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SPECTRAL ANALYSIS FOR SIMPLY CHARACTERISTIC
OPERATORS BY MOURRE’S METHOD. II

G. ARSU

1. INTRODUCTION

In 7] the authors developed an abstract theory of multiple commutator estimates
for a self-adjoint operator H and a suitable conjugate operator A.

The purpose of this paper is mainly to show how this abstract theory and its
consequences can be used in the context of simply characteristic operators.

The plan of the paper is as follows. In Section 2 we present a short-range scatter-
ing theory for simply characteristic operators. The results of Section 2 are extended
in Section 3 to operators with long-range potentials. In Section 4 we obtain resolvent
estimates in Besov spaces in the context of Mourre’s commutator methods. Finally,
the paper has an Appendix which contains results concerning L2-boundedness of some
multi-commutators of pseudodifferential operators and the quasi-divergence of some

functions.

2. THE SHORT-RANGE CASE

The results of [7] have as a particular consequnce an abstract scattering theory.
In this section we shall apply this theory to the simply characteristic operators with
short-range perturbations.

We shall work under the following hypotheses.
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HYPOTHESES

L. The free Hamiltonian Hy is a self-adjoint operator on the Hilbert space H =
= L?(R"), with the domain D(Hp) = {u € H;pott € H}, Ho = F 'poii, where 4 is
the Fourier transform of u and po is a real valued function which satisfies:

(i) po : R® — R is a continuous function.

(ii) Let S, be the set {£ € R™; pg is not C™ in any neighborhood of ¢}, let Cp
be the set {£ € R*\ Sp; Vpo(€) = 0} and let § = Sp UC,. Then po(S) is a countable
subset of R.

(iii) For any compact interval I C R\ po(S), with pg'(I) # @, we have

(21) inf{|Vpo(€)l; £ € 551 (D} > 0,
(2.2) dist(py (1), Sp) > 0
(iv) sup { T |P(i?§§|p :-(gl)vl’po 7 5)5’ fER" \Sp} < oo for each multi-index o with

o] 2 2
(v) (local compactness). For any compact interval I C R\ po(S) and for each
r > 0, the operator
F(|z] < r)Eo(1)

is compact. Here F\(M) denotes the indicator function of the set M and Ey(I) denotes
the spectral projection for Hg onto the interval 1.

II. Let V : D — H be a symmetric operator such that

(vi) The operator Ho + V with the domain D has a self-adjoint extension H on
H.

(vii) For some ¢ > 0 the operator g(H)V g(Ho){X)*** has a bounded extension
to the whole of X for each g in C§°(R).

We used the notations: D for the image of D (the space of test functions defined
on R") by the Fourier transform and {z) = (1 + |z|?)}/2, z e R".

(viii) For any g in C°(R) the operator g(H) — g(Hy) is compact.

The main result of this section is the following theorem.

THEOREM 2.1. Assume that the hypotheses (i)-{viii) are satisfied. Then

(a) The wave operators Wy = s — 1!_}‘irinm elfltemiot B (H,) exist;

(b) Range Wy = H.(H), the contiuous subspace of H;

(c) 0se(H) = 0;

(d) Any eigenvalue of H not in po(S) is of finite multiplicity. The eigenvalues of

H can accumulate only at the points of py(S).
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Before proving the theorem we wish to make a few remarks about the hypotheses

we made.

REMARK 2.2. a) The condition (2.1) can be read as follows:

(2.1)" If the free energy lies in a compact interval disjoint from thresholds, then
the velocity is bounded from below by a positive constant.

b) If we replace the condition (2.1) by the stronger condition

Q1) lim ()] + [Tro(©)) = e,
then the local compactness property of Hy (i.e. condition (v)) is fulfilled (see the
Appendix).

In the same way one can prove a similar theorem with the condition (vii) replaced
by the condition

(vii)’ For some & > 0 the operator g(H)V{X)'** has a bounded extension to the
whole of H for each g in C§°(R).

This condition is always true when V' is a symmetric Ho-compact operator and

there is an £ > 0 such that the operator
(Ho +1)~H{X)1**

has a bounded extension.

The idea of the proof of the theorem is to construct for any interval I CC R\po(5)
an operator A = Ay conjugate to Ho on the interval I, such that Hp is co-smooth
with respect to A in the sense of the Definition 2.1 given in [7].

Since we shall use the same technique in Section 3, we shall recall this definition.

Let H be a self-adjoint operator in a separable Hilbert space H with domain
D(H). Let Eg denote the spectral measure for H. Denote by #, the completition of
the vectors ¢ satisfying

I = [+ 32728 B3y < oo.

Then H,y is the domain D(H) with the graph norm, and H._» is the dual of H4
obtained via the inner product on .

DEFINITION 2.3. Let I C R be an interval and let m > 1 be an integer. A
self-adjoint operator A on ¥ is said to be conjugate to H on the interval I, and H is
said to be m-smooth with respect to A, if the following conditions are satisfied:

a) D(A) ND(H) is a core for H. |

b) €!4* maps D(H) into D(H), and for each ¢ € D(H)

sup ||He“*yl] < oo
lel<1
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¢m) The form i[H, A] defined on D(H) N D(A}, is bounded from below and
closable. The self-adjoint operator associated with its closure is denoted iB;. Assume
D(H) C D(By). If m > 1, assume for j = 2,...,m that the form i[iB;_1, A], defined
on D(H) ND(A), is bounded from below and closable. The associated self-adjoint
operator is denoted iB;, and it is assumed that D(H) C D(B;).

dm) The form [Bpm, 4], defined on D(H) N'D(A), extends to a bounded operator
from H.;.z to 'H..g.

¢) There exist a > 0 and a compact operator X on H such that

Eg(1)iB1Eg(I) > aEu(l) + Ex()K Ex(D).

If H is m-smooth with respect to A for every integer m 2 1, H is said to be
oo-smooth with respect to A.

We pass now to define the operators which we mentioned.

Let I CC R\ po(S) be an interval. If p; '(I) = @ we take A = Ay =0.

If p; (1) # @ we proceed as follows. The condition (iii) (2.2) implies the existence
of a function x in Cf*(R") with the following properties

x(€)=1if €€py'(I), suppx CR*\Sp.

Here C{°(R™) denotes the space of all smooth functions bounded with all their deriva-
tives.
Next we define the smooth vector field v in phase space by

x(€)Vpo(é)
1+ lpo(E) + [Vpo(O)I?

(2.3) v() =

Let us note that the condition (iv) and the properties of the function x imply that
the components of the vector field v belong to the space C;°(R™).
Since the vector field » is bounded it follows that the Cauchy problem

{ (&) 18 = s(r@e)
ro¢8=¢

defines a group of smooth diffeomorphisms of R", {I'(«, ) }aer-
To this group of diffeomorphisms {I'(c, )}acr We associate a group of unitary
operators {V(a)}acm on L%(R™, d€) by

1/2

(2.4) (V(a)¢)(e)=|detf"”—g§-’-9 W(P(8), ¥ e LR de).
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If we denote by F the Fourier transform on L?(R®), then we obtain another

group of unitary operators on L2(R", dz) defined by
(2.5) _ U(e) = F7'V{(a)F on L*(R" dz).
Let now A = Ay be the self-adjoint operator on L*(R",dz) such that

(2.6) ' Ula) = ™42,

LEMMA 2.4. a) D is a core of A, A maps D into D and

n
X;v;(D) + v;(D)X; A
2.7 A:;JU’( );U"( )X on D.
b) For anym €N, D isa core,of A™;
c) The statements a) and b) are true with D replaced with $(R").

Proof. a) Let {V(a)}acr be the group of unitary operators defined by (2.4).
Concerning this group we make two quasievident remarks:

1) For any o € R, V(&) maps D into D;

2) For any ¥ € D we have

iim
o~+0

V_(a%ﬁ__d) =27 i(ij”j(') +v;(-)D¢; )¢ in D.
1 .

The last assertion can be proved by using a Taylor expansion of order two. Now
this part of the lemma follows from the definition and the Theorem VIIL.11 of [12].
b) Let B be the self-adjoint operator on A such that V(a) = ¢Z%. Then the
second part of this lemma follows if we show for every m € N D is a core for B™.
Let G = {g € (R); § € C°(R)}. To prove that D is a core for B™ it suffice to
show that for g € G we have g(B)D C D. Indeed, from this assertion it follows that
the space M = Vg g(B)YD C D C D(B™) and it is obvious to see that M is a core
g€

for B™.
Let 7 C R be a symmetric compact interval and let X C R® be a compact set.
Let g € G with supp § C I and ¢ € Dg. Then using the representation

o(B) = @) [ sVt

we obtain that g(B)y € C*(R") and supp g(B)¢ C K;, where Ky = I'(I x K).
c) Since the vector field has its components in C°(R") it follows that 4 is a
bounded operator on $(R") and this concludes the proof of the lemma. -
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LEMMA 2.5. Let ¢ € CY(R™\ S,)NC(R™) such that V¢ -v is a bounded function.
Then
a) For any a € R, D(U(a)g(D)U(~a)) = D(¢(D)) and

U(a)q(D)U(~a) — ¢(D) = b(, D), where

(28) Ha,8) = [ Va((r,€) - (I (r,)ar
0

b) For any o € R, U(a) maps D(g(D)) into D(g(D)) and for each ¢ € D(¢(D))

(2.9 sup llg(D)U ()¢l < lla(DYell + sup Vg - o] |||

¢) The form i[g(D), A] defined on D has a bounded extension and

(2.10) i{g(D), 4] = (Vq - 3)(D).

Proof. a) For a borelian function ¢ : R® — C, we denote by M, the operator
@ — g on L2(R").

Since U(a)g(DYU(—a) = F~*Myor(a, )yF for any o € R, it follows that D is a
common core for U(a)g(D)U(—«) and ¢(D).

On the other hand we have

U(a)g(D)U(~a) - ¢(D) = b(a, D) on D,

with b given in (2.8).
Now a) follows from previous relation by observing that b(e, D) is a bounded
operator.
b) is an easy consequence of a)
¢) follows from (2.8) by derivation.
]

REMARK 2.6. a) Let m; = sup{|r|; v € I} and let ¢; = inf{|Vpo(€)|; & €
€ py ' (I)}. Then the part c) of Lemma 2.5 implies that

Eo(I)i[Ho, AlEo(I) > c}(1 + m} + )™ Eo(I)

b) If we denote as usual

a.dA(Hg) = [HQ,A]
ad®*1(Ho) = ad4(ad% (Hyo)), k€N, k> 1,
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with the commutators understood as in Definition 2.3, then we obtain from Lemma
2.5 that for every meN, m > 1

ad™(Ho) € B(H).

c) Lemma 2.5 b) together with the previous remarks imply that A is a conjugate
operator for Hy on the interval I, and Hy is oo-smooth with respect to A.

Remark 2.6. b) has the following consequence.

LEMMA 2.7. Let m € N and let g € CP(R). Then
a) ad’y (9(Ho)) is bounded.
b) The following formula holds

9(Ho)(A +1)™™ = ( A+1)“"'{fj( ) (~1)*ad (o(Ho))(A +1)- }
0

Here ad’ (9(Hs)) = g(Ho).

Proof. a) Using formula
t
ady(eHof) = elflot 4 — pelfo? = i/ eifotad 4 (Ho)etHolt-2)ds
0

it can be shown by induction that for every k €N, £ > 1
ad® (e'o?) € B(H),

T

. - —1y! . .

adj(e™) =i 37 —xgk rkzi)at ' f ady (e/7*)ad™* ! (Ho)ad®* (o =*))ds,
kitkatka=k—1 4

llad*e ‘H‘“)!Ism) Clel*.

Now the part a) of the lemma follows from the representation

9(Ho) = (2m)71/? / g(s)e'osds

where § denotes the Fourier transform of g.
b) The proof of the second part of the lemma is elementary and is made by
induction. |

CoOROLLARY 2.8. Let m € N and let g € C§°(R). Then g(Ho) maps D(A™) into
D(A™).

Now we need to make some notations. We denote by x* (resp. x~) the indicator
function of (0,+00) (resp. (—o0,0)). For a self-adjoint operator A, Pf (resp. PJ)
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denotes the spectral projection corresponding to (0,+0c0) (resp. (—o0,0)) and (A4)
denotes the operator (1 + A2)!/2.
Lemma 2.4 has the following consequence.

LeMMA 2.9. Let s > 0. Then
(A¥{X) =1,
is a bounded operator on H.
Proof. We need only to prove the case s = k € N and then use the complex
interpolation. Thus we must show that the operators
AXY kR,

are bounded. But this follows from Lemma 2.4 and the estimate

l(X)~Fo, 414)| < Cllell1¥ll, .4 €D

[ |
Remark 2.6 ¢), Corollary 2.8 and Theorem 4.2 of {7} have the following consequnce
which can be interpreted as a propagation property.

THEOREM 2.10. Let 0 € &' < s and let ¢ € C°(I). Then there is a constant
¢ = ¢(g,s,5') such that

(2.11) (A)~*e  Hot g(Ho)(A) ™| S eft) ™, tER,

(2.12) llx* (e)(4) e Hotg(Ho) PE|| < eft) ™, t€R.

From now on the proof of Theorem 2.1 follows the same way as the proof of
Theorem 4.3 of [7] or the proof of Theorem 1.1 of [2].

3. THE LONG-RANGE CASE

Some of the results of Section 2 concerning to the unperturbed Hamiltonian Hy,
such as oo-smootheness, can be extended to a perturbed Hamiltonian Hr = Ho+ Vg,
where V7, is a long-range potential.

The purpose of this section is to prove that under certain conditions, the per-
turbed Hamiltonian Hy = Hy + V is co-smooth with respect to certain conjugate
operators on any finite interval I C R\ po(S).
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We recall now some definitions and notations which we shall use.
Let F(M) denotes the indicator function of the set M and assume that R" is
divided into unit “cubes” Cy, & € N so that

R” = U.C-k and CyNC;=0, k#j.
keN

We say that f € ¢o(L?), p 2 1, if
Ifllo.p = sup IF(Ce)fllp <00 and  lim [|F(Ci)fllp = O.
kEN o0
Also we say that a function f is quasi-divergent if
k]im |Ce N B} = 0.

for all m € N, where B, = {z € R*; |f(z)|] < m} and |M| denotes the Lebesgue
measure of the measurable set M.
Finally we denote by CZX(R") the space of all smooth functions ¢ such that

N _
zlgroxo D%p(z) =0
We shall work under the following hypotheses.

HYPOTHESES

1. The free Hamiltonian Hy is a self-adjoint operator on the Hilbert space M =
= L2(R"), with the domain D(Ho) = {u € H; pots € H}, Ho = F~'pyit, where i is
the Fourier transform of » and py is a real valued func¢tion which satisfies:

(i) po : R” — R is a continuous function. ‘

(ii) Let S, be the set {£ € R”; pp is not C™ in any neighborhood of £}, let C,
be the set {€ € R*\ Sp; Vpo(€) = 0} and let § = S, UCp. Then po(S) is a countable
subset of R.

(iii) For any compact interval I C R\ po(S), with p;1(I) # @, we have

dist(pg (1), Sp) > 0.

(iv) F(Sp) € Co(Ll).

) ¢ fim s, (Po@)] + [Vro(§)]) = oo.

S e Do €)] . } L
. (\;1) sup { TF po®)| + Vol £ E€R®\ Sp p < oo for each multi-index with
ol 2 2.
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II. (vii) Vi, is C™ real valued function which satisfies
|D*Vi(z)| € Cafz)™"1*1, z€R?,

for some ¢ > 0 and all @ € N™.

From the hypotheses (iv) and (v) it follows that pg is a quasi-divergent function
(see the Appendix). Now from Theorem 9 of [5] we obtain that Vi is a symmetric
Hy-compact operator. We denote by Hj the operator Hy + Vo with the domain
D(HL) = D(H).

III. Let V : D — H be a symmetric operator such that

(viii) The operator Ho + Vz + V with the domain D has a self-adjoint extension
H.

(ix) For some ¢ > 0 the operator g(H)Vg(Hr){X} **has a bounded extension
to the whole of H for each g in C$°(R).

(x) For any g in CZ°(R) the operator g{H) — g(Ho) is compact.

The main results of this section are the following theorems.

TueoreM 3.1. For any interval I CC R\ po(S) there is a seif-adjoint operator
Ar such that A; is conjugate to Hp on the interval I and Hj, is co-smooth with
respect to Ajg.

As a consequence we have that the eigenvalues of Hp which are not is po(S) are
of finite multiplicity and they can accumulate only at the points of po(S).

THEOREM 3.2. Assume that the hypotheses (i)—(x) are satisfied. Then

(a) The wave operators Wy =5 — lim eiflte-iHitp (Hp) exist;

(b) Range Wy = H_.(H), the continuous subspace of H;

(c) ocs(H) # O; .

(d) Any eigenvalue of H not in po(S) U ep(H) Is of finite multiplicity. The
eigenvalues of H can accumulate only at the points of pp(S) U op(Hp).

REMARK 3.3. a) In the proof of Theorem 3.2 we shall need the following local
compactness property: for any compact interval I C R\ po(S) and for each r > 0, the
operator

F(lz] < r)EL(I)

is compact. Here Er(I) denotes the spectral projection for Hy, onto the interval I.
This property is a consequence of the quasi-divergence of pp.
b) The quasi-divergence of pp implies that the condition (x) is equivalent to the
following one:

(x)’ For any ¢ in C§°(R) the operator ¢(H) — ¢(Hyg) is compact.
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c) In the same way one can prove Theorem 3.2 with the condition (ix) replaced
by the condition:

(ix)’ For some € > 0 the operator g(H)V {X)'** has a bounded extension to the
whole of H for each ¢ in C§*(R).

This condition is always true when V is a symmetric Ho-compact operator and
there is an € > 0 such that the operator

(Ho +1)"1V{X)!*

has a bounded extension.
d) The condition (v) implies that for any compact interval I C R\ po(S), with
vy {(I) # @, we have

inf{|Vpo(€)|; £ € p5 (1)} = er > 0.

This remark implies that all the constructions in Section 2 can be made in the context
of the hypotheses of this section.

Let I CC R\ po(S) be an interval and let J CC R \ po(S) be another interval
such that I CC J. Let A = A; be the self-adjoint operator associated to the interval
J defined in Section 2.

Then the Remark 2.6. a) and the quasi-divergence of the function pp have the
following consequence.

There is a compact operator K on M such that
2
. 5 _
(3.1) EL(DilHo, AJEL(I) 2 {2 = Er{I)+ EL(I)KEL(])

where my = sup{|t]; t€ J}.
Since the components of the vector field v, which defines the operator A, belong
to the space CZ(R"), we can prove the following lemmas.

LEMMA 3.4. The operator ad4(Vy) defined on $(R™) has a bounded extension
to a compact operator on 'H.

LEMMA 3.5. Let m € N. Then the operator ady(Vz) defined on $(R") has a
bounded extension to the whole of H.

For the proofs of these lemmas we refer to the Appendix.

These lemmas end the proof of Theorem 3.1.

We note, also, that Lemma 3.5 gives, as in Section 2 (cf. the proof of Lemma
2.7), the following corollary.

COROLLARY 3.6. Let m € N and let g € C§°(R). Then
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a) ad’y (¢(Hr)) is bounded.
b) The following formula holds

JHL)A+)™ = (A+)™" {)E (%) (- adh(o(HL))(A + i)""} .
0

Here ad (9(Hr)) = 9(Hy).

¢) g(Hr) maps D(A™) into D(A™).

Now Theorem 3.1, Corollary 3.6 and Theorem 4.2 of [7] lead to the following
theorem.

THEOREM 3.7. Let 0 < ¢’ < s and let g € C§° (I \ 0,(HL)). Then there is a
constant ¢ = ¢(g, s,s") such that

(32) ()=t g(HL)(A) || < ()™, teR.

(3.3) It () {A)~*e~ Hrtg(H L) PE|| < c{t)~, tER.

From now on the proof of Theorem 3.2 follows the same way as the proof of
Theorem 4.3 of [7] or the proof of Theorem 1.1 of [2].

4. BESOV SPACE ESTIMATES

In (8], the authors show haw Mourre’s commutator methods can be used to prove
resolvent estimates in Besov spacés.

In this section we shall use this approach to prove this type of estimates for a
regular perturbation of a simply characteristic operator.

DEFINITION 4.1. [8]. Let A be a self-adjoint operator on a separable Hilbert
space H with norm || - ||. '

a) We define the Banach space

m,
Ba={ue¥; Y R*F(4€ D)l < oo}
0

where (A € () is the spectral projection for A4 onto the set ; = {teR,; 2i-1 ¢
SE<SPL 21 Go={teR; [t| <1}, and R; = 2. We write || - ||p, for the
obvious norm on B,.
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b) The dual space BY of B4 with respect to the inner product on # is the Banach
space obtained by completing H in the norm

llullzs, = sup R; /|| F(A € 2)ul.
J

c) The case A =|X|, H = L?*(R") gives the usual spaces B(R") and B*(R"™).

DEFINITION 4.2. Let Hy be the self-adjoint realisation in L2(R") of the oper-
ator of convolution with a real continuous function po defined in R™ which satisfies
hypotheses (i)-(iv) given in Section 2.

The hypotheses on the symbol of the free Hamiltonian allows us to construct a
family of self-adjoint operators A = {A;; I a compact interval contained in I\po(S)}
as in Section 2.

We say that H = Hp + V is a regular perturbation of Hy if V' satisfies the
following conditions:

a) V is a symmetric Hp-compact operator.

For any operator A € .4 we have:

b) The form B = i[V, A] defined on H 42 N D(A) extends to a bounded operator
from M2 to H which is an Hy-compact operator.

¢) The form i[B, A] extends from M2 N D(A) to a bounded operator from Mo
to H..z.

THEOREM 4.3. Let H = Ho + V be a regular perturbation of Hy. Let R(z) =
=(H —2)"! forImz # 0. Then

a) Any eigenvalue of H not in m is of finite multiplicity. The eigenvalues of
H can accumulate only at the points of m.

b) For A € R\ (po(S) U op(H)), the estimate

sup [ RO + i6) |~ e < eVl fllmca)

holds, where c(A) can be choosen uniform in A running over a fixed compact subset
of R\ (0(5) U o (H).

Proof. Let I CC R\ po(S) be an interval and let J CC R\ po(S) be another
interval such that 7 CC J. Let A = Ay be the self-adjoint operator associated to the
interval J defined in Section 2.

Then Remark 2.6. a) and Definition 4.2 imply that A is conjugate to H on the
interval I, and H is 1-smooth with respect to A.

So the first part of Theorem 4.3 follows from the abstract results of Eric Mourre.
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Concerning the second part of the theorem we shall use Proposition 2.1 of [8] to
obtain that

sup IR(A 4+ i8)flls, € ex(MIfllz.

holds with ¢;(}) uniformiy bounded in A, when X runs in a compact subset of
R\ (20(S) U op(H)).
Next, we show that the abstract spaces B4 and B look like B(R") and B*(R").

LEMMA 4.4. Let H = Ho+ V be a regular perturbation of Hy. Then for any
9 € C§°(R), the operator g(H) is bounded mapping from B(R") to B, and from B,
to B*(R").

Proof. We show g(H) : B(R™) — By, since the other assertion follows by duality.
To do this, we use a variant of the interpolation Lemma 2.5 in [1]: let 7' : L2(R") —

— L?(R") be a linear operator with T': L3 (R™) — D([A[") for some N > 3+ Then
T : B(R") — B4. Here L%, (R™) denotes the space

{u € Lioo(R™); (X}Nu € L*R™)}.

A proof of this interpolation result is obtained by mimicking the proof of Lemma
2.5 in [1].

Since g(H) : L*(R™) — L2(R"), we need only to show that {|A|+ Dg(H){(X) s
a bounded operator. But, by [4] Lemma 4.12 and Lemma 2.9 of Section 2 we obtain
that

Ag(HKX)™" = [A, g(H)(X)™" + g(H)A(X) !
is a bounded operator. [ ]

From now the proof of Theorem 4.3 follows the same way as the proof of Theorem
1.1 of [8]

REMARK 4.5. a) Assume that py satisfies the hypotheses (i)-(v1) of Section 3
and that V' =V}, satisfies the hypotheses (vii) of the same section. Then H = Ho+V
is a regular perturbation of Hj.

Moreover, if po and Vj, satisfy the above conditions with the conditions (vi) and
(vii) replaced with the conditions

1\ IDapo(E)l ! Dn [ . .
(vi) sup { T+ 7o) + Vre @I’ £ €R™\ S ¥ < oo for each multi-index o with

2< |a[< m, and

(vii)’ Vi is a C™ real valued function which satisfies

IDQVL(Z)I S Ca(z)_‘_'al, € iRn,
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for some £ > 0 and all @ € N® with |a| < m, where m = 2[n/2] + 3, then all the
conclusions of the Theorem 4.3 hold for H = Hy + V.

b) The Theorem 4.3 establishes the existence and the uniqueness of the weak-*
limit in B*(R") for R(A+i6)f as § | 0, when f € B(R"), and ) € R\ (po(5) U0, (H)).
This results follows from the B — B* estimates, the density of L%(R™) in B(R") for
s > 1/2, and the existence of the boundary values R(A+i0) in the L? — L% -topology
for s > 1/2 (cf, Theorem 2.2 of {7] and Lemma 2.9 of Section 2).

APPENDIX

In this appendix we propose to discuss certain results concerning the L?-bounded-
ness and compactness of multi-commutators of pseudodifferential operators and the
quasi-divergence of some functions.

A. We give here the proofs of Lemma 3.4 and Lemma 3.5.

Let F denote the Fourier transform on ¥'(R"). Let £ € R and let a € ¥'(R™ xR").
We define the operator

ay(X, D) : P(R™) — ¥'(R")
by
(a:(X, D)p, ¥) = @m) (1@ F)a) o Th, ¥ @ 9) ,% € P(R")

where T} : R® x R® — R” x R” is a linear map defined by
Ti(z,y) =@z + (1~ t)y, 2 — y)

Then we have

iled
ay(X,D) —ao(X,D)= Y —7 (0288 a)o(X, D)+
. ’ o<lajck
(A1)

1
+k Y i’c-, / (1 - k)*=1(828¢a) (X, D)dt
fal=k 3
with the integral converging weakly.
We shall use the theorem of Calderon-Vaillancourt in a variant due to Cordes (3]
(see also Kato [9]).

THEOREM A.l. Let m=[n/2]+1and 0Kt £ L.

a) If D} Dga € L®(R" x R") for |a|,|8| < 2m, then a,(X, D) is L?-bounded.
Moreover, the one parameter family of operators a;(X, D), 0 € t £ 1, is uniformly
bounded and uniformly continuous in operator norm.
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b) If a € C2™(R™ x R™), then the operator a;(X, D) is compact in the space
H=I*R").
Let s € R. We define the space
M, = {a € C=(R™); (¥) &, (3) Ca > 0, |0%a(z)| < Cale)'~1*, z € R"}.

Then for a € M, and A defined by (2.6) we have

n

(A2) [a(X), A] = Y _[X;a(X), v;(D)] +i[a(X), (dive)(D)]

1

Now Lemma 3.4 is an easy consequnce of (A.2} and the following result.

LEMMA A.2. Let £ > 0 and let a € My_,. Then

a) If b € C3°(R™), then the commutator [a(X),b(D)] is L2-bounded.

b) If b € CZ(R™), then the commutator [a(X),b(D)] is a compact operator in
the space L2(R™).

Proof. To prove this lemma we observe first that
[a(X),5(D)] = (a ® b)1(X, D) — (a @ b)o(X, D)

Then, by applying (A.1) with £ = 1 we obtain

n 1
[8C),6D)] =iy [(8j0 8,81, D)t
1%

Now this lemma is an easy corollary of the Theorem A.1. |

Let a € M,. Then, starting from the equality (A.2) and using the Jacobi’s
identity, we can prove by induction that for any m € N, ad(a(X)) is a finite sum
of the terms of the following form

([- - - [(a(X), b2(D)], b2( D)), - . ], b (D)]

where a; € Mok, b e CER™), j=1,...,k, k< m.
Now Lemma 3.5 is implied by the following result.

LEMMA A3. Let e >0 andlet k €N, k> 1. Ifa € My_., b; € CPR"), j =
=1,...,%, then the multi-commutator

([-- - [[a(X), b1 (D)}, b2( D)), .. ], b (D)), -

defined on $(R"), has a bounded extension to the whole space L%(R").
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Proof. The proof of this lemma is made by induction. The case k = 1 was proved
in Lemma A.2 a). Assume that the statement is true for k. Let a € Mgy1-¢. Then
using (A.1) we obtain as in the proof of Lemma A.2 that

iledl
a(X), (D) = 3, —(8"b)(D)(@a)(X) + B
0<|aj<k41

with B a bounded operator and 0%¢ € Miy1—c—|a] C M, for 1 £ |al. Now the
lemma follows from the induction hypothese. [ |
B: We shall prove the following result.

ProposIiTION B.1. a) Assume that py : R® — R is a function which satisfies the
conditions (i), (ii) and (2.1)" of the Section 2. Let I C R\pa(S) be a compact interval
and let r > 0. Then -

F(lz] < r)Eo(T)

is a compact operator on L*(R").
b) Assume that po : R* — R is a function which satisfies the conditions (i), (ii),
(iv) and (v) of the Section 3. Then py is quasi-divergent function.

In order to prove Proposition B.1, it suffices to show (cf. Corollary 3 of [5] for
the part a)) that the following lemma is true.

LEMMA B.2. a) Assume that py satisfies the conditions (i), (ii) and (2.1)" of
Section 2. Let I C R\ po(S) be a compact interval. Then

Jim [C; Np;H(I)| = 0.

b) Assume that pq satisfies the conditions (1), (ii), (iv) and (v) of the Section 3.
Let I C R be a compact interval. Then

Jim |C Npg (1) = 0.
Here |A| denotes the Lebesgue measure of the measurable set A.

Proof. We shall prove only the part b) of this lemma since the first part can be
done in a similar manner.
b) Since F(S,) € co(L!) it suffices to show that

klim ICe N (Pc-)-l(f) \S)l=0.
-~ 00
If we denote by

by = inf{|Vpo(&)l; € € Ce N (py (D \ Sp)},
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then the compactness of I and the condition (iv) imply that

Iim b = oo.
k00

Let ko € N such that bz > 0 for any kE € N, & > ko.
The proof of the lemma is compleated by the following estimate:

(B.1) [Ck N (5 (D) \ Sp)l € nv/nlIlbgY, k€N, k2 ko

Let B; = {¢ € R\ Sp; |Vpo(€)] € vnldjpo(€)|} and let &; : R®\ S, — R"
defined by
B(€) = (€1, - -+ €5-1,P0(§): {415 - -1 €n)
for j =1,...,n. Then @; is a local diffeomorphism at every point py (1) n B;.
Since Cy Npg () = l:JCk N pg L(I) N B;, then (B.1) follows from

(B.1Y IC Nps (DN B;| < ValIlbs!, keEN, k2 ke, j=1,...,n

This estimate can be obtained by making a change of variable. Let us write
Ci Npg*(I) N B; as a disjoint union

U ¢J-_1(CH) NCy N B; N M,
H

where Cry = m(Ce) x - - xmj_1(Cr) x I x rj;l(Ck) x---Xmy(Cy) and M;, L €N, are
disjoint measurable sets which have neighborhoods on which ; is a diffeomorphism.
Then

Crnps (DN B; = &7 (Awi),
i

where Axji, | € N, are disjoint measurable subsets of Ces such that &; I(Akj[) =
= ¢J-"1(Ck 1)NCy N B; N M;, ¥; is a diffeomorphism in a neighborhood of Q;I(Ak,-;)
and

|det(2] Y (n)] € Vmbi ', 1 € Aji.

Hence

Cnst i<y [ @=3% [ s Ymians

"85 (Ani) F oA

vt [ an=vaimpt.
Crr
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