.12). Then, taking into account that (4.13), (4.15) and (4.16) infer that M, (L),
M_(Ly), and M are mutually ortogonal, using (4.12) we obtain that M, (L) and
- M_(L,) are nondegenerate. At their turn, these imply that £ and L4 are nondegen-
erate (for this we use (4.9) and (4.14)). Finally, £ and Ly are wandermg spaces of U
since (4.9) and (4.14) hold. =

CoROLLARY 4.3. For any m.u.d. (U,K) of T' € L(H), the following assertions
are equivalent:

(a) £ is a regular subspace.

(B) L4 is a regular subspace.

(v) HVUH is a regular subspace.

(6) Hv U#*H is a regular subspace.

(n) PEyunUIH vV U#*H is an elementary rotation of T.

Proof. Taking into account that £, L4, and H are mutually orthogonal and
specializing (4.17) and (4.18) for n = 1, we get
HVUH =H[+|L
and
HVU*H = H[+]Ly.

Then notice that
"UHVU*H) =HVUH.

The equivalence of the five assertions follows now easily. n

We are now in a position to characterize those m.u.d. of T which are elementary
rotations of trivial extensions of T

PROPOSTIONS 4.4. Let (U;K) be am.u.d. of T € L(H). The following assertions
are equivalent:
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(i) M(L) is a regular subspace of K.
(ii) M-(Ly) is a regular subspace of K.
(iii) Modulo the identification of M (L) with UM, (L) and of M_(L4) with
U#M_(Ly), (U;K) is an elementary rotation of a trivial extension of T.
Proof. (i) = (ii). If either M (L) or M_(Ly) is regular, then using Lemma 4.2
we obtain the following decomposition

K = M_(£)[+IH[+]1M4(L),

hence both of M, (L) and M_(Ly) are regular.
(iii) = (i). Let T : H[+]H1 — H[+]H2 be a trivial extension of T, such that U
is an elementary rotation of 7. Represent

v=[5 o
with 4 : K1 — H[+]H2 and B : H[+]H;1 — Ki, R(A*) is dense in K; and R(B) is
dense in K4. Since U¥# is isometric we have
I-TT* = AA*.
Then representing A = [A; As), A1 € £L(K1,H) and Az € L(K1,H2) we have
AsAt =0, AA¥ =1, AAF=T-TT*

In particular, A¥ is isometry, hence R(A¥) is a regular subspace of Ky and, since
R(A%) L R(A¥) and R(4*) is dense in K; it follows that R(A¥) = R(4¥)* is also
a regular subspace of Xy and

(4.19) K1 = R(ADHIR(AT).

On the other hand, since the m.ud. (U,K) is obtained from the elementary
rotation by identification of two pairs of subspaces, from (4.19) it follows that with
respect of the action of U on K we have

(4.20) K = Ki{[+]K:1 [+ H[+]H1,
where
(4.21) Mo = K1[+]K%;

and A is represented by the block-matrix

4 0
A_[O Az]’
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with A; € £(K1,H) such that 41 A¥ = I — TT*, R(A}) is dense in K, and Aj €
€ L(K1;,H2) is unitary.
Similarly, with respect to the action of U# on K we have

(4.22) K = Ha[+HH[+]K2[+]KY,
where
(4.23) Hy = Ko[+]K5

and B is represented by the block-matrix

B [Bl 0 ] ,
0 B
with By € L(#,K>) such that BfBl =] —-T*T, R(B,) is dense in K3, and B; €
€ L(H1,K%) is unitary.
Further, with respect to the decompositions (4.20) and (4.22) of K, U is repre-
sented by

A4 0 [0 07
0 A | T 0
(4.24) U= 1,
0 ¢ |B o
0 0 |0 Bl

T A

] is an elementary rotation of T'. Then,
B, C

where A; and B> are unitary and [

from here we obtain
L=BiH=K:CH;

and UL C Hy, n =1, hence
(4.25) M (L) C Hi.
Similarly, from (4.24) we also have

Lo=AFH =K, CHs
and then U#" L, C M2, n > 1, hence
(4.26) M_(L4) C Ha.

Using Lemma 4.2, from (4.25), (4.26), (4.20) and (4.21) it follows M, (L) = H; and
M_(L4) = M2, hence these are regular subspaces of K.
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(i) = (iif). Assume that My (L) is a regular suspace of X, hence the same is
M_(L4). Using Corollary 4.3 it follows that, with respect to the decomposition of

the domain )
K = U* M_(Lq)H Lo [+IH[+H] M1 (L),

and the decomposition of the range
K = M_(C)+HHHLHIU M ()

U is represented by the block-matrix in (4.24), where A, and B are unitary operators

T A . .
and ( [B 1] s Lu, ﬁ) is an elementary rotation of T'. Then, modulo the identifi-
1

Cy
cation of My.(L) with UM, (L) and of M_(L,) with U#*M_(Ly), U is an elementary
rotation of the trivial extension 7' : H[+]M4(L) — H[+]|M_(Ly) of T. o |

As a consequence, we can characterize those operators T having the property

that any m.u.d. of T is an elementary rotation of a trivial extension of 7.

ProrosiTiOoN 4.5. If T' is an operator on the Krein space K, then the following
assertions are equivalent:

(i) Aoy m.u.d. (U;K) of T is, modulo the identification of M4 (L) with UM, (L)
and of M_(Ly) with U* M_(Ly), an elementary rotation of a trivial extension of T.

(il) min{x~[I — T#T], k*[I — TT#]} = minx—[I — TT*],xH[I — T#T]} = 0.

Proof. (ii) = (i) Let (U;K) be a m.u.d. of T. Then for arbitrary h,k € H we
have

(U — TYh, (U = T)k] = [(I = T*T)h, k]

and
[(U* —T*)h, (U* — T*)k) = [(I - TT#*)h, k].

Then we obtain from here
k(L] = k*[1 - T*#T|, &*[Ly] = w2 - TT*].

Since the hypothesis (ii) holds it follows that since the hypothesis (ii) holds, either
L and Ly are definite subspaces of the same sign, or at least one of the subspaces £
and Ly is null. Taking into account that, from Lemma 4.2, we obtain

(4.24) M_(Ly)V M (L) = KnH,

in the first case M_(Ly) V M4 (L) is a uniformly definite subspace of K, hence both
of M_(Ly) and My (L) are uniformly definite subspaces. In the latter case, either
M_(L4) is null or M, (L) is null hence, using again Lemma 4.2 we conclude that
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either My (L) = KNHL or M_(Ly) = KNHL. We proved that, in any case, the
subspaces My (L) and M_(Ly) are regular. Applying now Proposition 4.4 it follows
that (i) holds.

(i) = (ii). Assume that (ii) does not hold and we will produce a m.u.d. (U,K)
of T such that the subspaces My (L) and M_(Ly) are not regular.

To this end, let us first note that, as a consequence of (2.32) we have

KE[I - T*T) = x*([Dr], #*[I - TT*] = £*[Dr+]

Since (ii) does not hold, from here we obtain that there exist two vectors e € Drp
and f € Dy- such that e anf f are definite of opposite sign. Taking into account
the definition of the Krein spaces Dy and Dp., without restricting the generality we
can assume that e € R(Dz), f € R(Dzp+), e is positive in Dr+, f is negative in Dy,
and (e,e) 7, = (f, H)ips =1 (recall that Jp and Jp- are f.s. on Dy and, respectively,
Dr+).

We consider now the Krein space

(4.25) K = B(Dr)[+H[+3(Dr)
and denote
(4.26) B(Dr) = SB(Dr) C P(Dr), E(Dp.) = SE(Dr.) C I3(Dr+),

where S is the right shift operator (see Section 2.3). We will define now a bounded
unitary operator

(4.27) V : §(Dre)[+)P%(Dr) — 1*(Dr-)[+]E(Dr).
For any integer number k > 1 we define the vectors
£*® position
ex = 0[+] - [+]0[+]e[+]0[+] - - € P*(Dr),
&*2 position

fi = 0[+] -+ [+HO+]f[+]0}] - -- € *(Dr-),
and using these define vectors z, yr € I2(Dg+)[+]22(Dr) by

k+1

4.28 =
(4.28) o V2k2 + 2k +1

(Fiphbte), #>2

k41 k
4.98 - s+ E> 2
(4.28) b (fk[ e )



ELEMENTARY ROTATIONS OF LINEAR OPERATORS IN KREIN SPACES 197

and z, = 0[+]e1, ¥ = f1[+]0.
Consider the subspaces

B(CHHP(Ce) € B(Pr-)[+]F*(Dr)

and
P(CHI+IB(Ce) € P(Dr) [+l (D).
Then define
Vyk = Yr=1, k }‘ 25
(4.30) {Vzk = Tpyt, k21,

and extend V by linearity. V is isometry, with domain dense in 2(C f)[+]!?(Ce) and
range dense in I2(Cf)[+]i?(Ce). We prove that V is bounded.
Indeed, from (4.28) and (4.29) we have

VIRT R F 1
(2k + 1)V2k? + 2k + 1 (zk_ k ) b2

Of+ex = 20k + 1) P+

2k +1)V2k2+2k+1 (  k )
fk[+] kz(k-}-l) k+1?8k+yk ) k22

and then, using (4.30) we obtain for any & > 2

(2k + 1)V2k2 + 2k + 1 k+2 (k+1f e )_
k2(k + 1) VokE 4 6k +3 \k+2° HT R

- le )

(2k+ )WVIEE + 2k +1  k(k+2) (k+1
k2(k + 1) VOEZ+BE+3 \k+2

V(0[+]ex) =

kz
T (k+1)V2kZ -2k + 3

(fk_lm u

and

V(£ [+]0) = fk+1'[+]ek+1) +

+ﬁ+—‘ (fk 1[+] ek 1)
From here it folows that, with respect to the Hilbert space orthonormal basis {fi; &
B0,0 6 e, }k> 1, V has a tridiagonal matrix representation such that each diagonal is
uniformly bounded, hence V is bounded and extends uniquely to a unitary operator

(4.31) V : B(CHHIP(Ce) — P(CHHIE (Ce).

We remark now that Ce is a regular subspace of Dr and Cf is a regular subspace
of Dr- so let $ C Dr and ¥, C Dp- be their orthogonal complements, Ce[+]¥ = Dr
and Cf[+]¥f. = Dr.. Then we have the natural identifications

P(Dr) = PCe)[HP(F), £(Dr-) = PCHHP(F.).
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With respect to these, we extend V to a umitary operator as indicated in (4.27) by
letting

(4.32) V(y[+lz) = S*y[+]S=z, =z € B(P), y € B(%.).

We extend now V' to a unitary operator in L(K), where K is given in (4.25). To
this end, note first that as a consequence of (4.26) we have the decompositions

P(Dr) = Dr[+)3(Dr), 1*(Dr-) = Dr-[+)E(Dr.),
and then extend V to the whole K be letting
(4.33) V|Dre[+]H = R(T).

From the construction of the unitary operator V it follows easily that (V,K) is a
m.ad. of T. It remains to prove that M4 (L) is a not regular subspace of K. To this
end, note first that, using (4.30), (4.32), and (4.33) we obtain

My (L) = (P)[+] \/ Czs.
k21

Now My (L) is not regular since (z, ;) = 1 but

2k +1
[IL-, :k] (2’62 ¥ % +_1) — 0 (k hnd 00)
Finally, using Proposition 4.4 it follows that (i) does not hold. [ |

As a consequence of the preceding result it is possible to investigate the unique-
ness of m.u.d. of a given operator T. In order to do this we need first to recall some
definitions.

Twom.u.d (U1,K1) and (U, K3) of the operator T € L(H) are unitary equivalent
if there exists a unitary operator W € £(K1,K2) such that W acts as the identity
operator on H and WU, = U,W.

COROLLARY 4.6. The operator T € L(H) has unique m.u.d. up to unitary
equivalence if and only if T is either doubly contractive or doubly expansive.

Proof. If the operator T is either doubly contractive or doubly expansive, any
m.u.d. of T is unitary equivalent with the canonical m.u.d. of T (see Proposition 4.1)
e.g. as indicated in (8, Theorem 1.4].

Conversely, if T is neither doubly contractive nor doubly expansive then one of
the following statements holds:

(a) Either Dr or Dy« are indefinite.
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(b) T satisfies the condition (ii) in Proposition 4.5.
In the first case, we can follow the pattern used by C. Davis [9] to construct a m.u.d.
of T which is not unitary equivalent with the canonical m.u.d. of 7. In the latter
case we use Proposition 4.5 to produce a m.u.d. (U,K) of T such that M, (L) is not a
regular subspace of K. Then this is not unitary equivalent with the canonical m.u.d.

of T. ' [}

4.2. Characteristic functions. Let (U,K) be a m.u.d. of the operator T €
L(H), such that the subspaces £ and Ly, introduced in (4.10), are regular. Then, for
arbitrary intéger n 2> 1, we can define the regular subspaces

n4-1
(4.34) Mu£)= \/ U* L, M™Ly)= \/ ULy

k=—n+1 k=—n

Denoting by Pﬁn( La) the selfadjoint projection onto the regular subspace M™(Ly),
we can introduce the operator Qn € L(M, (L), M"(L4))

(4.35) Qn = Pz )| Ma(L).

Considering now the unitary operators 2(") : ﬁi""'l — M"(Ly),

2n+1
(4.36) QW(f)2nH = E rk-n-1f,
and 2(n) : L2 — M, (L),

2n+1

(4.37) 2n)(fe)inf’ = Z U,
(recall that H™ denotes the Krein space direct sum of n copies of the Krein spaces
#), we can introduce the operator @ : £?*+1 — £2+1
(4.38) O, = Q(n)#Qnﬂ(n).

On the other hand, since £ and £4 are regular subspaces, according to Corollary
4.3, (U; L4, L) is elementary rotation of T, where U = Pyi11c UIH[+]Ly. Consider
the representation

) o= 4]
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PROPOSITION 4.7. With respect to the canonical decompositions of the Krein
spaces L2*+! and L2P1, O, has a lower triangular Toeplitz block-matrix represen-

tatio.ﬂ, 9,, = ((9,-.),, '?:;:i, Wbel'e

0, -3 <0,
(9’1)"5 = {C#) i:J:

A#T#G-B# [ j>0.

Proof. For arbitrary k and p, —n € k< nand —n+1p<n+l asa
consequence of the definition of the operator @, we have

[6n 08U e, QU fl = [U* 70, /1, f €Ly, 9EL

From here, using the definition of A, B and C we obtain the formulae (4.40). a1

From the preceding result it follows that the “symbol” of O, is the 2n + 1-th
polynomial approximant of the Taylor expansion, in a neighbourhood of the origin,
of the operator valued function -

(4.41) O()) = —C* + MA*(I = \T*Y"1B*, g€ Ar,

where A = {A € C|I — AT* is invertible}. This operator function plays the role of a
characteristic function associated with the m.ud. (U;K) of T
Using the fact that U in (4.39) is unitary, it can be proved that

I—-0(\*0(p) = (1 —Ip)B(I = AT)"YI - pT)*B*, X\ p€ A,

which is a property usually fulfilled by this kind of functions.

In the ramaining part of this section we will show, that the approach used in
constructing the elementary rotation (S(T'), Dp+,Dr) as in Theorem 3.3 leads also to
the definition of a characteristic function.

We consider the selfadjoint operator An41 € L(H"*!) defined by the block-
matrix

I T# T#2 ... T#n

‘ T I T# ve. T#n-1

(4.42) App1 = T2 T I T#n—2
T -l -2 I

¥J dgnoted a fixed f.s. of H then let J,41 be the direct sum of n + 1 copies of J.
Jny1 is a fs. of HAHL,
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LEMMA 4.8. There exist unitary operators .QS"'H) : Hany, — H[+]D}. and
.Q_(}_"H) : Ha — D}[+]H, uniquely determined such that

I T* ... T#n A
. 0 Dp. --- Dp.T#n-1
(4.43) 20| g Apa|F = . :
Daps
and
Drp 0
DT Dy 0
(4.44) O gy A | = : .
' DrT*=! DpT™2% ... Dp 0
™ ™1 .. I

Proof. We consider the factorizations of A4y

I I T# ... T#n
T I 0
,2 I-TT* 0 0 I
Appr=|T2 T
: : 0 | 0
R I~TT* I
and
I T# ... T#n 0
o 1 T I 0
Ani1= 2T
i 0 I-T*T L
. Al :
™ Tn-1 I

Applying Lemma 2.7 to these factorizations we obtain the unitary operators .Q(:H)
and 2"*" as in (4.43) and (4.44). u

Using the preceding result we can introduce a unitary operator Snp41(7) :
: H[+]Dg. — DR+]H by
(4.45) Snp1(T) = g£n+1)g£n+1)#_

Note that with respect to the definition (3.11) we have S{T') = Si(7") and consider

its representation

TA}
B CJ°

(4.46) S(T) = [
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ProPosITION 4.9. With respect to the natural decompositions of H[+]D%. and
DE[+IH, Sa+1(T) has the following block-matrix representation

[ B c 0 e 0 0]
BT BA
(4.47) Spa(M=} + |,
BTl BT™-24 BT""34 ... BA C
™ T4 o TA TA A

Proof. The unitary operator S,41(7) is uniquely determined with the property

I T ... T#n Dr 0
DTT .DT 0-
Dpe - DT-T#ﬂ'"l N
Sn+1(T) 0 . = : .
’ DpT™=Y DyT™2 ... Dp 0
Dr- n -1 L. I

By direct computation it is easy to verify that S,+1(7") has the block-matrix repre-
sentation as indicated in (4.47). n

The n x n lower triangular Toeplitz block-matrix in (4.47) leads now to the
definition of an operator valued function of the type considered in (4.41).

REMARK 4.10. If one uses the canonical m.u.d. of 7" (see Proposition 4.1) then
the analog of the definition in (4.41) is the operator valued function @r

(4.48) Or(X) = —LpJr + ADp« (I = AT*)"1D¥, X € Ar,

(where Dr € L(H,Dr) and Dp. € L(Dr.,H)) which was introduced in [7] as the
characteristic function of 7. One can obtain this function by generalizing the pattern
used in Proposition 3.5 as suggested by Lemma 4.8 and Proposition 4.9.

On the other hand, since elementary rotations are in general not unique, the
results from this section show that the same geometric properties (e.g. minimal uni-
tary dilations or scattering theoretical interpretation) lead to possibly non-unitarily

equivalent characteristic functions.
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