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1. INTRODUCTION

0 ~ .
The map a — [0 g embeds each linear space § of operators acting on a

Hilbert space H into a commutative algebra ¥ of operators acting on H @ H. This
time-honored trick shows that commutative operator algebras can be as badly behaved
as arbitrary linear spaces of operators: their ampliations need not be reflexive, the
relative weak operator and weak* topologies need not coincide on them and their
closures in these topologies may also differ. On the other hand, J. Deddens and P.
Fillmore proved that ampliations of operators acting on finite-dimensional spaces are
always reflexive. This seemed to suggest that singly generated algebras might be
better behaved. W. Wogen dashed these hopes in [5] by showing that every weak*-
-closed linear space of operators occurs as a direct summand of a singly-generated
operator algebra.

In particular, Wogen showed that on infinite-dimensional spaces, (the algebra
generated by) ah ampliation e @ a need not be reflexive and direct sums of reflexive
operators need not be reflexive. Further effort produced a reflexive operator whose
direct sum with the 0 operator fails to be reflexive. D. Larson and W. Wogen [3]
accomplished this by a delicate analysis of certain algebras generated by mutually
orthogonal families of idempotent operators. The relative wot and w* topologies
agree on these algebras as do their closures in these topologies. In the last paragraph
of [3], the authors ask whether these are general properties of algebras generated by
commuting families of idempotents.

On finite-dimensional spaces, commuting families of idempotents are diagonaliz-
able and hence they generate reflexive algebras. Despite this encouraging evidence, we
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show in this paper that every w*-closed linear space of operators is a direct summand
of an algebra generated by mutually orthogonal idempotents. This provides negative
answers to the questions posed in [3].

We prove our main embedding theorem in Section 2. In order to keep the ex-
position simple, we stick to the norm topology and postpone applications to later
sections. The construction is basically matricial, but we find it helpful to formulate
the result in coordinate-free fashion. As a by-product of the proof, we also learn that
every linear space of matrices “is” the limit of a sequence of diagonalizable algebras.

Sections 3, 4, and 5 address questions raised in [3]. Let S be a set of bounded
operators acting on a common Hilbert space. We write [S] for the linear span of S,
[[S]] for the linear span of S and the identity operator, and alg [S] for the linear span
of all products of members of S. We will call § algebraically orthogonal if each of its
members is idempotent and the product of each pair of distinct members of S is the
zero operator. We also write nrm(S), w*(S), and wot(S) for the closures of S in the
norm, weak-* and weak operator topologies respectively. Finally, we abreviate L(C,,)
by M,.

In Section 3, we apply Theorem 2.3 to construct algebraically orthogonal families
¥ which provide answers to three questions raised in the last paragraph of [3]:

(1) wot[[¥]] need not be reflexive,

(2) w*[[f]] need not be closed in the weak operator topology, and

(3) the relative weak operator and weak* topologies need not coincide on wot[[¥]].
In Section 4, we apply Theorem 2.5 to construct a block-diagonal version of (2).

In Section 5, we restrict attention to families ¥ in “staircase form”. We show
that the phenomena of the preceding paragraph cannot occur in this setting: if ¥ is
in staircase form, wot[[f]] must be reflexive and 3-elementary. We also address Lar-
son and Wogen’s remaining questions in this setting: concrete criteria are presented
for deciding when the identity operator belongs to the reflexive and weak operator
closures of [¥f].

We close this section with several elementary but useful observations.

ProprosITION 1.1. Let ¥ be an algebraically orthogonal family of operators on a
separable Hilbert space H. Then

(2) alg[f] = [¥],

(b) ¥ is countable,

(¢) nrm(¥] is singly generated.

Proof. There is no harm in assuming that 0 ¢ ¥.
(a) Clear from the definition of algebraically orthogonal.
(b) For each a € ¥ choose a unit vector z, in its range. Then for a,b € ¥ with
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a # b, we have 1 = [la(za)|| = [la(za — z3)|| < llall|l¢a — 23|, Thus each point in
the set {z,|a € ¥} is isolated. The conclusion follows since this set has the same
cardinality as P.

(c) Suppose P = {Tn}n 2. Define a sequence {bn}n_l of positive real numbers

satisfying s——||T [| € 27" for each 1 € k < n. Note that Zb T, converges in norm

to an operator T'. Since ¥ is algebraically orthogonal, we have for each k > 1,

(o Z(b Lo, T )k

(=)

The norm of the right hand member of this equation is majorized by Z 27" 50 Ty
n=2

belongs to the norm closed algebra generated by 7. Similarly, the equation

651 (87T - TOI*T = ) (b5 baTi)*

n=3

shows that T; € nrm(alg[T]) and 7,, € nrm(alg[T]) for all n > 1 by an easy induction
argument. n

2. EMBEDDING

We begin by making our notion of embedding precice. Recall that a partial
isometry is an operator u, possibly acting between different Hilbert spaces, for which
u*u is a projection. As multiplication of u*uu® — u* by its adjoint then yields zero,
we see that u*uu* = u* whence u* is also a partial isometry. The ranges of 4* and u
are closed and have the same Hilbert space dimension; they are called the initial and
final spaces of u respectively. Conversely, every pair of Hilbert subspaces of the same
dimension occur as the initial and final spaces of some partial isometry. When «*u is

the identity operator, u is called an Isometry.

DEFINITION 2.1. Let % and v be isometries acting between Hilbert spaces H and
M and suppose A is a subset of L(H). Then uAv* is a subset of L(H) called a copy
of A. If B is a subset of L(#) satisfying uAv* C B and u*Bv C A, then we say that
A is a (spatial) direct summand of B.

Intuitively, one constructs a copy of A by bordering its members with rows and
columns of zeros. If A contains all these zero-bordered matrices and all other members
of A differ from these only in their borders, then A will be a direct summand of A.
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ExaMpPLE 2.2. Let H be the direct sum of three copies of H. We use 3 by 3 block
matrices to represent operators on H. Define v and v: H - H by u(z) = 26080
and v(z) =09 0@ z. Then v (zDy®z) =z and (O y D z) = 2.

0 0 af
For A C L(H), we have uAv* = 0 0 01} :a€ Ajy; calling this a copy of
0 0 0]

A is certainly justified. On the other hand, given a linear space 4 C L{H), we see
that u*Av is the set of (1,3) block entries of the members of A. The direct sum
terminology is appropriate since the containment uu*Avv* C A guarantees that the
sum of

{eA | the (1,3) block of b is zero } and

{b € A| all blocks other than the (1,3) block of b are zero}
exhausts A. u

THEOREM 2.3. Given a subset S of L(H) there exists an algebraically orthogonal
subset ¥ of some L(H) such that the norm-closed span of S is a direct summand of
the norm-closed span of ¥. If S is countable and H is separable then H can also be
taken to be separable,

Proof. We first concentrate on the case when § is countable and H is infinite-
~-dimensional.

Let S = {a;|i € N}. Choose a family {pim|i,m € N} of mutnally orthogonal
self-adjoint projections on H with rank(p:,») = rank(a;) for each ¢ and m. Write ¢
for the self-adjoint projection onto the closure of the range of e; and for each pair
(Z,m) choose a partial isometry w;,, having initial space equal to the range of pi,
and final space equal to the range of ¢;. This means w},, Wim = pir, and Wim Wiy, = §i
so that in particular wi;m = Wimpim and w, = pimw},.

For each i and m define an operatoron X = H® H & H by

0 mwn mea;
bim=10 pim mul,a
0 0 0

0 mwimpjn mMAWiRW},a;
Thel’l bimbjn = 0 Ptmpgn npimw;naj
0 0 0

in this matrix vanish. (pimpjn = 0 since they are mutually orthogonal projections

.Ifi# j or m # n, then all entries

while for example mwimpjn = Mwim PimPin = 0.) Similar computations show that
(bim)? = bim, so the set P = {bim|i,m € N} is a countable algebraically orthogonal
family of idempotents.
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I

Take u and v as in Example 2.2. (Note for use in Corollary 3.3 that the ranges of
u and v are orthogonal so u*v = 0.) By construction, the (1,3) block of each member
of ¥ belongs to S. Since multiplication by u and v* are linear and norm-continuous,
we see that u*(nrm[f])v C nrm[S]. On the other hand for each fixed 4, we have

a;
€ nrm[¥] whence u(nrm{S])»* C nrm(¥].

m—00

6 0
lim m™%b = |0 0 0
0 0 0

We have shown nrm[5] is a direct summand of nrm[f] as desired.
In the general case (H possibly finite-dimensional, S possibly uncountable}, first
construct a copy of § acting on an infinite-dimensional space whose dimension exceeds
the cardinality of S. Since a copy of a copy is a copy, we may as well assume this

was true of H. From here on the only change necessary in the original proof is the
possible use of a larger index set for . =

EXAMPLE 2.4. No algebraically orthogonal subset of M, can contain a copy of
My in its linear span.

Proof. Let ¥ be an algebraically orthogonal subset of My. Consideration of
Jordan Canonical Forms shows that every singly-generated subalgebra of M, has a
separating vector. Thus every subspace of alg ¥ has a separating vector. Since My

does not have a separating vector, no copy of it can be found in any such algebra. @

Thus even when the set S of Theorem 2.3 acts on Cy, it may be necessary to take
H to be infinite-dimensional. Reexamining the proof of Theorem 2.3 does, however,

lead to the following approximation result.

THEOREM 2.5. Let S be a subset of My. Then there is a sequence {fr} of
algebraically orthogonal subsets of some My, whose linear spans converge to a copy

of [S] in the gap metric.

We need some definitions to make this statement precise. Given a subset A of a
Banach space X, we write Ball (A) for the intersection of A with the closed unit ball
in X.

DEFINITION 2.6. Let X be a finite dimensional Banach space and write F(X)
for the collection of its linear subspaces. The gap metric on F is defined by p(4, B) =
= inf{r > 0| for each z € Ball(4), thereisany € Ball(B) satisfying ||z — y|| <
< r and vice versa}.

(This is the Hausdorff distance between the unit balls of 4 and B)
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LEMMA 2.7. If v and w are vectors in a normed linear space with |jv]| = 1, then

v — < 2jv — u].
| || Il
Proof.
w 1 . .
T —w| = ||lw|] 7=~ 1}l = [[Joll = 1] = | [lwl] = l|ol] | < |lv — w}}-
=] =t = 2] = /<
w w
Therefore, |[v— —| < ||[v — w| +“‘—w < 2)|v — v |
L A ]

LEMMA 2.8. Let z,,%,,..., 2 be independent members of X. Givene > 0 there
is a § > 0 such that ||z; — w|| < 6 for each i = 1,2,...,k implies

p([xll . ')mk]l [yls . "syk]) <&

Proof. Extend z;,zs,...,zx to a basis z;,%2,...,2Z,. Since all norms on the
finite dimensional space L(X) are equivalent, there is a constant r satisfying ||a|| <
£r 1?'%‘ |laz;|| for each a € L(X). Assume that ¢ < 1 and take § = f;

Suppose now that y;, ...,y are given. Set y; = z; for i > k so that ||z; — || < 6
for i = 1,2,...,n. Write I for the identity operator on X and b for the linear
transformation which sends z; to the corresponding y;. We have |7 —3|| < i— Let z

be a unit vector in [z, .. ,:ck] Then bz € [y1, ..., yi] satisfies ||z — bz|| < % In view
of the preceding lemma, ||b T is a unit vector in [y, ..., yx] within distance g of z.
Moreover, ||I — b71|| < -;—, so given a unit vector y € [y1,..., Y&, the preceding
argument tells vg that “%:%” is a unit vector in [zy,. .., z;] within distance ¢ of y.
|

Proof of Theorem 2.5. There is no loss of generality in assuming that S is
independent say S = {a;|i < r}. Also, since a copy of a copy is a copy, there is no
harm in assuming that k exceeds the sum of the ranks of the {a;}. Choose a family
{pi} of mutually orthogonal self-adjoint projections in My with rank(p;) = rank(a;).
Write ¢; for self-adjoint projection onto the range of a; and choose a partial isometry
w; having initial space equal to the range of p; and final space equal to the range of
gi. For each m € N, set #, = {bim|i < r} where

0 mw; m3a;
bim= |0 pi * muwla;
0 0 0
Then each family ¥,, is algebraically orthogonal, and for i = 1,...,r we have
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{0 0 a;
lim m=2b;,, = |0 0 0 |. Applying Lemma 2.8, we see that the sequence {[£]}
11—+ 00
00 0
converges to a copy of [S] in the gap metric on Maz. |

3. GENERAL COUNTEREXAMPLES

In this section, we apply Theorem 2.3 to construct counterexamples to three
questions raised in [3]. We begin with a brief review of the relevant notation and
terminology from [1].

The full algebra of bounded linear operators on a Hilbert space H is denoted
by L(H) and we write T(H) for its trace class ideal. When the underlying Hilbert
space is clear, reference to it will be suppressed. We use the standard notations for
distinguished subsets of T: F for the subideal of finite rank operators and Fy, for the
collection of operators of rank at most n. We adopt the “inner product” notation for
the duality between L and T so that the value of (e,t} is the trace of the product of
a € L with t € T. We also employ the corresponding preannihilator and annihilator
notations: S, = {t € T|{a,t) = Oforalla € S} when S is a subset of L while
St = {a € L(H)|{a,t) = 0 for all t € S} when S is a subset of T".

F and T induce weak topologies on L called the weak operator (wot) and weak*
(w*) topologies respectively. The three topologies nrm, wot, and w* will play a role
in the sequel; we write 7(8) for the closure of S in the 7 topology. By contrast, the
only topology we will consider on T is the one arising from the trace norm.

From topological vector space theory we know that (S.)* = w*[S], the weak*
closure of the linear span of S, while (S, N F)* = wot[S]; we call (51 N F1)* the
reflexive closure of S, denoted ref(S). In patticular, a linear manifold M C L is
wot-closed iff (M) (V F)L = M. We say M is n-reflexive if (M, N Fp)t = M.

The equation M, + F = T characterizes those linear manifolds on which the
relative wot and w* topologies coincide; we say that M is n-elementary if My +
+F, = T. “Reflexive” and “elementary” stand for “l-reflexive” and “l-elementary”
respectively.

Let ¥ be an algebraically orthogonal set of operators. The authors of [3] con-
‘'structed an example satisfying ref(f) = wot{[¥]] but id ¢ wot[] and they raised the
following questions:

(1) Is wot[[¥]] always reflexive?

(2) Is w*([[¥]] always weakly closed?

(3) Must the relative w* and wot topologies agree on wot[[f]]?

(4) When does id belong to wot[£]?



256 E. AZOFF and H. SHEHADA

(5) When does id belong to ref([¥])?

A counterexample to the first question was added to [3] in proof.

The reader familiar with block matrices will have little trouble applying Theorem
2.3 to construct counterexamples to Questions 1-3 for himself. The basic idea is that
when A is an algebra of 3 x 3 block matrices with a copy of a linear space M of
operators in its northeast corner, then A; will contain a copy of M, in its southwest
corner so A reflects any pathology S may exhibit. We have chosen a slightly longer
treatment below in order to complete our discussion of the coordinate-free approach.

LEMMA 3.1. Let A and B be subsets of L{H)} and L{K) respectively and suppose
u and v are isometries mapping H into K. Suppose uAv* C B and u*Bv C A. Finally,
let G stand for T, F, or Fi. Then

(1) u*Bv=A

(2) v*BiuC Ay

3y vA u* C By

(4) v* BJ_‘M = AJ_

(5) v*(BL +G(K))u = Ay + G(H)

(8) (AL NG(H)* = u*(BL NG(K))* v

Proof. (1) Multiply the first inclusion of the hypothesis on the left by «* and on
the right by v and compare with the second inclusion of the hypothesis.

(2) Let # = v*pu for some ¢ € B, and suppose a € A. Then {(a,z) = (a, v pu) =
= (uav*,p) =0 whence z € A, .

(3) Similar to (2).

(4) Multiply the inclusion of (3) by v* on the left and by u on the right and
compare with the inclusion of (2).

(5) We have v*G(K)u C G(H) and vG(H)u* C G(K) whence v*G(K)u = G(H).
Thus an appeal to (4) completes the argument.

(6) (C) Let =z € (AL NG(H))* and suppose ¢ € B N G(X). By (2), we have
v*tu € Ay NG(K) so {z, v*iu) = (uzv*,t) = 0. Thus uzv* € (BLNG(K))*. Multiply
on the left by u* and on the right by . The proof of the opposite inclusion is similar.

n

ProprostTION 3.2. Suppose A is a spatial direct summand of B.

(1) wot[A] is a spatial direct summand of wot[B).

(2) w*[A] is a spatial direct summand of w*[B].

(3) Any of the following properties enjoyed by B will also be enjoyed by A:
k-reflexive, w*-closed, wot-closed, k-elementary,

relative wot and w* topologies agree.
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Proof. (1), (2) Multiplication by a fixed operator is linear and continuous in
these topologies so the containments uAv* C B and u*Bv C A persist when A and
B are replaced by the wot and w* closures of their linear spans.

(3) If B is k-reflexive, then (By N Fr(K))* = B. By parts (1) and (6) of the
preceding lemma, (A, N F(H))t = u*Bv = A so A is k-reflexive. Replace Fi by F
and T to obtain the desired conclusions concerning wot and w* closure respectively.

If B is k-elementary, apply parts (5) and (4) of the lemma to conclude A; +
+Fi(H) = v*T(K)u = T(H) whence A is k-elementary. Replace F} by F to establish
the assertion concerning relative topologies. [ |

COROLLARY 3.3. Given a trace class operator t € L(H) there exists an alge-
braically orthogonal subset ¥ of L(M) such that t* is a spatial direct summand of

w*{[¥]]-

Proof. Apply Theorem 2.3 to a countable w*-dense subset S of t-. This gives
us an algebraically orthogonal subset ¥ of some L(*) and isometries u, v satisfying
u(nrm[S])v* C nrm(¥] and u*(nrm[f])v C nrm{S]. Moreover, since the ranges of u
and v are orthogonal, these inclusions persist when the identity is added to ¥, i.e.
nrm[S] is a spatial direct summand of nrm[[¥]]. Appeal to part (2) of the preceding
result completes the proof. u

EXAMPLE 3.4. There is an algebraically orthogonal set ¥ such that wot[[¥f]] is

not reflexive.

Proof. Take t to be of rank two. Then t+ is wot-closed but non-reflexive. Choos-
ing ¥ as in Corollary 3.3 and applying Proposition 3.2(1), we get ¢t as a direct
summand of wot[[]]. Proposition 3.2(3) completes the proof. |

EXAMPLE 3.5. There is an algebraically orthogonal set ¥ such that w*[[f]] is
not wot-closed.

Proof. Take t to be of infinite rank in Corollary 3.3. [ ]

EXAMPLE 3.6. There is an algebraically orthogonal set ¥ such that the relative
wot and w* topologies do not agree on wot[f]].

Proof. Take t = 0 in Corollary 3.3. n

REMARK 3.7. By Proposition 1.1, every algebra generated by an algebraically
orthogonal set of operators is in fact singly generated, so the construction in this

section serves some of the purposes of [5].
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4. BLOCK DIAGONAL CONSTRUCTION

In the sequel, M,, will denote L(C,) equipped with the operator norm and the
subordinate metric. While singly-generated subalgebras of M, are well-behaved, tech-
niques going back to D. Hadwin and E. Nordgren show that direct sums of such al-
gebras can be quite refractory. In this section we use Theorem 2.5 to show that the
answer to Larson and Wogen’s third question remains negative in this block diagonal
setting. See Section 7 of [1] for further discussion and historical comments on the
following quantified version of the k-elementary concept.

DEFINITION 4.1. Let S be a subspace of L{H) and suppose 7 is a positive number.
Then we say S has Property Ay (r) if BallT(H) C Si + rBall Fi.(H).

In this definition, balls are taken relative to the Banach space T{H) equipped with
the trace norm. Clearly any S with Property A;;x(r) must be k-elementary. While
the converse even fails on finite-dimensional spaces, Corollary 7.11 of [1] shows that
every singly generated subalgebra of M, has Property A;(r) for some r. Proposition
4.3 shows that no r works uniformly however.

PROPOSITION 4.2. The collection of subspaces of My, having Property Ay(r)
is a closed subset of F(M,).

Proof. Write C for the collection and let S be one of its hmit points. Choose a
basis E for § and a sequence {S;}§2, C C converging to S in the gap metric.

Let ¢t € BallT be given. Since each S; has property Aji(r), for each i there
exists f; € Fy with ||fills < rand (¢t — f;) L Si. Let fo be the limit of a subsequence
of {fi}$2,, say {f;;}. Then fo € rBallF;. Given a € E, apply the definition of the
gap metric to express it as the limit of a sequence {a;} C L(H) satisfying a; € 5; for
each i. We have

(t = fo)(a) = @ — fi,)(ai;) + (fi; ~ fo)(ai;) + (t = fo)(a — as;).

The first term on the right always vanishes and the remaining terms converge to zero
as j increases. This shows (t — fo) L E sot € S| + rBall Fj. n

PROPOSITION 4.3. For each integer k there is an algebraically orthogonal family
f1 acting on a finite-dimensional space Hy such that alg[fi] fails to have Property
Ay (k).

Proof. Apply Theorem 2.5 to express a copy of My, as the limit of a sequence
of spans of algebraically orthogonal families. Since My, is not k-elementary no copy
of it can have Property Aji(k). The preceding proposition thus allows us to take
one of these families for ;. [ |
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We now have the building blocks for the construction of our block-diagonal ex-
ample. See Sections 7 and 10 of [1] for discussion of the following two results which

provide the “glue”.

PROPOSITION 4.4. Let {S,} be a sequence of subspaces of L. Assume that for
each n there is an r such that S, has Property Ay (r). If z S, is k-elementary,
then the {Sy,} share Property Ryi(r) for some common r.

Proof. Suppose the {S,} fail to share Property Aji(r) for any common r.
Rearranging the {S,} if necessary, we may assume that Ss, does not have Property
A1/k(n3) for any n. Take t, = 0 for odd n and choose 3, € n~2BallT such that

-]
any f € Fy with (tan — f) € (Son). must satisfy [|f|| > n. But then E tn &
@ @
(2 S")Js + Fy so E Sn is not k-elementary. |

ProPosITION 4.5. If the relative weak* and wot topologies agree on a linear
space S of operators then S has Property A, i (k) for some integer k.

Proof. For each integer n, set C, = S, + nBallF,. Since S; + F exhausts
T by hypothesis, some C, is of second category. Assuming for the moment that
the underlying Hilbert space is finite-dimensional (the case which will be used in the
sequel), this C), is the sum of a closed set with a compact set. Thus C, has non-empty
interior so Cs,, contains an open ball of some radius £ about the origin in T". Choose
k larger than 2n/e.

When the underlying space is infinite-dimensional, C,, need not be closed, but
being analytic, it can be expressed as the symmetric difference of an open set and a

set of first category. Then C,,, will still contain an open ball about the origin in T.
|

EXAMPLE 4.6. There is a family ¥ of operators satisfying

(1) ¥ is algebraically orthogonal,

(2) ¥ is block diagonal with each block being finite, but

(3) the relative w* and wot topologies do not agree on wot(alg[¥]).

Proof. Take H to be direct sum of the Hilbert spaces {H} of Proposition 4.3
and consider the operators in each ¥ as acting on H. Take ¥ = |JF;. Clearly ¥ is
algebraically orthogonal and block diagonal and wot{alg[¥]) is the direct sum of the
algebras generated by the {¥}. Applications of Propositions 4.4 and 4.5 complete
the proof. |

It is interesting to speculate on the minimal possible dimension of the space Hy
guaranteed by Proposition 4.3. That dim(H}) > k follows since (every subspace of)
Mj; is k-elementary; the proof given in this paper yields dim(H}) = 8(k + 1)2. We
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close this section with an alternate proof of Proposition 4.3 (our original argument)
which gives dim(H;) = k% + 1.

LEMMA 4.7. Suppose the minimal polynomial of w € M, equals its characteristic

polynomial. Then the function alg is continuous at w.

Proof. Note that alg[w] is n-dimensional with basis {w*}2-}. If b is close to w,
then the powers of b will be close to the powers of w whence Lemma 2.8 shows that
alg[b] will be close to algfw]. u

LEMMA 4.8. (a) If b € M, has n distinct eigenvalues, then algfb] is generated by
an algebraically orthogonal subset ¥ of M.
(b) The set of such operators is dense in M,,.

Proof. (a) By the spectral theorem, b is diagonalizable and alg[5] is generated by
the spectral idempotents of b.

(b) Assuming as we may that b is upper-triangular, note that small perturbations
of its diagonal entries can make them distinct. [ |

Example 8.6 of [1] exhibits a weighted shift wj on Cgzy; with no zero weights
for which alg[w;] fails to have Property Aj (k). Combining Proposition 4.2 with the
last two lemmas completes the alternate proof of 4.3.

5. STAIRCASE FORMS

We have seen that algebras generated by mutually orthogonal idempotents can
be quite refractory. The specific examples considered in [3] however, are well-behaved.
As a first step towards a general theory, we show that this good behavior extends to
algebras in staircase form,

Fix an orthonormal basis {e;} for a separable infinite-dimensional Hilbert space
H. The staircase positions of a matrix consist of its diagonal positions and those
positions immediately above or immediately below an odd diagonal position. An
operator is in staircase form if the non-zero entries of its matrix are confined to the
staircase positions. For such an operator to have rank one, its non-zero entries must
be confined to a single (even) row or a single (odd) column; it will then be idempotent
iff the diagonal entry of that row or column is one. Also if an “i’th row” idempotent
is to be orthogonal to a “i & I’st column” idempotent, their entries in the (,i + 1)
position must be negatives of each other.

To follow the recipe of the preceding paragraph, suppose {a;} is a sequence of
complex numbers. Define S = {; ® y;|i € N} where the vectors {z;} and {y} are
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given by the equations

z1 = ey + azez y1=e1

Zy = e y2 = —aze; + €2 + azes

Zop_1 = —@2r-1€2n—2 + €2n—1 + G2n€2n Y2n-1 = €201

Ton = €2n Yon = —CGan€an—1+ €an + G2ny1€2n41.

PROPOSITION 5.1. Let S be as constructed above. Then the members of S are
in staircase form, they are rank one idempotents, and they are mutually orthogonal.
Every family of operators with these properties is contained in such an 5.

Proof. Tt is clear that the members of S are in staircase form and of rank one.
The equation [z; ® ][z; ® y;] = (z;, ¥:)[z: ® y;] shows that these operators are also
mutually orthogonal idempotents. The last assertion of the proposition is addressed

by the opening paragraph of the section. n

Such § will be the object of study in the sequel. Multiplying the basis vectors
{en} by appropriate constants of absolute value one shows there is no loss of generality
in taking each a; real and non-negative; to make the exposition smoother, we will also
not allow any of the {a;} to vanish. The main example considered in [3] corresponds
to taking azn = Gan41 = 4" for n 2 1; the alternate example of [3] has a, = 2" for

all n.
THEOREM 5.2. wot[[5]] is reflexive.

LemMa 5.3. Suppose {p,} is a sequence in L which approaches the identity
operator in the strong operator topology. Then we have ||patpn — t|| — 0 in the trace
norm for eacht € T.

o0
Proof. Write t = ZA;u,— ® v; wherte {u;} and {v;} are orthonormal sets. For

i=1
each i, we have ||p,u; — u;|| — 0 and [|pavi — vi|| — 0 as n — co. Thus pau; ® pav; —
— u; @ v; as n — 00. Choose N so large so that

[ ¢)
€ €
Ml < = and ||pnus @ pavi — 4 Q U|| < ==+ forig Nandn > N.
.g:“ 4 lpns ® povi = il < oY) S z
Then ||pntp, —t|| <eforn > N. L

LEMMA 5.4. Set s, =21 Q@Y1+ + 2, Qyn andp, =e; ®e1+ - +enQen.
1) 8 = {Pn 4 tnti(ens1 ®e,) ifnisodd
" Pn + anyi(en @ eny1) if n is even,
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2) if m < n, then pnSm = SmPn = Sm,
3) if m > n, then Pnsm = $mPn = Pn,
4) if n is even, then p,s, = s, while snpp = pn,

5} if n Is odd, then pns, = p, while 5,0, = sn.

Proof. For 1) argue by induction. For the first part of 2), apply 1) to get
PrSm = PnPm + tnt1(Pnemi1 @ €m) = Pn + Gnt1(€m+1 ® €m)} = Sm. The remaining
arguments are similar. [ |

Proof of Theorem 5.2. We must show (wot[[S]]).. N F is total in (wot[[S]])..
Define the {pn} and the {s,} as in Lemma 5.4 and suppose t .L wot[[S]] is given.
Set fn = pntpn — [tr(pntpn)](en ® €n). Since I € wot{[S]], ¢ must have trace zero,
whence Lemma 5.3 tells us ||f, — ¢||; — 0 as n — co. We will complete the proof by
expressing each fs, as a sum of rank one members of (wot[[S]])..

1 fmzn

From Lemma 5.4(1), we conclude that (sm,en ® €} = { )
0 ifm<n

(2)(5) of the same lemma tell us that

, while

_ [ tr(patpa) ifm2n
(sm;Pnt?n) = (Pnsmp‘mt) = { (Bm,t) ifm < n.
Since (sm,t) = 0 for all m (by hypothesis), we see that {sm, fn} = 0 for each m and
n. Since {5, } and S have the same linear span, we conclude that {f,} C (wot[[S]])..

2n

Lemma 5.4(4) also yields fon = panfon = 52nP20f2n = S2nfon = P_(%i ® %) fon.
i=1

Moreover, wot[[S]] is an algebra so its preannihilator is closed under multiplication
by members of wot[[S]]. Thus each summand (z; ® ;) fan in the expression for fo, is
a rank one member of (wotl[S]]), as desired. =

THEOREM 5.5. (1) w*[S] is always 3-elementary.

]
@I E [—al:,_l < oo then w*[9] is 2-elementary.

LEMMA 5.6. Lett € T and suppose {pn} and {g,} are two given orthogonal
families of projections.

1) " liontanll < It

n
(2) If in addition each gy, has rank one, then there is an f € Fy which is supported
on \/ ¢, and satisfies pnfgn = Pntgy for each n.

Proof. (1) Write t = Zu; ® v; where {u;1} and {v;} are orthogonal sets of
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vectors in the underlying Hilbert space. For each i, Holder’s inequality gives

3 i
> lpauill llgnuill < (E ||Pn“i”2) (Z I|qnvi||2) < [feaall ol
n n n

This leads to the desired conclusion since
Z ”pnt‘In“ = Z P (Z u; @ 'Ua') In
n n i

(2) For each n choose a unit vector wy, in the range of ¢,. Write An = /||patwnl|=
= /llpntgnl]. By (1), the sequence {1,} is square summable and hence the series

Z A7 patw, and Z’\“w" converge to vectors z and y respectively. Set f= 2z @y
Ap>0 N
to complete the proof. u

< lpn(us @vi)gall € D ull lfosl] = |12
n, i

LEMMA 5.7. Let t € T. In order for t to belong to Sy it is necessary and
sufficient that the entries of its matrix satisfy the following equations:

tiy+to2+ -+ ton-12n-1+t2n-120020. =0, n 2 1

tin+ta2+ -+ t2n,2n + tant1,2n02041 =0, 7 2 0.
These equations only involve entries of t in the transpose staircase positions.

Proof. The equations are equivalent to having {s,,t) = 0 for the idempotents
{sn} of Lemma 5.4. These idempotents have the same linear span as S. [ |

Proof of Theorem 5.5. Define the following projections via their ranges:

ranp; = [e1, e2], ranpa, = [ean],
Ian pong1 = [€2n, €2n+1, €2n42),  TANGn = [en].

Let t € T. The first part of Lemma 5.6 tells us that the following sums define
trace class operators:

oo oC o<
L= Zp4n+1t94n+1, t2 = Ep4n+3t44n+a, t3 = szntm-

n=1 n=1 n=1
Let fi, f2, and f3 be the rank one operators associated with these operators by the
3

second part of Lemma 5.6. Now Lemma 5.7 tells us that ¢ — Zt.‘ and each t; — f;
t=1

belongs to S, . Thus

3 3 3
t= (t—-Zt.-‘) +Z(te—fi)+z.fz‘ ESL+F3

i=1 =1 i=1

and we have established the first part of the theorem.
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For the second part, let ¢ € T. Define { by setting its diagonal entries equal to
those of #, using the equations of Lemma 5.7 to solve for the other f;; appearing in
those equations and setting all other entries of t equal to those of t'. Then t -t/ €

00

€ S;. Applying the second part of Lemma 5.6 to ¢; = Zp4n+1tQ4n+1 and iy =

n=l

o0
= Zp4n+3tq‘1n+3 yieldst = f;+¢3 and ¢’ = (t' —¢t)+ (%1 - f1)+{ta~f2) +(fit+fo) €
n=1
€51+ F. |
In particular, w*[S] = wot[S]. It is conceivable that w*[S] is always 2-elementary.
In the main example of [3], w*[[S]] is reflexive but w*[S] is not, so w*[[S]] is not
elementary.

THEOREM 5.8. I € wot([S]) if and only if E — =00,

=l an
Proof. (<=) Suppose I ¢ wot([S]). Then there exists t € (wot[S]) with {I,#) =1,
[»=]
ie., tr(t) = 1. This implies Zt,-.- == 1 and the equations of Lemma 5.7 are satisfied.

i=1 . .
Therefore, lim ta,_1 2nt2, = —1 and nlim ton41,2na2n+1 = —1. Thus, for sufficiently
11—+00 et QO
, 1 21
large n, we have [ton-19n] 2 5 and [tan41,20] 2 . Therefore, E — £
2azn 2(12,,.;.1 n=1 Gn

o0
< 22 ([t2n~1,20] + [t2n+1,2q]) < 2fjtl < o0

n=1

(=) Suppose Z — < co. By Theorem 5.5, the relative wot and w* topologies
n=1 Gn

agree on w*[5]. It follows from Corollary 10.4 of [1] (due to B. Chevreau - J. Esterle
and P. Dixon) that w*[S] = wot[S]. Set t;; = 1, tyn = 0 for all » > 1, and (by
—~; also set

solving the equations of Lemma 5.7) take 13,1 2n = :— tongi,on =
a2n n+1

the remaining #;; equal to zero. Since Z — < 00, the resulting operator t € T. By
construction t € §; = (wot[S]). with (I t) =1 so I ¢ wot|5]. |

DEFINITION 5.9. A pseudovector is a sequence z = {2, }52; not necessarily in
£; satisfying the condition “for each n, either 2 1 2, or z L y,”. (Inner products are
computed in the usual way.)

THEOREM 5.10. The following are equivalent:
(1) the identity operator, I, does not belong to ref[S],
(2) the sequence of real numbers defined inductively by

Gn+12n — Zn41

-1
n=1z5=—, tn42=
az Qn42
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is square summable.

LEMMA 5.11. Let z = {z,}5%, be a pseudovector.

(1} If z4, =0, then 2, =0 for all k < n.

(2) The non-zero coordinates of z alternate in sign.

(8) The sequence of real numbers defined inductively by

~1 Gpt12n — Zntl
=1 z= —, fnyp = —mm——
as Op42

is the unique pseudovector whose first coordinate is 1.
(4) If one non-zero pseudovector belongs to £, then they all do.
z, 1ifnisodd

Proof. Set w, = { AP .
Y 1if niseven

Then wy = ey + @geq, while wy, = —anen_1 + € + anpr€n4y forn > 2.

e ifz.leg
1) Set v =
) k {wk otherwise.

Every finite set of {z,} is independent as is every finite set of {yn}. Since z; L y; for
J # k, we see that vy,...,v, are independent. Since v, = ey, we have [v1,...,v,] C
C [e1,--., €], and hence these two spaces coincide. Thus z L v for ¥ < n implies
z Ley for k < n.

(2) Suppose z, is the first non-zero coordinate of 2. By (1), no later coordinates
of z can be zero, so z 1 wy for & > n. This means

Zn + Gn412n41 = 0,

—Qn4k—1Zntk~2 + Zngk-1 + CnitZnser = O for k 2> 2.

Solving inductively for zp4.; establishes the result.
(3) By (1), z L wy for all k and the coordinates of z can be solved for inductively.
(4) Let z and 2’ be non-zero pseudovectors. Choose n with z, and 2/, non-zero.
By (1), #zn41 and z], ., are also non-zero. Choose a constant K such that |z/,| < K|z,
and |2;,1| € K|2a41|- Using the equations from the proof of (2) and an inductive
argument, we conclude that |2}| < K|z for all k = n. |

Proof of Theorem 5.10. (1) = (2) Suppose I ¢ ref[S]. Then there exists f = u®@uv
with f L § but f not orthogonal to the identity I. Therefore {u, y,){2n,v) = 0 for
all n but (u,v) #0. Let J = {n € N|u L y,} and set M = span{y, |n € J} and
N =span{z,|n& J}. Then M L N, ue M+ and v € NL.

The projection of u on N (denoted by py(u)) belongs to ML, Thus u ¢ N
implies u — py(u) is a non-zero vector in M+ N NL. On the other hand, if u € N
then v ¢ M and v — pas(v) is a non-zero vector in MLt N N+, In either case, we
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have a square-summable pseudovector and an appeal to Lemma 5.11 completes the
argument.
(2)=(1)Setz= Ezne,,‘ Then z ® ¢ is orthogonal to S but not to I. n

CoRroLLARY 5.12. (1) If lim

N0 (y

< 1 then I ¢ ref[S].

2) If niggo an+ >1thenlc€ ref[S]
n oo n B
. T %2k=1 a2k .
3) If either of the sequences A or fails to be
( ) q {70131 02k }n:l {kII-":l azk+1 }ﬂ=1

square summable, then I € ref[S].

< 63 < 1. Choose N such that

Proof. (1) Choose a number § with lim

n—o Gpyl

n > N implies 3—- < &% and —1-— < 8(1 = 8). Assuming n is so large and that
n41
|2n| < 6™ and |zp4i| < 6™, we have

|2n+2f < n+1l "‘+ 'Zn+1l < c63(6"‘)+cé(1 _‘5)5n+1 - c§n+2.
Gn .42 Gn 42

Thus an inductive argument shows that the series Z]z,,lz is majorized by a conver-
gent geometric series and Theorem 5.10 applies.

for each n. From

n—1
 Qok—
2t and [z2n] 2 |22| I l Z -1
1 poy G2k

. . a
(3) Since the 2, alternate in sign, we have |z,42| 2 Hz,,ﬂa"“
n+2

0
here an inductive argument yields |z2n41| 2 |z1|H aa

Apply Theorem 5.10 and the comparison test.
(2) The hypothesis implies the sequences in (3) do not appoach zero. n

EXAMPLE 5.13. (1) If azn—1 = @2y for all n, (as in the main example of [3]), then
I € refS].
(2) if an = 2” for all n, (as in the second example of [3]), then I ¢ ref[S].
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