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THE INNER DERIVATIONS AND THE PRIMITIVE IDEAL SPACE
OF A C*-ALGEBRA

DOUGLAS W. B. SOMERSET

1. INTRODUCTION

A derivation on an algebra A is a linear map from A to A satisfying
D(ab) = D(a)b+aD(b} (V) e,b€ A.
Each element a € A induces an inner derivation D(a, A), given by
D{a,A) = ab—~ba (be A).

When A is a Banach algebra it is clear that each inner derivation D{a, A) is a bounded
map on A. In fact a simple application of the triangle inequality shows that

(1) 1 D(a, A)l| < 2d(e, Z(4))

where d(a, Z(A)) denotes the distance from a to Z(A), the centre of A. In the case
when A is a C*-algebra it is known that every derivation on A is bounded [17].

The inequality (1) has received considerable attention, mainly devoted to showing
that equality holds in various cases. For instance Kadison, Lance and Ringrose [13]
showed that equality holds when A is a von Neumann algebra and a is self-adjoint.
Stampfli [19] showed that equality holds when A is a primitive C*-algebra with an
identity, and in particular when A is the algebra of bounded operators on Hilbert
space. When A is the algebra of bounded operators on a Banach space Johnson [12)
and Kyle [15] showed that equality sometimes holds, and sometimes not. Zsido [22]
showed that equality holds for all elements in a von Neumannn algebra A. Special
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cases of this had been obtained by Gajendragadkar [8] and Hall [11]. Apostol and
Zsido [1] showed that equality holds when A is a quotient of a von Neumann algebra,
and Halpern when A is an AW*-algebra, see [7]. For quotients of AW*-algebras the
problem remained open until recently, when it was shown that equality holds here
also [18].

On the other hand there are C*-algebras containing elements for which the in-
equality (1) is strict [13; 6.2]. To examine the possible behaviour in more detail
Archbold [2] introduced two constants, K (A) and K (A), defined to be the smallest
numbers in [0, 0o] such that

d(a, Z2(4)) < K(A)||D(a, 4)| (V) ae€A

and
d(a, 2(4)) < Ku(A)|D(a, 4)]| (V) a=a" € 4.

Clearly K(A) = Ks(A) =0 when Ais oommuta.tlve When A is non-commutative it
follows from (1) that K(A4) > § and K.(A) > %, with equa.hty (1) for all elements
or for all self-adjoint elements, exactly when K(A) = %, or when K (4) = 1. It is
elementary to check that K (A4) € K(4) € 2K:(A). The Closed Graph Theorem
implies that K(A) < oo if and only if the set of inner derivations of A is closed, in
the operator norm, in the set of all derivations on A [13; Theorem 5.3]. Examples 6.2
of [13] and 3.1 of [15] are therefore C*-algebras with K(A) = K,(A) = co. The main
results of [2] were to show that K,(A) < 1 when A is a weakly central C*-algebra,
and to give an example of a weakly central C*-algebra A with K.(4) = 1. Mention
should also be made of the inequalities relating K(A ®s B) to K(A) and K(B) [4],
(2] (where A ®g B is any C*-tensor product of the C*-algebras A and B).

In this paper we continue the study of K;(4). For reasons which will emerge in
a moment this constant is considerably more amenable than the constant X (A).

The structure of this paper is as follows. In the next section we define a constant
Orc(A) in terms of the hull-kernel topology on the space of primitive ideals of A.
We give examples to show that all possible values of Orc(A), namely every positive
integer and oo, can occur. In Section 3 we give a formula for the distance of a self-
-adjoint element from the centre in a C*-algebra with an identity, and show that the
self-adjoint part of the centre is a proximinal subspace of the self-adjoint part of the
algebra. In Section 4 we prove the main theorem which is that K, (A) 30rc(A)
when A is a non-commutative C*-algebra with an identity.

We now give some further notation and conventions. Let A4 be a C*-algebra and
let J be an ideal in A (which will always mean a closed, two-sided ideal). Fora € A
either ay or a+J will denote the image of a in the quotient C*-algebra A/J. Let Agy
denote the set of self-adjoint elements of A, and A* the set of positive elements of A.
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It turns out that for @ € A both d(e, Z(A)) and ||D(a, A)|| can be described in
terms of the supremum of the distance of ay from the scalars in the quotient C*-
-algebra A/1, as I ranges over appropriate sets of ideals of A. The reason why K, (A)
is easier to study than K(A) is that the distance of ay from the scalars is more easily
described when a is self-adjoint:

Let @ € Asa. Let a(a) and 5(a) denote the largest and smallest numbers in the
spectrum of a. If A has an identity then the nearest scalar to a is 2(a(a)+ (a)) and
the distance from a to the scalars is 1(a(a) — B(a)).

2. DEFINITION OF Ore(A)

In this section we associate to each topological space X a natural number Orc(X),
called the connecting order of X. This number arises as the supremum of the diam-
eters of various subgraphs, so we start by recalling the appropriate definitions from
graph theory.

A graph consists of a set of points together with a symmetric relation on the
points called adjacency. The (unordered) pairs of the relation are called the edges of
the graph. (The edges of our graphs do not have a direction.) A path of length n
from a point u to a point v is a sequence of points w = ug, 1, ..., %, = v such that
u; is adjacent to u;41 for each i. Denote by d(u, v) the minimal length of a path from
% to v. If no such path exists set d(%,v) = co0. The number d(w,v) is the distance
from u to v. The diameter of a graph is the supremum of the distances between pairs
of its points, except that will adopt the non-standard convention that the diameter
of a single point is one (although the distance from a point to itself is zero).

Now let X be a topological space and for z,y € X let ¢ ~ y if £ and y cannot be
separated by disjoint open sets. We will view X as a graph in which two points z and
y are adjacent if and only if £ ~ y. We define Orc(X), the connecting order of X,
to be the supremum of the diameters of the connected components of the graph X.
Note that Ore(X) = 1 if and only if ~ is an equivalence relation. Because of our non-
standard convention on the diameter of a point, Ore(X) = 1 when X is Hausdorff.
In Example 2.8 we show that Orc(X) can be any positive integer, or infinity.

The next step is;to give an alternative description of Orc(X) in the case when
X is compact. Define a chain of length n on X to be a collection of n closed subsets

Xi,..., X, with the following properties:
1
1) ‘U1 X=X
i=
(ii) X; and X; are disjoint if | — 7] > 1
(i) if n > 1 then X1 \ X7 and X,, \ X1 are non-empty.
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A chain of length n is said to be admissible if there exist z € X \X2 and
¥ € X \ Xn-1 such that d(z,y) < co. Note that this further condition (on top of (i)
and (ii)) implies that X;N X4, is non-empty for i = 1,...,n—1, for otherwise z and
y would belong to different clopen subsets of X. In particular, admissibility implies
that each Xj; is non-empty fori=1,...,n.

If Y and Z are subsets of a topological space X let

d(Y,Z) = inf{d(y,2) 1y €Y, 2 € Z}

and, for n > 0, let
" = {z € X :d({z},¥) < n}.

Note that Y0 = Y.

LEMMA 2.1. Let X be a topological space and let X;,..., X, be a chain on X
oflengthn > 1. fz € X;\ X; and y € X \ X1 then d(z,y) > n.

Proof. Since d(z,y) = inf{n € N : y € {z}7} it is sufficient to show that
{z C X3 U...UX, fork =1,...,n—1. We prove this by induction on k. If
z € X \ X then the sets X; \ Xz and X \ X are disjoint open neighbourhoods of
z and z respectively, so z € {z}!. Hence {z}' C X, and the induction hypothesis
holds for £ = 1. Suppose now that m { n—2 and {z}™ C X; U...UX,. If
z & X1U.. UXpmy then the sets (XhU. . .UXmp1 \ Xm+2 and (Xm42U. . UXo \ X1
are disjoint open sets containing {z}™ and z respectively. Hence z ¢ {z}™*!, so
{z}™*! C X1 U...UXm41. This completes the induction and shows that d(z,y) > n.

a

LEMMA 2.2. Let X be a topological space and let Y and Z be compact subsets
of X with d(Y, Z) > 2. Then there are disjoint open sets U and V containing Y and
Z respectively.

Proof. The proof is standard. Forp € Y, ¢ € Z, p # g so there are disjoint open
sets Sp ; and T, ; containing p and ¢ respectively. For fixed p the sets Tp, ¢ (¢ € Z) form
an open cover of Z so by the compactness of Z there is a finite set {g1,...,¢,} C Z
such that T, o, U.. . UT, ;. D Z. Set Up = Sp g, N.. .NSp g, and V, =T, o, N...NT} ..
Then U, and V, are disjoint open sets containing p and Z respectively. By the
compactness of Y there is a finite set {p1,...,pm} C Y such that Up, U.. .UU,, D Y.
Set U=Up, U...UUp, and V=V, N...NV,,.. Then U and V are disjoint open
sets containing Y and Z respectively. n

COROLLARY 2.3. Let Y be a compact subset of a topological space X. Then Y'*
is closed.
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Proof. If z € X \Y? then d{{z},Y) > 2, so by Lemma 2.2 there are disjoint open
sets U containing z and V containing Y. Clearly Y is disjoint from U. This proves
that Y! is closed. ]

LEMMA 2.4. Let X be compact topological space and et z,y € X withd(z,y) 2
> n > 1. Then there exists a chain X;,... X, of length n with z € X \ X, and
Y € Xn \-Xn-—l-

Proof. First note that by repeated application of Corollary 2.3 the sets {y}* are
compact for i € N. Since d(z,y) > n, d({z}, {¢}"~2) 2 2 so by Lemma 2.2 there are
disjoint open sets U; D {z} and Vs D {y}"% Set X; = X\ Vi and Y2 = X\ Uy. If
n = 2 then X; and X3 = Y, have the required properties. Otherwise if n > 2 then
d(X1, {y}*~?) > 2 since X, is disjoint from {y}"~%. For n > 2 we define inductively,
fori=2,...n—1, X; = (X \V;)NY; and Yi41 = (X \ U;), where U; and V; are
disjoint open sets containing X3 U...U X;_; and {y}"~(+1) respectively. Note that
for 1<ig<n—2d((X1U...UX;),{y}""+?) > 2 so the induction can proceed.
Finally set X, = Y,. Then it easily to check that Xj,..., X, is a chain of length n.

]

COROLLARY 2.5. Let X be a compact topological space. Then Orc(X) is equal
to the supremum of the lengths of admissible chains on X.

Proof. Let CL(X) denote the supremum of the lengths of admissible chains
on X. Lemma 2.1 shows that Orc(X) » CL(X). Conversely, if z,y € X with
d(x,y) = k < oo then, by Lemma 2.4, there is an admissible chain X of length k.
Hence CL(X) 2> Orc(X). |

We will call a subset Y ~-saturated if Y = Y.

PROPOSITION 2.6. Let X be a compact toplogical space with Orc(X) < oo. IfY
and Z are disjoint, compact, ~-saturated subsets of X then there are disjoint, open
~-gsaturated sets U and V containing Y and Z respectively.

Proof. It is only necessary to show that if p € Y and ¢ € Z then there are
disjoint, open ~-saturated sets S and T containing p and q. The rest of the proof is
then exactly as in Lemma 2.2.

Solet peY and ¢ € Z. Then d(p,q) = 0o. Let k = Ore(X). By Lemma 2.4
there is a chain X3, ... Xgx42 of length 2k +2 with p € X, \ X2 and ¢ € Xar42\ Xor41-
The sets A = (X1U.. .UXk41)\ Xit2 and B = (Xg42U. . .UX2z42)\ Xz 41 are disjoint
open sets containing p and g respectively. By Corollary 2.3 (repeatedly applied) the
sets C = (X \ A)* and D = (X \ B)¥ are closed, and they are also ~-saturated
since Ore(X) = k. f S = X\Cand T = X\ Dthen §C Aand T C Bso S
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and T are disjoint, open and ~-saturated. The method of Lemma 2.1 shows that
d({p}, X\ A) > k and d({¢}, X\ B) > k,so that p& C and ¢ ¢ D. Hence p€ S and
g € T, as required. .

Now let CP(X) denote the algebra of bounded, continuous functions on X, and
for z,y € X let z ~ y if f(z) = f(y) for all f € C®(X). The relation = is an
equivalence relation, and the equivalence classes are closed subsets of X. Clearly for
any f € C®(X) and r € R the set Z = {z € X : f(z) = r} is ~-saturated, so if
z,y € X and z % y then d(2,y) = oo. For compact spaces with Ore(X) < oo the

converse is true.

COROLLARY 2.7. Let X be a compact topological space. If Ore(X) < oo then
forz,y€ X

zxy e d(z,y) < co.

Proof. We have already noted that z % y = d(z, y) = oo for any topological space
X. Conversely, suppose that X is compact with Orc{X) < 0o. Define an equivalence
relation * on X by z * y if d(z,y) < oo. Let X/ denote the topological space
of #-equivalence classes of X with the quotient topology, and let X — X/* denote
the quotient map. Since Orc(X) < oo, Corollary 2.3 implies that the equivalence
classes are closed, and hence compact. Thus if Y and Z dte two different equivalence
classes Proposition 2.6 shows that there are disjoint, open, ~-saturated sets U/ and
V containing Y and Z respectively. Then ¢(U) and ¢(V) are disjoint, open sets
containing ¢(Y') and ¢(Z) respectively. This shows that X/* is a compact, Hausdorff
space (compact because X is compact and g is continuous). Hence if z,y € X with
d(z,y) = oo then ¢(z) # q(y), so there is an f € CP(X/*) such that f-g(z) # f-q(y).
But f.-¢g € CP(X),s0oz #y.
[ |

One consequence of Corollary 2.7 is that ~ is an equivalence relation on a compact
space if and only if ~ coincides with 2. This follows since ~ is an equivalence relation
if and only if Ore(X) = 1.

The property of Corollary 2.7 does not characterise spaces with Orc(X) < 0.

For example, for each positive integer i let X; be a compact space with Orc(X) = 4
(see Example 2.8), and let Y be the finest one-point compactification of fj X;. Then
it is easy to see that Orc(Y) = oo but that, for z,y € Y, z x y © d(z, 3;)=1< 0.

Corollary 2.7 shows that if X is a compact space with Ore{X) < co then = is
the finest closed equivalence relation containing ~. It would be interesting to know
if this is also true for compact spaces with Orc(X) = co.
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Suppose now that A is a C*-algebra, and let Prim(A) denote the set of primitive
ideals of A, with the hull-kernel topology. If A has an identity then Prim(A) is
compact [16; 4.4.4]. We will denote Orc(Prim(A)) by Orc(A).

We close this section by showing that Orc(A) can take all possible values, that

is, can be any positive integer or infinity.

EXAMPLE 2.8. We construct the following family of C*-algebras.

Let A be the C*-algebra consisting of all continuous function from the interval
[0,1] into the 2 x 2 complex matrices. Let A(1) be the C*-subalgebra of A consisting
of those functions f € A satisfying

1(7) =" ) @29

Af) 0O )
0= (0 0,
for some complex numbers A(f), An(f) (n 2 1). For m > 2 let A(m) be the C*-
-subalgebra of A(1) defined by

and

A(m) = {f € A1) : d2n(f) = D2ns1(f) (1 SR < m)}.

Let A(00) = {f € A1) : A2n(f) = A2n11(f) (1 < n < 00)}.
We now describe the primitive ideal spaces of these algebras. It is well-known that
Prim(A) is a Hausdorff space homeomorphic to the interval [0,1]. Hence Orc(A4) = 1.

1
NowsetX:{é—;:nzl}U{O} and set Y = [0,1]\ X. For 1 < m < oo let

Py(m)={f € A(m): f(») = (0)} (y€Y),

let
Q(m) = {f € A(m) : \(f) =0},
and let
Ri(m) = {f € A(m): M(f) =0} (1<i< ).
Then

Prim(A(m)) = | J {P,(m)} U{Q(m)} U | J{Ri(m)}.

yey i>1
The points Py(m) (y € V) and Q(m) are separated points, while Ry;_;(m) ~ Ra;(m)
in Prim(A(m)). However, when 1 < i < m, Ryi(m) = Raiy1(m) so it follows that
d(Ri(m), Ram(m)) = m. It is now easy to see that Orc(A(m)) = m, when m is finite,
and that Orc(A(c0)) = oo.
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Note that Orc(A(1)) = 1 although Prim{A(1)) is not Hausdorfl. Other examples
of C*-algebras with Orc(A) = oo have been given in [13; 6.2} and [15; 3.1].

3. THE DISTANCE TO THE CENTRE

In this section we obtain formula for the distance from the centre of a self-
-adjoint element in a C*-algebra. At the same time we show that this distance is
actually attained.

We start by recalling some facts about the complete regularization of Prim(A)
(see [3] and [5] for further details). As in Section 2, for P,Q € Prim(A) let P =~ Q
if f(P) = f(Q) for all f € CP(Prim(A)). Since & is an equivalence relation and the
equivalence clasess are closed subsets of Prim{A) there is a one-to-one correspondence
between Prim(A)/ = and a set of ideals of A given by

[P] = N[P] (P € Prim(A4))},

where [P] denotes the ~-equivalence class of P. The set of ideals obtained in this way
is called Glimm(A), and we identify this set with Prim(A4)/ & by the correspondence
above. The quotient map @4 : Prim(A4) — Glimm(A) is known as the complete
regularization map. Note that if P, @ € Prim(A), G € Gimm(A) and P 2 G = N[Q]
then, since [@] is closed, P € [@Q] and so pa(P) = 9pa(Q) = G. It follows that if
P € Prim{(A4), G € Glimm(A) and P 2 G then p4(P) =G.

We will consider Glimm(A) as a topological space with the quotient topology.
There is a second topology on Glimm(A) which is also important [3], but it coincides
with the quotient topology when A has an identity, which is the case that we are
interested in, so we will ignore it.

When A has an identity it follows from the Dauns-Hofmann Theorem [16; 4.4.8]
that for P, Q € Prim(A):

P~Q & PNZ(A)=Qn2ZA).

From this it follows that the map G — GNZ(4) (G € Glimm(A4)) is a homeomorphism
from Glimm(A) to Prim(Z(A)) [3; p. 351]. In particular Glimm(A) is a compact,
Hausdorff space.

ProposiTION 3.1. Let A be a C*-algebra and let a € A.
(i) The function P — ||la + P|| (P € Prim(A)) is lower semi-continuous on
Prim(A).
(if) The function G — |la + G|| (G € Glimm(A)} is upper semi-continuous on
Glimm(A).
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Proof. (i) is a standard fact about C*-algebras, see for example (16; 4.4.4]. (ii)
can be found in [20; proof of Theorem 3.1] for example. u

COROLLARY 3.2. Let A be a C*-algebra with an identity and let a € Asa.
(i) The functions P — o(ap) and P — B(ap) (P € Prim(A)) are lower semi-
-continuous and upper semi-continuous respectively on Prim(A).
(i) The functions G — ofag) and G — Plag) (G € Glimm(4)) are upper
semi-continuous and lower semi-continuous respectively on Glimm(A).

Proof. (i) and (ii) follow immediately from Proposition 3.1(i) and (ii}, together
with the fact that since A has an identity a(ap) = ||(||a]| + ar)|| — ||al| and B(ap) =

= llall = li(llali — ap)Il- .

For the next theorem we need the following Fact: if X is a compact Hausdorff
space and f,g : X — R are functions which are respectively upper semi-continuous
and lower semi-continuous and satisfy f £ g then there is a continuous function
h: X — R such that f < h < g. This property characterises normal topological
spaces [21], [14]; it was proved for paracompact spaces in [6] and for metric spaces in
[10].

THEOREM 3.3. Let A be a C*-algebra with an identity and let a be a self-adjoint
element of A. Then the distance d(a, Z(A)) of a from Z(A) is attained, that is, there
is a z € Z(A) such that

lla — 2|l = d(a, Z(4)),

and this distance is given by

d(a, Z(A)) = sup {—;—(a(ao) ~Blag)):G e Glimm(A)} .

Proof. Let a € A. Set v = sup{%(a(ag) ~- Blag)): G € Glimm(A)}. For

2 € Z(A) and G € Glimm(A) it is clear that |lac — zg|| 2 3(a(ac) — B(ag)), from
which it follows that d(a, Z(A)) 2> v. The real-valued functions f and g, defined on
Glimm(A) by

f(G) = a(ac) —
and

9(G) = Blag) +7v (G € Glimm(4))

are upper semi-continuous and lower semi-continuous respectively, Corollary 3.2(ii).
Since Glimm(A) is a compact, Hausdorff space and f < g it follows from the Fact
(above) that there is a continuous function h on Glimm(A) with f < h < ¢. Since A
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has an identity Glimm(A) is homeomorphic to Prim{(Z(A)) so there is a z € Z(A)ga
with z¢ = h(G) for G € Glimm(A). Hence for all G € Glimm(A)

f(G) = a(ag) = v € z6 < Blag) + 7 = 9(G)

so a(ag) = 26 £ 7 and 2¢ — B(ag) € 7, that is, |la — 2|| < v. Hence d(a,Z(A4)) =
= fla -zl = 7. m

COROLLARY 3.4. Let A be a C*-algebra with an identity and let a € A,,. Then
there is a G € Glimm(A) such that d(a, Z(4)) = 1(e(ag) — B(ag)).

Proof. The function G — }(a(ag) — B(ac)) (G € Glimm(A)) is upper semi-
-continuous, by Corollary 3.2(ii). It therefore obtains its supremum on the compact
set Glimm(A). The result now follows from Theorem 3.3. [ ]

If X is a Banach space and Y is a closed subspace such that each z € X attains
its distance from Y then Y is said to be proximinal. Theorem 3.3 shows therefore
that when A has an identity Z(A)sa Is 2 proximinal subspace of the real Banach space
Aga. It would be interesting to know whether Z(A) is a proximinal subspace of A.

4. THE MAIN THEOREM

In this section we prove the main result of the paper (Theorem 4.4), which is
that if A is a non-commutative C*-algebra with an identity then K,(4) = 10rc(4).
A number of applications are then given.

The proof of the first lemma is elementary, and is left to the reader.

LEMMA 4.1. Let A be a C*-algebra and let a € A. Then

1D(a, A)|| = sup{|{D(ap, A/ P)|| : P € Prim(A)}.

The next theorem is due to Stampfli [19], and is crucial for the most of the work
in this area. It allows one to forget about the derivation and concentrate on the
distance to the scalars in the primitive quotients.

THEOREM 4.2. Let A be primitive C*-algebra with an identity and let a € A.
Let A(e) denote the scalar nearest to a. Then ||D(a, A)|| = 2||a — A(a)]|.

We have already remarked that when a is self-adjoint A(a) = 1(a(a) + f(a)) and
lle — A(a)|| = L(a(a) — B(a)). Combining this with Lemma 4.1 and Theorem 4.2 we
get the following:
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COROLLARY 4.3. Let A be a C*-algebra with an identity and let a € Asa. Then

l|D(a, A)|| = sup{a(ap) — Blap) : P € Prim(4)}.

We now prove the main theorem of the paper.

THEOREM 4.4. Let A be a non-commutative C*-algebra with an identity. Then

Ko(A) = 30rc(A).

Proof. First we show that K,(A) € 1Orc(4). Since 3 < KS(A) € oo and
€ Orc(A) < oo this inequality is immediate if either Ky(A) = % or Orc(4) =
oo, So suppose that Orc{A) < oo and that there is a positive mteger n such
thatKs(A) > n/2. We show that Orc(4) > n + 1. By Corollary 2.5 it is suffi-
cient to produce an admissible chain on Prim(A) of length n + 1. Since K; > n/2
there is an a € Aqa such that (n/2)||D(a, A)|| < d(a, Z(A)). By substracting a suit-
able element of Z(A) (Theorem 3.3) we may assume that d(a, Z(A)) = ||a||, and by
multiplying by a suitable real number we may assume that |ja|| = n/2. Let ¢ € R*
with € < £ such that ||D(a, A)|| < 1 — €. Corollary 4.3 implies that a(ap) — B(ap) <

< 1—¢ for all P € Prim(A). Consider the following collection of sets:

Xi = {P € Prim(4) : flap) > n/2— 1+ £}
X = {P e Prim(4) : a(ap) Sn/2-i+2~ 5, flap) 3n/2-i+2} 2<i<n
Xn41 = {P € Prim(4) : a(ap) < —n/2+1- -;-} .

We claim that X}, ..., X4 is an admissible chain on Prim(A) of length n + 1. That
each X; is closed follows from Corollary 3.2(i). Since a(ap) — B(ap) < 1 — ¢ for

all P € Prim(4), U X; = Prim(A). It is trivial that each X; is disjoint from X;

ifli—j > 1. Let G be a Glimm ideal such that d(a, Z(4)) = i(a(ec) — B(ac))
(Corollary 3.4). Then there are P,Q € Prim(A4) with P,Q D G such that afap) =
= afag) = n/2 and f(ag) = B(Ag) = —n/2. Hence @ € X3\ X2 and P € Xpn 1\ Xn
and P = @. Since Orc(4) < oo it follows from Corollary 2.7 that d(P, @) < oo. This
shows that X1,..., Xp41 is an admissible chain on Prim(A) of length n+1, and hence
that $O0rc(A) > Kq(4).

We now show that K (A) » 10rc(A4). This is true when Orc(4) = 1 because
Ks(A) 2 5 automatically. So suppose that n is a positive integer greater than 1 and
Orc(A) = n. By Lemma 2.4 there is an admissible chain X1,...,X,; on Prim(A4) of
length n. We will construct an element @ € Ag, such that d(a, Z(A)) = n/2 and
ID(a, A)| = 1.
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Fori=1,...,nset R; = ({P € Prim(4) : P € X;}. We will arrange that
a(er;) = ¢ and B(ar,) = ¢ — 1. Since each primitive ideal contains an R; it will
follow that a(ap) — B(ap) < 1 for all P € Prim(A), and hence that [[D{a, A)|| < 1
by Corollary 4.3. In fact it will turn out that ||D(a, A)|| = 1. Since X;,...,X, is an
admissible chain there exist P; € X1\ X3 and P, € Xp\Xn-1 with d(Py, Pp) < 00. Let
G be the Glimm ideal contained in P; and P,. We will arrange that ¢(ap,) =n and
B(ap,) = 0. By Theorem 3.3 d(a, Z(A)) > 1(a(ac)—B(ag)) > 3(e(ap,)—Blap,)) =
= n/2. But since a(a) = » and B(a) = 0 it will follow that d(a, Z(A)) = n/2.

Before proceeding with the construction of a we prove an algebraic lemma:

LEMMA 4.5. Let A be a C*-algebra, let Xi,..., Xy be a chain on Prim(A) of
length n, and for i = 1,...,n let R; = ({{P € Prim(A) : P € X;}. Suppose that

a' (i=1,...,n) (i is a superscript, not a power) are elements of A satisfying
) L . ,
“iR,-+R.-+x cz,i*‘4_,;£'+1 (i=1,...,n—1).
Then there exists a unique @ € A such that ap, = a, fori=1,...,n.

Proof. The uniqueness of a follows from the fact that ﬂ R; = {0}. We prove

the existence of ¢ by induction, as follows. Suppose that 1 < j € n—1 and there
is ¥ € A such that b’ .= aR for i = 1,...,j. (Note that this hypothesis holds for
j=1) Set @; = RyN...NR;. Note that Qj + Rjy1 = ﬂ{P € Prim(4) : P €
€ XjNXj41}=R; + RJ+1 Hence ¥ tr.i = Vhithips = ThitRys = Chrbay s
that is & —a/*! € Q; + R;j+1. Therefore there exist ¢ € Q; and &+ € R;4; such that
b — i+l = ¢ + d/*!, and hence such that ¢ =bh  —afl . Set bt = — o

" Rjp1 Rjpr” 1
T.he'n fori=1,. ,]b’i —b’i—a.R‘,Whlle b’R“— RJ,“—C"RJ,“:aﬁjH. Hence
b1 satisfies the induction hypothesis. It follows by induction that @ = b has the
required properties. |

Proof of Theorem 4.4 (continued) In view of the preceding lemma it is sufficient,
for the construction of a, to find the following elements in A:

(i) an a' such that a(ag ) = ofap) = 1, Blak,) = flep,) =0 and a}, 5 =
= 1R. +Ry; .

(i) for 2 < i < n— 1 and o' such that a(ay,) =i, fla},) =i~1, a}}i_l;ﬂl_ =
=@- 1)1R.-_1+R,- and Ot Ripy = HRi+R41

(iii) an o™ such that a(af ) = a(ap)) = n, Blak ) = Blap ) = n—1 and
o, _+r, = (m—1)1R,_ 4R,

The preceding lemma will then yield an a which has the properties mentioned in
the previous part of this proof. This will show that Ks(A4) > $Orc(A).

We produce the a*’s as follows:



THE INNER DERIVATIONS 319

(i) Since Py D Ry but P; 2 R, there exists r! € R} such that ||r}, || = |Irk, || =
=1.Set a' =1 —ri.
(ii) For 2 € ¢ € n — 1 note that

A _(Ric1+ Ri)+(Ri + Riga) Ri+ Riq1
Ric1+R; Ri_1+R; T (Ri-1+ RIN(R; + Rig1)’
Hence there exists r* € (R; + Ri41)* with ||r]| = 1 such that vk, p. = 1. For
2€ign—-1seta' =7~r.
(iii) Since P, D R, but P, P Rn_; there exists " € R}_, such that ||r} || =
=|rk, ll=1 Seta” =n—1+r".
It is easy to check that these a’s have the required properties. [ |

We now mention some interesting consequences of Theorem 4.4:

(i) Since Orc(A) is either a positive integer or 0o, it follows from Theorem 4.4
that if A is a non-commutative C*-algebras with an identity then K, (A) is either a
positive integer multiple of a half, or co. The C*-algebras of Example 2.8 show that
all these possibilities do occur.

(ii) Since Orc(A) = 1 if and only if ~ is an equivalence relation on Prim(A) it
follows from Theorem 4.4 that if A is a non-commutative C*-algebra with an identity
then K (A) = 3 if and only if ~ is an equivalence relation on Prim(A4).

(iii) A C*-algebra is quasi-standard if ~ is an open equivalence relation on
Prim(A) [3]. It follows from (ii) above that if A is a quasi-standard C*-algebra
with an identity then K (A) < 3.

(iv) Suppose that A is a non-commutative C*-algebra with an identity and the
centre of A is equal to the scalar multiples of the identity. Then Orc(A) is simply
the diameter of Prim(A) as a graph, so Orc(A4) = 1 if and only if A is prime. Thus a’
non-commutative C*-algebra A with an identity is prime if and only if the centre of
A is trivial and K (4) = 5.

(v) Let A be a C*-algebra with an identity and suppose that for each Glimm
ideal G C A the set of ideals of A containing G is totally ordered. (This is equivalent
to supposing that each ideal containing G is prime). Since for P,Q € Prim(A4)
P D Q= P~ Q, it follows that Orc(A) = 1, and hence that K.(A) < %

When A is an AW*-algebra the proof of [9; Lemma 11] shows that each ideal of
A which contains a Glimm ideal is prime. Let I be an ideal in A and let 7 : 4 — A/I
denote the canonical homomorphism. It easy to check that if P is an ideal of A/
containing a Glimm ideal of A/ then 7~1(P) contains a Glimm ideal of A. Hence P
1s prime. It follows from the paragraph above that K (A/I) < 5

(vi) A C*-algebra A with an identity is weakly central if whenever M and N are
distinct maximal ideals of A then M N Z(A4) # N N Z(A). It follows easily that A is
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weakly central if and only if each Glimm ideal of A is contained in a unique maximal
ideal. Hence if A is weakly central Orc(4) < 2, so Kq(4) <1 [2].

Finally we mentioned in the introduction that the Closed Graph Theorem implies
that K(A) < oo if and only if the set of inner derivations of A is closed, in the operator
norm, in the set of all derivations of A [13; Theorem 5.3]. The question of whether
this set was closed was one of the motives for the original work in this area [13;
Introduction]. Theorem 4.4 implies that K(A) < oo if and only if Orc(4) < oo, from
which we immediately obtain the final result.

COROLLARY 4.6. Let A be a C*-algebra with an identity. Then the set of inner
derivations of A is closed, in the operator norm, in the set of all derivations of A if
and only if Orc(A) < co.

The author wishes to thank Rob Archbold for his interest in the work, and the United
Kingdom Science and Engineering Research Council for its financial support.
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