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QUASICENTRAL APPROXIMATE UNITS
FOR THE DISCRETE HEISENBERG GROUP

DAVID BERNIER

Let G be a group on generators g1, . .., §, and consider the n-tuple of left transla~
tion operators A(g1), ..., A(gn) in £2(G). 1t is 2 general problem ([6], [7]) to determine
for which normed ideals of operators 7 (see [4]) there is a quasicentral approximate
unit for A(g1),...,A(gn) relative to Z.

The only groups for which this question was settled were the groups Z" (see [6])
and the non-commutative groups G containing a free semigroup on 2 generators (see
[8]). Here we will deal with this question for the discrete Heisenberg group. Our
approach makes an essential use of the Kohn laplacian and its fundamental solution
on the continuous Heisenberg group.

The right scale of ideals for this question is that of the C; ideals, which are
a bit smaller than the C, ideals of Schatten and von Neumann. We also have that
C, = C(p, 1) on the so-called Lorentz scale of ideals.

It is harder to show the non-existence of approximate units than to show their
existence. We will show that there is no quasicentral approximate unit for the A(g;)
of the discrete Heisenberg group (a subgroup of the order 3 continuous Heisenberg
group) relative to the ideal C; . The index 4 corresponds to the polynomial order of
growth of the group, as was found to be the case for the groups studied previously. The
detailed statement of this result is contained in Theorem 1 at the end of the paper.
Our solution involves a discretization of a continuous potential function. Though
random walks on discrete groups do not appear explicitly below, much of what we
are doing seems related to random walks.

This work is part of my Ph.D. dissertation written at the University of California,

Berkeley under Dan Voiculescu.
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1. PRELIMINARIES

Hj is R equipped with the composition law
(1) (u1, 91, w1)(ug, va, wa) = (u1 + Uz, vy + V2, w1 + W2 + u102)

The discrete Heisenberg group, which we will denote by I, is then the subgroup
of Hj consisting of elements of Hs with integer components.

We will introduce some symmetrically normed ideals, and refer the reader to
(3, 5] for more details. For 1 < p < 0o, Cj is the ideal given by the norm

Tl =335t
j=1

where A; 2> Ay > Xa 2 .- - are the eigenvalues of (T‘T)%, arranged in decreasing order
and taking into account the multiplicities. C; is the closure of the set of finite rank

operators with respect to the | . | norm. C} is the ideal given by the norm

>

™=

Aj
i=1
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where the A;, 7 2 1, are defined as above. C;* is the set of compact operators for

which this norm is finite. Cj is not the closure of the finite rank operators with
respect to the | . [¥ norm (see [4]). For 1 < py < p2 < p3 < 00, we have

Cp, C C;, C Cp, CCFf, C Cp,
. 3
AR I
(Cy is the ideal given by the norm |T|, = Zz\?) JIf ; + p =1, then C; = C
Ju=1
and C;* = C} (1 < p < ) (see [4] for more details).
For an n-tuple (T,...,T,) of operators and an ideal Z with norm | . |z, we define

(see [6])

(2) kz((Th,...,Tn)) = lim inf( sup |[[Y,T;]iz)
YeR} igign
where R; is the set of finite rank positive operators in the unit ball of L(%). For
1 £ p < o0, we denote k¢, and kc; by k, and k;, respectively.
The properties of the invariant kz and its relation to the existence of quasicentral
approximate units are discussed in [8]. If 2 C £(#) and Z is an ideal with norm | . |z,
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we will say that there is a quasicentral approximate unit for {2 relative to Z(%) if there
is.a sequence X; € RY, X; 1 I such that Jlil’glo [[X;,T)lz = 0 for every T in £2 (from
[8]) where Z(%) is the closure of the set of finite rank operators in the | . |z norm. Then
the existence of a quasicentral approximate unit for {2 is equivalent to the requirement
that kz(7) = 0 for all n-tuples of operators 7 with components in 2 (for any natural
number n).

Suppose G is an infinite discrete group with operators g1,...,gn. Let A(g;) for
1 £ i € n, be the unitary operator on £2(G) defined by v

Mai)eg = Eqig

(where {¢; : ¢ € G} forms a Hilbert basis on £2(G)). We wish to give estimates of
kz(A(g1),...,A(gn)) for various ideals T with norm | . |z. The following lemma, whose

proof is similar to that of lemma 3.2 in [7], will be used to prove Theorem 1.

LEMMA 1. kz(A(g1),-..,A(gn)) > 0 if there exist functions Gj on G (for1 € j <
< n) such that

n
(i) > _(Gi(g;9) - Gj(9)) = 6°(9)
i=1
(where 6° is the unit mass measure at the identity e of G)
(i) | G; € £(GY"
where the duality is given by (£,G;) = ngGj (g). (L’(IO)(G) is the Banach space

9€G
obtained by completing Cx(G) in the | . |z norm. For £ € Ckg(G), and j: N* - G

a bijection, we define €|z to be Z({ o j)(i)e;‘ where the e;, 1 € ¢ < 0o are rank
H I

o]

one orthogonal projections such that Ze,- = I. This amounts to defining ||z to be
i=1

the | . |7 norm of a diagonal operator whose non-zero diagonal entries (in standard

matrix form) are all the values £, for all g € G, repeated according to multiplicity.)

2. USING THE FUNDAMENTAL SOLUTION

We will now introduce the Kohn laplacian for H3, denoted Ag, and its funda-
mental solution U/. We have

2 2 2 82
0 0 + 2u 9 +u26—

3 - 4 2
3) Ax 8u? + 8v2 Svdw Ow?
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By changing coordinates in the fundamental solution for Ax given by Folland
in [2], we get that U, as defined below, is, up to a scalar multiple, a fundamental
solution of Ax (in our coordinates)

(4) U(u,v,w) = ((u? + 9%)? + (2uv — 4w)*)~5
Since

_aaaaa_q_p_zia_)
®) AK“E‘J(E&)*‘%(%”%)ww (“au+“aw

it follows that the vector field F, where

_ {8y ou oU U QB_U)
(6) Flu,v,w)= (5;,50—+ua—l;,uay +u' o

satisfies divF = 0 in H3\ {(0,0,0)}.
If we let F = (Fy, F», Fs), then one can compute that
Fi(u, v, w) =(=2u® ~ 6uv? + 8vw)((u? + v?)? + (2uv — 4w)?)~ %
Fa(u, v, w) =(2u?v — 8uw — 263)((u® + v%)? + (2uv — 4w)?)~ %
Fa(u,v, w) =(2uv — 8u?w — 2uv®)((u? + v?)* + Quv — 4w)?)~3

It is then easy to show that

(N Fi(au, av,0®w) = a™3F;(u,v, w)
and that
(8) Fy(au, ov, o®w) = a~3Fy(u, v, w)

for any non-zero real number o. We also see that Fy = uFs.
We introduce the following function N on R®

(9) N(du, dv, dw, u, v, w) = (du? + dv® + (dw — udv)?)¥
(see [5]). Then it is easy to see that
(10) N(Fl(u: v, ‘U)), FZ(“)”: w): Fa(u,ft), w); U, U,‘LL’) - (Fl(u’ v, w)2 + F2(u1 v, w)2)§-

It follows that

N(Fi(au, av, o?w), F3(au, av, o’w), F3(au, av, o?w), au, av, o?w) =
= aﬁaN(Fi(u: v, w): FZ(“: v, W), FS(“: v, w): U, v, w)

(11)
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for any non-zero real number «.

3. METRIC ESTIMATES

We now introduce the Carnot metric on H3
(12) ds? = du? + dv? + (dw — udw)®

(see [5]). We will now show that, if d is the geodesic distance on Hs given by (12),
then

(13) 4((0,0,0), (u,v,0)) < ful + [o] + 4fu] .
Indeed, from (12) one sees that
d((0,0,0),(x,0,0)) < |u]

and
d((0,0,0),(0,v,0)) < [v|

(using a straight line path). We now assume wg > 0 and give an estimate for
d((0,0,0), (0,0,wp)) using the path (parametrized by #, 0 <t < 27)

u(t) =asin(t)
v(t) =a — a cos(t)

a2
w(t) =T(2t — sin 2t)

- (2)’

Then one can compute that the length of this path in the metric given by (12) is

where we fix

ora = 2r¥wi < 4w}
Ta =213wi < 4wg

Left invariance of the metric implies d{g~1,¢) = d(e, g) for any g € Hg, and it
follows that
d((0,0,0),(0,0,w)) < 4ful*

for any w. We have (u,v,w) = (0,0, w)(0,v,0)(«,0,0), and the triangle inequality
gives
d((0,0,0), (v, v, w)) < d((0,0,0), (0,0, w)) + d((0, 0,w), (0,0, w)(0, v, 0))+
+d((0,0,w)(0,2,0), (u, v, w)).
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By the left invariance of the metric and the previous estimates, (13) follows.
Now we have
ag  X©0,0,uv,0) < Jul + ol + 4lul? < Gmax(ful bl ful) <
< 6((u2 + ,02)2 + wz)-‘;
If we let S denote the surface given by
(uZ + v2)2 + w2 - 1,

then Fy and F, are bounded on S, and it follows from (7) and (8) that there is a
K > 0 such that
[Fi(u, v, w)] < K((u? +v?)? 4+ w?)~%
(15) |Fa(u,v, )] € K((a +97) + w?)73
for any (u,v,w) € Ha \ {(0,0,0)}.

It now follows from (10) and (15) that
(16) N(Fi(u,v,w), Fo(u, v, w), Fs(u, v, w}),u,v,w) < 432Kd((0,0,0), (u,v, w))™3.

In I', we let g1 = (1,0,0) and g2 = (0,1,0). Then g; and g, generate I, and
for any g € I', we define the algebraic norm of g, denoted |g|, to be the least integer
k > 0 such that there exist #;,...,4¢ € {1,2} and €y,...,&x € {~1,1} such that
gl -gif =g, and set |e| = 0. (see [5])

Then g7"g;" 9795 = (0,0,n%), and we conclude that [(0,0,n%)| < 4n for any

> 0. It is now easy to show that [(0,0, k)| < 12[k|* for any integer k. For a general
element g of I', say g = {m, n,p), we have

g = (0,0,p)(0,n,0)(m,0,0),
and we conclude that
(17) gl < 121pl% + In] + |m.

We now want to give a lower bound for d(e, g) for a general element g € Ha. (see
(12)) It is trivial that, for g = (u, v, w) € Hs, we have d(e, ¢) > |u| and d(e, ¢) > |v|.
We will now show that also

de,g) > ('“’" 31 l)

Suppose we have C! functions a, 3, and 7y defined on [0, 1] such that

a(0) = B(0) =v(0) =0 and a(l)=u, f(1)=v, ¥(1)=w.
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Let s be the length of this path in the metric given by (12), so

o= [P + P07 + (/@) - 0B ) et

1 1 :
Then we have s > /|a’(t)|dt and s 3> /lﬁ'(t)ldi. Suppose
0 0

/ o/ ()]dt < —i— and / 18'(8)]dt < %
Then
1
j () - af (1)t > ©)dt| >
1 1
w- [a@p @] > ul- / a(t)B' ()it >
0 0
1 1 Ié‘
ul = [ la@)iF©ldt > ol - f BE g >
0
|w|‘} jwt _ 3
> ol - LEIE 3,
So we have
. (|w|% 3 )
§ 2 min ,=|w| |, for any e, # and ¥
2 4
This shows that
d(e,g) > min ("‘;,' , §|w|)
So
lw|* 3
(18) d(e»g)?max Iu],['ul,min 9 ,4—|UJ| .

If g € I', say g = (m, n, p), then we get

d(e,9) > max (Jml ), 22 ) .
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Combining (17) and (19), we see that

(20) die,g) > % forany g€ I

4. GEOMETRY OF THE FUNDAMENTAL DOMAIN
We let

L1t
vSg3T)

N

- 1 1 1
A:{(u,v,w)eﬂasuchthat —§gu<§,~§\ .

gw<l},

Then {gA, g € I'} is a partition of Hz. Our fundamental domain A is closely
related to the one discussed by Folland on page 68 in [3]. Given an element z =
= (u,v,w) € Hs, we want to find the unique g € I'" such that there is an @ € A with
z = ga. If we write g = (m, p, n), where m, n, and p are integers, then one can show
that

m =int (u)
(21) p =int (v)
n =mint (v) + int (w — vint (u))

We define int : R — Z as follows

For any real number z, int(z) is the integer closest to z, and we agree that

. 1 .
int (k -+ 5) = k -+ 1 for any integer k.

For any g € I', gA is a parallelipiped centered at g. Using (21), one can show
that A has 10 nearest neighboring cells, i.e. there are 10 elements of I" (other than
e) such that (8A4) N (8gA) has a positive surface area. One way to see this is to look

at the plane sections of U dA, with u constant, lying in a v, w plane, with v being
ger
the independent variable. Then one finds that such a section of U A, with u = ug
gel
forms a tessalation of parallelograms with sides vertical or at a slope of int (ug). One
can also show that (ug,0,0) is the center of Agnt (us),0,0)-

These values of g are given below

h1 =(1,0,0)
hs =(0,1,0)
(22) ks =(0,0,1)
hs =(1,0,1)

hs =(1,0, "'1)
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and their inverses.
It follows (by left translation by any g € I') that the nearest neighbors of the

parallelepiped gA are the (gh;)A and (gh;'l)A for1 <75
We let

(23) C= f F.d5
&4

(dS being the outward normal to A.) A numerical computation gives
C ~ —6.28,

(this shows that C'is non-zero) and we define the vector field H to be a scalar multiple

of F as follows

(24) H(u,v,w) = ——éF(u, v, w).
So we have that ‘
/ H-dS=1
8A

dS outward normal to A.
We let
(25) Ag=gAforany geI.

For the rest of this paper, we will agree that BZ, indicates that d3 is an outward
normal to Ay, where we are doing a surface integral over some part of 04,.
We now define real-valued functions G; on I" (1 € 7 € 5).

(26) Gilg) = / H.d%

(oA,_thf)n(aA,_,)

Then
5 ' 5 . .
> (Gi(hi)=Gila) = 3 [ =m&- [ ma|-
j=1 ji=1
(BA,_IN(8A _y,-1) (94,1054, 1)
5 — - -
- / H-d5+ f H.-45| = / H.d5=
i=1 )
(A, N84, gy =3) (B, IN(0A,-1,) 54,

__‘{1 ifg=e,
1o ifg#e
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(since divH =0 inside Ay ifg#e) So

@7 > (Gj(hjg) - Gj(9)) = 6°(g)

i=1
for any g € I', where 6° is the function on I with value 1 at e and 0 elsewhere. This
last property is an assumption in Lemma 1 of section 1, and will be used in the next

section.

5. BOUNDING THE G; BY THE ALGEBRAIC NORM OF g

We now give some more estimates relating to the geodesic distance d on Hg
introduced in (12). For g € T, let

(28) die,Ay) = y}en}'g d(e,y)
and let
(29) dy = sup d(e, z).
zCA

Then by the left invariance of d, the triangle inequality and (20), we get
(30) dle,Ag) > d(e,9) —do > A — do

From (16) and (30), we get

-3
(31) sup  N{Fi(u,v,w), Fo(y, v, w), Fs(u,v,w),u,v,w) < 432K ('—gl— - do)
(u,0,w)EA, 26

(assuming that -'2%1 —dg > 0).

So if |g| > 52dy, we have

(32) sup  N(Fi(u,v,w), Fo(u, v, w), Fs(u, v, w),u,v,w) < 432-52° - K - |g|~3.
(u,v,w)EA,

We now want to give a bound on |G;(g™!)| in terms of |g|, for an arbitrary
element g of I'.

We make a change of coordinates in (26), left-translating by g. If g = (m, p,n) €
€ I' and (u,v,w) is in the domain of integration of (26), we change coordinates as
follows

v =u—-m
.
(33) vV =v—-p

w =w-—-mu+mp—n

H'(v', v, ') =(H1(u, v, w), Ha(u, v, w), Ha(u, v, w) ~ mHy(u, v, w))
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Then one can check that
(34) Gie = - / H.d§ = f " . d%
(84qn,)N(34,) (34x,)N(84)

One can also check that

(35) N(H{(v', o', o), Hi(u', o', w'), Hi(v', o', w'), v/, v/, w') =
= N(H;(u,v,w), Ha(u, v, w), Hs(u, v, w), o, v, w).

It is easy to show that for (u',v,%') € 4 and any (du',dv’,dw’) € R?,

(36) (du? + dv’? + dw'®)} < 2N (A, dv', dw’, o, o', w').

Using (36), (35), (34), (32), and (24), we get the following bound on Gj(¢~1), if
lg| > 52d,,

£

AR

(37) IGi(g™1)| < 864 -523 .

THEOREM 1. For the generators hy, ha, ha, hy and hg of I' given in (22), we have
0« IOZ (A(hl),/\(hz), A(hg), /\(h.;), .)\(h5)) < 00

(see section 1 for the definition of the operators A(h;} € £2(I'),i=1to5).

Proof. It is easy to show by induction on % that for integers m, n and p,
l(m,p,n)| < k = |m| <k, |p| € k and |n| < &7

It follows that, for k > 1, there are at most 30k* elements g € I' satisfying
lgl < k.

For 1 < p < oo, we will denote by £, (0)(1"’) the Banach space arising (as in lemma
1 of section 1) from the ideal C; introduced in section 1. From (37) and the previous
fact on the growth of I', we see that there exists an M > 0 such that

s < Mk™3

where {.9}c }$2, is the decreasing sequence of the values |Gj(g)| for all ¢ € I' (for
1< 7 £ 5). It follows, since s if% + ; =1, that

(38) G; € (7)) for 1< 5 <5,

where the duality is as in lemma 1.
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So from lemma 1, we get
kg (A(h1), Mha), A(ha), A(ha), A(Rs)) > 0
where the A(h;) are the unitaries on £2(I") arising from the elements h; € I'.
It is not hard to show that

k3 (A(h1), A(h2), M(hs), X(ha), A(h5)) < o0
(see section V of [8]).
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Added in proof. Quasicentral approximate urits were originally introduced by W.B.
Arveson in a 1977 paper of his in the Duke Math. Journal (vol. 44, pp. 329-355).

In Lemma 1, for £ € Cx(G) and g € G , ¢, is synonymous with £(g) .

For a general discrete group G , functions G; satisfying condition (i) of Lemma 1 are
equivalent to current flows on the directed Cayley graph of G having a single unit source at
the identity and a single sink at infinity. Using symmetric random walks on G, it is simple
to define such flows. For our group I' , an extensive computer simulation seems to indicate
that the resulting Gy’s have the asymptotics needed to obtain the estimate in Theorem 1
(see [1] and Section 2.6 of my thesis, UC Berkeley, 1991). The same kind of simulation can
be done for other groups.
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