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COMPLETELY REDUCIBLE ALGEBRAS CONTAINING
COMPACT OPERATORS

SHLOMO ROSENOER

1. INTRODUCTION

There is now an extensive theory of those algebras of operators on Hilbert space
that are determined by their invariant subspace lattices. Most of the problems con-
sidered have meaning and interest in the more general context of operators on Banach
spaces, but there are relatively few results in this setting. The present paper concerns
certain algebras of Banach space operators which contain compact operators.

Let X be a Banach space and .A an algebra of bounded linear operators on X.
LatA is the family of all (closed) subspaces of X invariant under each operator in A.
We say that A is completely reducible if for every M invariant in latA there is N
in lat.4 such that M 4+ N = X (i.e., M NN = 0, and X is the algebraic sum of M
and N). E. Azoff asked whether a unital strongly closed completely reducible algebra
must be reflexive; that is, must contain all operators leaving invariant its invariant
subspaces. Azoff’s question was answered positively in some special cases by Fong
[6] and Rosenthal and Sourour [15]. Also, in the author’s paper [13] it has been
shown that every unital strongly closed commutative completely reducible algebra
which commutes with a family of compact operators with spanning ranges and zero
intesection of kernels is a reflexive algebra of scalar type spectral operators.

It is known that Azoff’s question has a negative answer in general. For there
are operators on Banach spaces with no non-trivial invariant subspaces [10]. If A is
the unital strongly closed algebra generated by such operator, then A is completely
reducible but not reflexive.

A special class of completely reducible algebras is formed by reductive algebras.
A unital, strongly closed algebra A on a Hilbert space is said to be reductive if every
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invariant subspace is reducing (i.e., M € lat.A implies M € lat.4). It was proved by
Rosenthal [14], and, independently, by Loginov and Shul’man [7], that every reductive
algebra containing a set of compact operators with spanning ranges is a von Neumann
algebra. Note that a reductive algebra is reflexive if and only if it is a von Neumann
algebra.

In this paper we will generalize this result and also give a partial answer to the
Azoff’s question. We will show that every unital, strongly closed completely reducible
algebra containing a set of compact operators with spanning ranges is reflexive. More-
over, we will show that every such algebra is a “direct sum” of what we call “factor
algebras”, which admit a very simple description. Our results seem to be new even

in the case of a Hilbert space.

I am enormously thankful to my advisor, Professor Abie Feintuch, whose support
and encouragement were crucial for this work. Also, I wish to express sincere gratitude
to Professor Peter Rosenthal from Toronto who suggested many essential improve-
ments. Finnaly, I appreciate the help of the referee whose remarks have enabled me
to enhance considerably the readability of the paper.

If X and Y are Banach spaces, we write £(X,Y) for the set of all bounded linear
transformations from X into Y and £(X) for £(X, X). A transformation T' € L(X,Y’)
is called a quasiaffinity provided c1T(X) = Y and ker 7" = 0. By a projection in £(X)
we mean an operator F satisfying E2=E. fz € X and ¢ € X* we wil write 2 @ ¢
for the rank-one operator on X defined by (z ® ¢)(y) = ¢(y)z. If A is a subalgebra
of £{(X), we write A’ for its commutant and A" = (A’)’ for its double commutant.
An operator algebra A on X is said to be spatially isomorphic to another operator
algebra B on Y if there is a one-to-one bicontinuous linear map S of X onto ¥ such
that SAS™! = B.

Obviously, an operator algebra A on X is completely reducible if and only if for
every M € lat A there is a projection E € A’ such that E(X) = M. If A is completely
reducible, and B is spatially isomorphic to A, then B is completely reducible. Also, if
M € lat.A, the restriction of A to M, denoted by .A| M, is again completely reducible.
Note that if .4 is completely reducible and reflexive, one has A" = A.

Let X be a Banach space, and let Xy, Xs,..., X, be subspaces of X such that
X =X, + X3 4+ --- + X,. Then X is spatially isomorphic to the exterior direct
sum of Xy, Xo,..., X, (denoted by X; & X2 ® --- & X,) with the norm given by
Hza @228 - @ 24| = (2l + 222+ -+ - + l[2ali?)%. If A is the algebra of all
operators on X which leave each X; invariant, then A is spatially isomorphic to the
algebra L(X;)® L(X2)® - - L(Xn) o0 X1 B X2 @ --- B X,,. We will often identify
these two algebras.
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2. COMPLETE REDUCIBILITY OF THE ALGEBRA GENERATED BY AU A

In order to approach our main result, some preliminary work is needed. In
this section, we show that if A is a completely reducible algebra and if the algebra B
generated by A and A’ has enough invariant subspaces, then B is completely reducible.

Let £ be a lattice of subspaces in X. We say that M € £ is a cover for N € £
if M D N, M # N and there is no L € £ different from M and N such that
MCLCN. M€ L is called an atom in £ if it is a cover for 0.

The following lemma due to Fong is of great importance for our goal.

LemMA 2.1. If A is a completely reducible algebra in L(X), M € (latA) N
M(latA’) and N € lat A, then M + N is closed.

For the proof see [6], Proposition 19.

THEOREM 2.2. Let A C L(X) be a completely reducible algebra. Let B denote
the algebra generated by A and A’. If latB has no covers, then B is completely
reducible.

Proof. Since the proof is very close to the proof of the same assertion about
commutative algebras in [13], we give merely its outline here. Suppose the converse.
Then there exist X; and X» in lat.A such that X; + X2 = X, and X; is in lat A’
while X5 is not. Then one can find infinite sequences {E,}3%,, {Fn}5%;, such that,
for each n > 1, E, is a non-zero projection in (A}X2)’, F is a non-zero projection
in (A X)), E;E; = E;E; =0, F;F; = F;F; =0 whenever i # j, Tp € £(X2,X1)
satisfying

(A|X1)Tn = Tn(A]X2) foreach A€ A

and F,T,, E, # 0.
Define T € L(X3, X1) by

o0
To = 27 "||FaTn Enl| " FaTn En

n=1
(the series is uniformly convergent).
Let

oo
L= ()kerF,.
n=1
Then L € lat (A|X;) so there is a projection P € (A|X1)’ such that ker P = L. Define
S € (A|X2) by

oo
S = 27| P T Bl | FaTo Bl ™" | Enll ™" En.

n=l
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Then the subspace
M = {PToz & Sz, z € X2}

is in lat.4. Moreover, M is the graph of a closed unbounded linear transformation
defined on a manifold D € X, and with range in X;. By the Closed Graph Theorem,
D is not closed. This contradicts Lemma 2.1 and therefore completes the proof. W

REMARK 2.3. It is clear from the above that if A is a completely reducible
algebra, X = X; 4+ X, where X; € (lat.A) N (latA’), X € lat.A, and there exist
infinite sequences {Ey,}, {F,}, {Tn} satisfying the above conditions, then X, € lat.A’.

3. FINITE-RANK OPERATORS IN 4

In this section, we will show that a completely reducible algebra containing non-
-zero compact operators also contains non-zero finite rank operators.

Lemma 3.1. Let A C L(X) be a completely reducible algebra and let J be
a bilateral ideal in A. Let M denote the subspace spanned by the ranges of all
operators in J and N the intersection of their kernels. Then both M and N lie in
(JatA) N (JatA’) and M + N = X.

Proof. Obviously, M and N are in (lat.A) N (lat.A"). Hence, there is N; € latA
such that M + Ny = X. Clearly, all operators in J vanish on Nj, so that N; € N.
Since the projection onto M along N; leaves N invariant, we can write N as Ny + Na,
where Ny C M and N, € lat.A. There exists M; € lat.A such that My, 4+ Ny = M.
Since all operators in 7 vanish on Ny, the definition of M yields M; = M and Ny = 0,
so that Ny = N. [ |

We say that S C £{X) is a sufficient set if the ranges of the operators in & span
X. Note that any strongly dense ideal in a unital, completely reducible algebra is a
sufficient set.

CoroLLARY 3.2. (i) f A C L(X) is a completely reducible algebra containing
a sufficient set of compact (respectively, finite-rank) operators and M € lat.A, then
AlM contains a sufficient set of compact (respectively, finite-rank) operators.

(ii) If A C L(X) is completely reducible and A’ N A" contains no non-trivial
projections, then 0 is the orly member of A which vanishes on a non-zero invariant
subspace of A.

Proof. (i) Let .7 denote the set of all compact (finite-rank) operators in .4. Then
J is a bilateral ideal in A. By Lemma 3.1, the intersection of kernels of all operators
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in J is zero. Now apply that lemma to A|M.
(ii) Let 0 # N € lat.A. Denote by J the set of all members of A vanishing on
N. Since N has an A-invariant complement, it is clear that J is a bilateral ideal in

A. An application of Lemma 3.1 finishes the proof. |

THEOREM 3.3. Let A C L(X) be a completely reducible algebra that contains
a non-zero compact operator. Then

(i) lat A has an atom;

(ii) if, in addition, A is unital and uniformly closed and contains a sufficient set
of compact operators, then A contains a suflicient set of finite-rank operators.

Proof. (i) Let J denote an ideal of compact operators in A and M a subspace
associated with 7 as in Lemma 3.1. Considering the restriction A[M we can, without
any loss of generality, assume that .4 contains a sufficient set of compact operators.
Let B be the algebra generated by AU A’. We claim that latB has a cover. Suppose
the converse. Then, by Theorem 2.2, B is completely reducible. Denote by 2 the
set of all projections in B'. Since B is clearly commutative, so is £2. Hence, £ is
a commutative Boolean algebra of projections. But, since B is completely reducible,
and latB is a complete lattice, 2 must be a complete Boolean algebra. By a theorem
due to Bade [5], Lemma XVIL.3.3, 2 is bounded in the sense that there exists ' > 0
such that ||E|| < C for each E € £2. Now, just as in the proof of Theorem 9 in [12],
we conclude that £2 is a totally atomic Boolean algebra. Suppose Ep is an atom in
2. Then Ey(X) is a cover for 0 in latB, a contradiction.

Now we prove that lat.4 has an atom. By the preceding paragraph, there exist M
and N such thet N is a cover for M in latB. There is L € lat Asuch that M + L= N.
It is easy to verify that

(lat (A|L)) N (lat (AILY) = {0, L}.

Let us assume that lat (4| L) has no covers. Let £ be a maximal chain of subspaces in
lat (A|L). Then £ is a maximal chain in L. Furthermore, £ is continuous in the sense
that each M € £ has neither an immediate predecessor nor an immediate succesor
in £. By Corollary 3.2(i), A|L contains a non-zero compact operator K. Then, by
Ringrose [11], K lies in the radical of .A|L. However, Shul’'man [16] has shown that
every operator algebra on a Banach space whose radical contains a non-zero compact
operator must have a common non-trivial invariant subspace with its commutant.
Applying that to A]L we obtain a contradiction. Hence, lat(A]L) has a cover, that
is, there are M; and N in lat(A|L) such that M; # Nj and there is no non-trivial
subspace of lat.4 between M; and N;. Let L; € lat.A, L; + M; = Ny. Then L, is
an atom in lat.4. This proves (i).
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(if) Denote by X; the subspace of X spanned by the ranges of all finite-rank
operators in 4. Then X, € lat.4. We must show that X; = X. Suppose not. Then
there exists a non-zero X3 € lat. 4 such that X; + X2 = X. Now A|X> is a completely
reducible algebra containing, by Corollary 3.2(1), a sufficient set of compact operators.
By (i), lat (A|X2) has an atom M. That means that M C X, M € lat.A and A|M is
transitive. Again by Corollary 3.2(i), there is a compact K € A such that K|M # 0.
By Lomonosov’s Theorem [8)], there exist A € A and a non-zero z € M such that
AKz = z. Since A is unital and uniformly closed, the finite-rank Riesz projection E
of AK onto the root space corresponding to the eigenvalue 1 lies in .A. Then,

r=Fze XoNnX; =0,
an apparent contradiction. This proves (ii). |

REMARK 3.4. If A is a (not necessarily completely reducible) operator algebra
containing a sufficient set of finite-rank operators, then lat.A may have not an atom.
To see this, it suffices to consider a nest algebra with a continuous invariant subspace
lattice.

4. FACTOR ALGEBRAS

In this section, we will study completely reducible algebras A such that A4 con-
tains a sufficient set of finite-rank operators and A’ N A” contains no non-trivial
projections. We will characterize all such unital, strongly closed algebras modulo a
spatial isomorphism. First let us fix some notation.

Let X and Y be two Banach spaces. If A € £L(X), B € L(Y), we will write

AL B if TeL(Y,X) and AT =TB.

If n is a positive integer, we write X (") for the (exterior) direct sum of n copies of X.
T € £L(X,Y), then we write T(™) for T®T & ---& T (n copies). That is, T is a
transformation from X(*) into Y{") such that

T (2,0 2:@ - Bzn) =T2:10T22® - S T
For any subset § C bﬁ(X ,Y), we write S for {T(™ € £(X™,Y(™), T € 8}.

DEFINITION 4.1. We say that an operator algebra A is a factor algebra if there
exist Banach spaces X;,X5,..., X, and quasiaffinities 73,75, ...,Ts-1, where T; €
€ L(Xiy1, X;) such that A is spatially isomorphic to the algebra

(A1 @A D ®An: A BADB . A 1250 4,).
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Furthermore, if each T; is invertible, or if 4 = L£(X;) (which will mean that A is
spatially isomorphic to £(X)(") for n > 1), A is said to be a factor algebra of type I.
Otherwise, A is called a factor algebra of type II.

REMARK 4.2. Every factor algebra is reflexive. This can be easily deduced from
the fact that for A € £L(X), B € L(Y), T € £L(Y,X), AT = TB if and only if the
operator A @ B leaves the subspace {Ty® y, y € T} invariant.

The following simple but important fact is due to Douglas [4]:

PRroPOsITION 4.3. Suppose T' € £(X,Y) is a quasiaffinity and A € £L(X). Then
the following are equivalent:

(a) A=TB for some B € L(Y);

(b) The range of A is contained in the range of B.

Proof. The implication (a)=>(b) is obvious. Assuming (b), consider the (well-
-defined) map B = T~ !A. Clearly A = TB. On the other hand, an application of
the Closed Graph Theorem shows that B is bounded. [ |

Note. If T' is a quasiaffinity and A has finite rank, then AT and T'A have the same
rank as A. In particular, A leaves the range of T invariant if and only if R(A) C R(T).

The following lemma clarifies the structure of a factor algebra.

LEmMMA 4.4. Suppose T; € £(X;41,Xi), i = 1,...,n — 1, are quasiaffinities and
set
T; Tn—:l
A= {Alﬁa @ An AL S Ay Ap1 — An}

Set Sy =Tand S;=Ty---Ti_y fori=2,...,n. Then

(a) The general member of A takes the form A; & --- @ A,,, where A, leaves the
ranges of Sa,..., S, invariant and A; = Si_lAlS,- for each i.

(b) The finite-rank members of A are strongly dense in A.

(¢c) Each finite-rank member of A is the sum of members of A whose direct
summands all have rank one.

(d) The compressed algebraB = {A1®- ®An_1: A1B---®A, € A} is strongly
dense in

C={A1® @ An_y: A1 DAy Au_s 25 A, 1),

(e) A has no non-trivial strongly closed bilateral ideals.

Proof. (a) follows from Proposition 4.3.

(b) Suppose A = A; ®---®S71AS, €Adandz=2,B B2, EX10--OXn
are given. Note that the range of S 18, =Ty ---Tn-1 is dense in X for each k. Fix
an € > 0. We will construct a finite sequence yy,,...,%; in the following way. Set
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Yn = S A1 8, z,. Assume that for some &, 1 < k € n~1, we have already produced
the vectors yn,...,yr4+1. Now consider two cases. If Spzy is not in the linear span
of {Sizili > k}, choose yx € R(S;'S,) with ||Sg*A1Skzx — yk]| < €. On the other
hand, if Syz). = ZC,-S,-.’G,-, set yp = Sp IZ ¢;S;y;. In the latter case, we have

i>k ik

155 Ar Sz — well < Y leal 1155 S (S AsSizi — )|
i>k
Since S;'S; is bounded for i > k and only finitely many ¢; appear in these linear
combinations, we can arrange, by an appropriate choice of yi’s, that

IS ArSeer — ]l <€ forall 1<k <. (+)

Define B, to be a linear transformation on X; which vanishes on a subspace of X
complementary to the span of {Szx}, and sends Skzi to Skyx (it is clear from the
above that such B; exists). Then B is a finite-rank operator whose range is contained

. =0 .
in the range of S,. Thus B = Z 87 1By S; is a finite-rank member of 4 and ()

shows that we can make ||(A - B):::H a.rbltranly small.

n

®
For a finite subset {z,,...,2m} C Z z;, where z; = Z i, define the factor

i=1 i=1
algebra

A={aMo. . 0AM 484 4., An}

n
and a vector # = Z@ze z;;. To finish the proof, apply the result of the preceding
i=l j=1
paragraph to A = E®A5m) and %,

(¢) Every finite-rank operator B; whose range is contained in the range of S,
can be expressed as a sum of rank one operators, with ranges contained in the range
of S,. Now apply (a).

(d) In view of (a), every rank one member of C; = C|X; takes the form C; =
= Sn-12 ® ¢ for some 2 € X,y ans p € X]. In view of (b) and (c), it suffices to

n-1
express any C = Z S; 1C18; as a strong limit of the members of B. Choose y € X,,

i=1
with ||z = Thy|| < € and take B; = S,y ® ¢. Then B = E S 1B15; belongs to B.

Moreover, for each ¢ < n — 1, we have S;” ey - By} = S’ 18, 1(z - Toy) ® S},
so B and C are in fact close in norm whenever ¢ is sufficiently small.

(e) Let J be a non-zero bilateral ideal in .A. We will show that 7 is strongly dense
in A. Let Ay = A|X; and J; = J|X:. Then J; is a non-zero bilateral ideal in .A;. On
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the other hand, since .4; is strongly dense in £(X}), the strong closure of J; is an ideal
in £(X), hence Jy is strongly dense in £(X1). Let{T,} be a net in Jy converging
strongly to the identity. Fix z € X,, ¢ € X} and € > 0. Then lignTa(Sn:c QR¢) =
= Spz @ . It follows that we can choose y € X such that |[S,(y — z)|| < ¢ and
Sey®p € Ji. To complete the proof, apply the same argument as in the second part
of the proof of (d). a

LEMMA 4.5. Every factor algebra is completely reducible.

Proof. Adopt the notation of Lemma 4.4. We will proceed by induction on n.
If n = 1, then A = £(X) is completely reducible. Suppose our assertion is true for
all integers not exceeding n — 1. For the inductive step, suppose M € lat A and set
M={z:10  @zn 1 €EX1® ®Xp1: 210 D2r1B0E M}, Then M, is
invariant under B whence M; is invariant under C by Lemma 4.4(d). By the induction
hypothesis, there exists Ny € latC such that M) + Ny = X1®---®Xn_1. KM = M,
then N; @ X,, is the desired complement to M.

Otherwise set N = Ny @ 0 and note that M NN = 0. Fix a vector 2 = 21 &
@Dz, €M and p € X} with p(S,z,) # 0. Given y € X,,, the rank one operator
y® 8% belongs to A, = A| X, and sends 2, to a non-zero multiple of y. This shows
that the canonical projection onto X, along X; @ @ Xa_1 sends M onto the whole
of X,,, whence M + N exhausts X, and the proof is complete. |

The following example answers a question of Fong [6].

EXAMPLE 4.6. There is completely reducible algebra A such that the strongly
¢losed algebra generated by AU A’ is not completely reducible.

Proof. Let X be a Banach space and T a singular quasiaffinity in £(X). Let A
be the following operator algebra on X(2); '

A={A®B: AT =TB}.

By the previous lemma A is complefely reducible. Note that for each 4 € £(X), TA®
@AT € A. Let us show that X & 0 € lat.A’. Suppose not. Then, for some non-zero

S € L(X), an operator
( * %
S *

commutes with A. Tt follows that STA = ATS for each A € £(X), so that ST =TS
is a multiple of the identity. Since 7" is a quasiaffinity, 'S # 0, but then T must be
invertible, contradicting our hypothesis. Hence, X & 0 € (lat.A) N (lat.A"). On the
other hand, it is easy to see that X @ 0 has no complement in lat.A’. Therefore, the
algebra generated by A4 U .A’ is not completely reducible. .
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LEMMA 4.7. Let A C £(X) be a completely reducible algebra containing a
sufficient set of finite-rank operators. Let Xy and X, be non-zero subspaces in lat.A
such that X + Xy = X. Suppose that

latA = {M + N, M €lat(A|X1), N € lat(4|X2)}.

Then A|X, contains a subalgebra J such that the intersection of the kernels of all
operators in J is zero and B®0 € A foreach B¢ J.

Proof. Put Aj = A|X;and J ={B€ A : B&0€ A}. Let M = [) kerB.

Then 7 is a bilateral ideal in 4;. Hence M € lat.A;. We must show l;h:tE if = 0.
Supposing the converse, we obtain, by Corollary 3.2(i) and Theorem 3.3(i), that .4 | M
has an atom. By Lomonosov’s Theorem, there exist a finite-rank A € A and a non-
zero & € M such that Az = z. Then, for some polynomial p, E = p(A) is a finite-rank
projection such that Ez = z. Clearly, E € A. Let Ey = E|X;. Note that E; (M) # 0.

Now consider the algebra B = EAE|E(X). It is easy to see that B is a unital,
completely reducible subalgebra of £L(E(X)). Since every such algebra on a finite-
-dimensional space is reflexive ([3], p. 125), so is B. Let P denote the projection
onto X along X, and Py = EPE|E(X) = PE|E(X). By our hypothesis, one has
lat P D latA. It follows that lat Py D latB. Since B is reflexive, P € B, so that
PE = E;®01is in A. We conclude that E; € J, but the definition of M implies that
E; (M) = 0. Contradiction. [ ]

LEMMA 4.8. Let A C £(X) be a unital, strongly closed completely reducible
algebra containing a non-zero compact operator. Suppose the following conditions
satisfied:

(1) X =X, ®---® X,,, where each X; is an atom in lat A;

(ii) 0 is the only member of A which vanishes on a non-zero invariant subspace
of A. Then there exist quasiaffinities T, € L(Xi41,X:), i=1,...,n =1, such that,
after a suitable renumbering of X;’s,

.AQ{A1 @Az@@An :A1EA2,_,A,I_1T:1A"},

Proof. Our proof will be by induction on n. If n = 1, then A4 is transitive whence
A = £(X) by Lomonosov’s Theorem [9, Theorem 8.23]. Suppose our lemma is true
for all k € n — 1. For the inductive step, fix k, 1 < & € n — 1. In view of condition
(ii) and Lemma 4.7 (note that by Lemma 3.1 and Theorem 3.3(ii), A contains a
sufficient set of finite-rank operators), A|X; @& X, has an invariant subspace other
than the obvious ones. Since A is completely reducible, there exists a projection E
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on X & X,, commuting with A| X @& X, and such that the subspaces X} and X, are
not both invariant under E.
Write F as a matrix

S
V € L(Xn, X)) and S € L(Xi, Xy). A routine computation shows that AxV =V A,
and A,S = SA; for every A € A, where A; — A|X;. Note that either V or S is non-
-zero. Then this non-zero transformation must be a quasiaffinity, for if, say V # 0,
then cl R(V) € lat(A|X3) and ker V € lat(A|X,) must equal, respectively, X; and 0.
The case S # 0 is dealt with similarly.
Now apply the induction hypothesis to (the strong closure of) the algebra A| X, @
@ & X,_1 to see that there exist quasiaffinities T1,...,T,~2 such that (perhaps
after renumbering of X;’s, 1< i< n~1)

E= (* V), where
*

X . . ) Tam
AXi®- @ Xn-1 C{A1DA2®D - D An_y A1 B Ay Aneg 5% Anor )
By the above, there exists a quasiaffinity 7" such that A4, ErAl or Alsz,, for all
A € A. In the first case we are done, for

To
An DA B Ay An_y 23 Agoy forall A€ A
So consider the second case: A4, 3.4,,. Apply the induction hypothesis to (the strong
closure of) A|X, @ - -+ X,, to see that after a proper rearrangement of Xs, ..., X,, we
may find suitable quasiaffinities V5,..., V, -1 such that

A, B 45...725" 4, forall A€ A
Note that for each k, 2 < k < n there exist a quasiaffinity Si satisfying A; i'iAk.
Indeed, set Sy =Ty -+ -Ti..; for k < n—1and S, = 7. Then there is a quasiaffinity
(one of Si’s) intertwining A; and A,. Calling it Vi, we have

AB Ay An_ 23 A, forall A€ A,

which completes the proof. u

In the folowing theorem which is the main result of this section we generalize one
of the results of Azoff [1].

THEOREM 4.9. Let A be a unital, strongly closed subalgebra of £L(X). Then the
following are equivalent:

(i) A is a completely reducible algebra containing a non-zero compact operator
and AN A" contains no projections other than 0 and I.
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(i) A is a factor algebra.

Proof. (i)=>(ii): Apply Theorem 3.3(i) to find an atom in lat.4 and use Lomono-
sov’s result to see that A contains a non-zero finite-rank projection. Denocte the
minimal rank of such operators by n. Note that since A’ N .A” has no non-trivial
projections, Corollary 3.2(ii) tells us that 0 is the only member of 4 which vanishes
on a non-zero invariant subspace of A.

We claim that X may be expressed as a direct sum of exactly n atoms in lat.A.
Indeed, it is clear from the above that X is a direct sum of at most n such subspaces.

m
& .
Suppose that X = Z X;, where each X; is an atom in lat4 and m < n. Let
i=1

m
ma 7

E = z F; be a projection of rank n in A. Then, for some k, Ey is a projection
i=1

of rank at least two. Now apply the argument of Barnes [2] to transitive algebra
A = A|Xy. That is, the algebra E; A Ex|Ex(X3) is a transitive algebra of operators
on a finite-dimensional space and therefore must contain all operators on this space.
In particular, it contains a rank-one projection. If so, the algebra EAE C A contains

m
@
an operator F = Z F; such that F} is a projection of rank one. Hence the rank

=1
of F is strictly smaller that the rank of E. On the other hand, F is a projection,
for otherwise F2 — F would be a non-zero operator in .A vanishing on Xz. This
contradiction proves the validity of our claim. '
n
®
Assume henceforth that X = Z X;. By Lemma 4.8, there exist quasiaffinities

i=1

T: € L(Xit1,X;:), 1 €¢< n—1 such that
AC {A1€B @A, A Z‘?Ag., .An_lTSIAn}.
Obviously each E; is a rank-one projection; by Lemma 4.4(a), £ takes the form
Z&
E= z 5718,z ® St for some ¢ € X, and p € X]. Thus for each 4 € A, AE =
nl:é
= Z ST 16 Anz ® S?¢ also belongs to A. Since A|X, is transitive, for each
i=1 n ®
y € X,, we see that Z 5715,y ® St is anorm limit of such operators. Simi-
=1 " e
larly, the tramsitivity of .A|X; shows that Z 578,y ® S7¢ belongs to A for each
i=1
¥ € X{. Thus A contains all rank n members of the factor algebra {A; & -4, :
1 Ay I-‘»Az .. .A,._lTS‘A,,} and the proof is completed by appealing to Lemma 4.4(b).
(i))=(i): Let A be the factor algebra as above. We only have to prove that
A’ N A" contains no non-trivial projections. Let P be a projection in A’ N.A”. Since
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P commutes with canonical projections onto co-ordinate subspaces, it must take the

form P = Z P;, where each F; is a prOJectlon on X;. Furthermore, since each F;
i=1
commutes with the strongly dense algebra A|X;, it is either 0 or I. Suppose that P

is neither 0 nor I. Then, for some ¢ and j, i < j, P; and P; are not both 0 or I at the
same time. Let the operator A be given by the matrix (4p), 1 € p, ¢ € n, where
Apg = 6 pbg jTiTiy1 ... Tj1. It is easily seen that AP # PA. On the other hand, A
belongs to A’. Thus we conclude that £ is 0 or I. |

5. PROOF OF THE MAIN THEOREM

Throughout the following four lemmas A is a unital, strongly closed, completely
reducible algebra on X which contains a sufficient set of finite-rank operators, and
2 denotes the family of all projections in A’ N A”. Recall that {2 is a commutative
Boolean algebra.

LEMMaA 5.1. Choose a non-zero B € A and let L = \/{AB(X), A € A}. Then
(i) B does not vanish on every non-zero L, C L, Ly € latA;
(ii) L is the range of a projection in §2;
(iii) If, in addition, Ey € 2, Eq # 0 and B is an operator of the least rank such
that EoB # 0, then L is the range of a minimal projection in 2.

Proof. (i) Suppose that L; € lat.4, L; € L and B|L; = 0. Denote by E a
projection onto L; in A’. Then EAB(X) = ABE(X) = 0 for each A € A, so that
E(L) = 0. Since Ly C L, we have L, = E(L) = 0.

(ii) It is clear that L € (lat.A) N (lat.A’). Hence there exists M € lat.A such that
L 4+ M = X. To prove (ii), it suffices to show that M € lat.A’. Suppose the converse.
Denote, for each A € A, A; = A|L and A, = AJM. Then B; = 0, for B(X) C L.
Since M is not in lat.A’, there exists a non-zero T' € L(M, L) satisfying B1A1T = 0
for each A € A. Choose ¢ € M with Tz # 0 and put N = clATz. Then N C L,
N € latA and B|N = 0. By (i), we conclude that N = 0. Since A is unital, Tz € NV,
so that Tz = 0. This contradiction shows that M € lat A’, as asserted.

(iii) By (ii), one can find E € £ such that E(X) = L. It is clear that EoE # 0.
Suppose that E is not minimal in £2. Then there exist non-zero E; and E; in 2
such that E = F; + E, and F = EgE; # 0. Repeating the same argument as in the
proof of Lemma 4.8, we see that for every M € latA, M = F(M) + (I — F)(M).
By Lemma 4.7, there exists A € A such that FAB # 0 and (I — F)A = 0. Then
EyAB # 0 and, since E2B # 0 by (i) and E;AB = 0 (E2 I — F), we conclude



282 SHLOMO ROSENOER

that rank (AB) < rank B. This contradicts our assumption about B. Now the proof
is complete. : u

LEMMA 5.2. If E is 2 minimal projection in 2, then E € A.

Proof. Let B denote an operator of the least rank such that EB # 0. Denote by
£ the minimal projection onto the subspace spanned by AB(X), 4 € A. (Lemma
5.1 (iii)). Clearly EF # 0 and, since both £ and F are minimalin 2, E = F. It
follows that EB = B. Let J denote a set of those A € A for which EA = A. Then
Jo = J|E(X) is a non-zero bilateral ideal in .A|E(X). Since A is strongly closed, so is
Jo. Let Ag denote the strong closure of A|E(X). It is easy to see that .4, satisfies the
hypothesis of Theorem 4.9. Hence Ay is a factor algebra and 7, is a non-zero bilateral
strongly closed ideal in Ag. By Lemma 4.4(e), one has Jo = Ag. In particular, the
identity operator in E(X) lies in Jp. This means that E € 4, as asserted. [ ]

LEMMA 5.3. Every family of minimal projections in £2 has its supremum in 2.

Proof. Let {Eq} be an arbitrary non-empty family of minimal projections in £2.
The previous lemma makes it clear that E, € A for each a. Put

M =\/Ey(X), L= (ﬂ ker Ea) N M.

Obviously, M € (lat.4)N(lat.A’). We claim that L = 0. Indeed, since L € lat.A, there
is L1 € latA such that L + L; = M. Then E.(X) = Eo(M) C L for each a and,
by the definition of M, L; = M and L = 0. This proves our claim.

Let N € lat4, M + N = X. It is clear that E,(N) = 0 for each a. Let E denote
the projection onto M along N. Then, for every T € A’,

EyET(I-E)=ETE,(I-E)=0 (alla).

From the preceding paragraph it follows that ET(I — E) = 0 for every T' € A’; that
is, N € latA’. Hence, E € 2 and E is the supremum of {E,}. ‘ R

LEMMA 5.4. 2 is a complete totally atomic Boolean algebra.

Proof. Let E € £ and let {E,} be the family of all minimal projection in 2
dominated by E. We claim that E is the supremum of {£,}. Indeed, denote this
supremum by F; then, by the previous lemma, F € £2. Evidently, F < E. Suppose
that F # E. Let B be an operator of the least rank in A such that (£ — F)B # 0,
and let L denote the subspace spanned by AB(X) with A € A. By Lemma 5.1(iii),
L = G(X), where G is a minimal projection in 2. Then EG # 0, hence G < E. But
then F' does not dominate G, a contradiction. This proves our claim.
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Now let {E,} be an arbitrary non-empty set in 2. Put
L=\/EsX).

Since, by the above, each E,(X) is spanned by the ranges of minimal projections in
12, the same can be said of L. By Lemma 5.3, there exists £ € 2 such that £(X) = L.
That is, F = \/ E, is in 2. To finish the proof, it suffices to notice that

(=3

/\EQ:I—V(I—EQ),

so that A E, is also in £2. L
&

Let {2 be a complete, bounded Boolean algebra in £(X), and let {E,} be a family
of non-zero mutually disjoint elements of £ such that \/ E, = I. Let X, = Eqo(X)

and Sy C L(X4). We will write @ S, for the set of all operators T € £(X) which
commute with each £, and such tcizat T|Xs € 8a. Note that T = @ T, if and only
@

if Ty = EqT|EqQ(X) for each a.
Now we prove the main result of this paper.

THEOREM 5.5. Let A C L£(X) be a unital, strongly closed, completely reducible
algebra containing a sufficient set of compact operators. Then there exist a complete
bounded totally atomic Boolean algebra of projections 2 C AN A’ with the set of
atoms {E,} and a collection of algebras {A,}, Ae C L(X,), where Xo = Eo(X),
such that each A, is a factor algebra, Aq Is a factor algebra of type 11 only for ﬁnite]y;
many o, and A = @ A,. Moreover, A is reflexive and A" = A.

24

Proof. By Theorem 3.3(ii), A contains a sufficient set of finite-rank operators. Let
12 denote the collection of all projections in A’ N.4". By Lemma 5.4, 2 is a complete
totally atomic Boolean algebra, so that by [5], Lemma XVII.3.3, 2 is bounded. Let
{Eq} be the set of all minimal projections (atoms) in £2. For each &, E, € A (Lemma
5.1); it follows that A4, = A|X, is strongly closed. Also, 2 C A, for A is strongly
closed. If E is a projection on X, which commutes with both A, and A, then EE,
belongs to 2. Since E, is an atom in £2, it follows that EE, = 0 or EE, = E,. By
Theorem 4.9, we see that A, is a factor algebra in £(X,) for each a.

Let T be in £(X) such that lat7 D lat.A. Then, for each a, T commutes with
Eq and lat(T'|X,) 2 lat A,. Since A, is reflexive (Remark 4.2), T| X, € Ay Hence
TE, € A. Let X denote the set of all finite sums of mutually disjoint E,’s. Then &
is an increasing net in £ and, by [5], Lemma XVII.3.4, the identity operator on X
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is the strong limit of X'. Since, for every £ € X, TE € A and A is strongly closed,
T € A. This proves that A is reflexive and A = @ Aq.

L4
It remains to be shown that the number of those A,’s which are of type II is
finite. Let us suppose the converse. Then there exists an infinite sequence {An}3,
of factor algebras of type II such that A = € A, is completely reducible.. We may

n=1
choose, for cach n 2 1, a subspace M, € (lat.A,) N (lat. A7) having no complement in
lat A}, (cf. Example 4.6). Let M = M, & M2 ® - & M, @ - -+, that is,

M={ze X :E,z € M, forn>1}.

Then M € (lat4A)N(lat.4’) and, since A is completely reducible, there is L € lat.A such
that M+ L=X. Itisclearthat L=L,@® Lo+ ® L, ® - -, where My, + L, = Xp,
L, € latA,. Note that L, is not in lat. 4/, for n > 1. Hence there exists a non-
-zero T, € L(Ln, M) such that, for each A € A,, (A|Mn)Tn = Tu(A|Ls). Now,
using Remark 2.3, it can be shown that L € lat.4’. Then L, € latA], forn > 1, a
contradiction. This completes the proof. a

CoROLLARY 5.6. [12]. Let A C £L(X) be a commutative, unital, strongly closed
completely reducible algebra that contains a sufficient set of compact operators. Then
A is the uniformly closed algebra generated by a complete totally atomic Boolean
algebra of projections 2. Also, each atom in £ is finite-dimensional, and every

operator in A is a scalar type spectral operator.

Proof. Since A is commutative, so is each A,. Since A, is a factor algebra,
it must contain only the multiples of the identity. It follows that A is the strongly
closed algebra generated by {E,}. By [5], XVIL.3.17, A is the uniformly closed algebra
g:enerated by {E.}. Furthermore, by [5], XVIL.3.25, 4 is an algebra of scalar type
spectral operators. Since A contains a sufficient set of compact operators, each E,
must be finite-dimensional. |

COROLLARY 5.7. Let A be a unital, strongly closed completely reducible algebra
on a separable Hilbert space that contains a sufficient set of compact operators. Then
A is spatially isomorphic to the orthogonal direct sum of finitely many factor algebras
of type II and of finitely or countably many factor algebras of type I.

Proof. Suppose A C L(H), where H is a separable Hilbert space. Let 2 denote,
as above, the set of all projections in A’ N.4”. By [5], Lemma XV.6.2, here exists
an invertible S € L(H) such that S~1025 is a totally atomic Boolean algebra of self-
-adjoint projections. Since H is separable, the number of atoms in S~! 28 is at most
countable. Denote these atoms by Pi, Py,..., Pys,.... Then B = S~1AS = @ B,

n

where By, = B|P.(H). =
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Note that the converse to Corollary 5.7 is false, that is, an infinite orthogonal

sum of factor algebras of type I is not necessary completely reducible.

10.

11.

12.

13.

14.

15.

16.
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