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SEMINORMAL COMPOSITION OPERATORS

JAMES T. CAMPBELL and WILLIAM E. HORNOR

1. INTRODUCTION AND MOTIVATION

A weighted composition operator (w.c.0.) on an L? space is an operator induced
by composition with a reasonable transformation of the underlying measure space,
followed by a multiplication. (See Section 2 for precise definitions). A bounded opera-
tor on Hilbert space is seminormal if either the operator or its adjoint is hyponormal.
Within the hyponormal class are the nested subclasses of subnormal, quasinormal
and normal operators. We say that an operator is coprefix-normal if its adjoint is
prefix-normal.

The last decade has been much succes in characterizing in simple, direct measure-
theoretic terms, exactly when w.c.0. may lie in several of these subclasses of the semi-
normal class. Because these results are scattered through the literature, and because
the tools developed do not appear to be so widely known, we present in Section 2 a
comprehensive introduction to the basic measure-theoretic techniques and in Section
3 a survey of the known seminormal characterizations. Sections 2 and 3 provide an
introduction for the uninitiated reader and serve as a convenient reference.

In Section 4 we characterize the cohyponormal and coquasinormal w.c.0.’s. Most
of the prior work on seminormal w.c.0.’s examined the relationship between the trans-
formation and the induced operator using an associated Radon-Nikodym derivative
and conditional expectation. The methods we use in Section 4 continue in this vein.
Our results also give simplifications of the known characterizations of normal w.c.0.’s,
and several examples are described.

We then extend some seminormal results in two ways. In Section 5 we study the
seminormality of w.c.0.’s with the assumption that the underlying transformation is
conservative. This assumption yields a nicer characterization of the normal w.c.0.’s,
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as well as the result that a w.c.o. induced by a conservative transformation, whose
adjoint is hyponormal, is actually normal. Section 5 is concluded with a discussion of a
conjecture on the relationship between conservative transformations and hyponormal
composition operators.

Our second extension is to show how the characterizations of the hyponormal
and cohyponormal classes for bounded w.c.0.’s carry over to the unbounded case. As
a consequence of our results, one may argue that the unbounded case is the natural
context in which to study w.c.o.’s. For, on one hand, the condition which insures
boundedness of a w.c.o. (see the paragraphs prior to Lemma 2.1) is violated by
many naturally occuring innocuous examples. On the other hand, the condition that
simply guarantes a dense domain for the operator is also equivalent to the existence of
the associated conditional expectation, and to the operator being closed (i.e. having
a closed graph; see Section 6). These conditions free us to work with adjoints in
the unbounded case. For such a w.c.0., we show that the conditions characterizing
semi-normality are the same as those in the bounded cases (Theorem 6.6).

We thank James Jamison for useful discussion,‘ support, and good coffee.

2. PRELIMINARIES. FACTS ABOUT THE ASSOCIATED CONDITIONAL EXPECTATION.

Throughout this paper (X, £, u) will denote a complete, o-finite Lebesgue space.
When we consider any sub-c-algebras of X, we assume they are completed. All
functional equations and set relations are taken modulo sets of measure 0. When we
speak of a measurable function f we mean that we have chosen a representative f
from the equivalence class [f] of a.e. defined functions. We define the support of f as
o(f) = {f #0}.

A transformation T will be a measurable point transformation mapping X into
X with the property that the measure goT~* on £ given by poT-*(A) = u(T-1A4)
is absolutely continuous with respect to u. The function h{z) will always denote
dppoT-1/dy, and we assume (or will have to show for concrete examples) that h(z)
is a.e. finite valued. That this last condition is equivalent to the o-finiteness off
(X,T71Z, ) is an exercise. The o-finiteness of 7-1 X plays an important role in
obtaining our results; it is implicit in most of the definitions and used explicitly in
many of the calculations.

Composition with T defines a linear transformation Cp on the set of measurable
functions on X. We have the change of variables formula:

/fonp:/f-hd,u, for each f ¢ L.

X X
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Consequently Cr induces a bounded operator on L (1 € p < o0) if and only if A is
in L*, and in this case the operator norm of Cyr is ”h”oo The change of variables
also shows that in any case, h o T' is always strictly positive. Indeed, if A = {hoT =
=0} =T "{h=0}=7""B we have u(T"'B) = /XB oTdpy = /xghdp =0 [6].

Operators of the form Cr we denote as composition operators (c.o.’s}. Through-
out Sections 2 - § we restrict our discussion to bounded operators. Section 6 contains
new results in the unbounded case.

We will find the following lemma useful.

LeMMa 2.1. a) Suppose h < co. Then any non-negative function or any function
in L?(u), which is also T~' 5 measurable, is of the form g o T' for some L-measurable
function g.

b) If h € L™ then (RanCr) = {f € L?(p) : f is T~1 T measurable }.

The proof of part a) we leave as an enlightening exercise. A proof of b) is found
in [9]. It turns out that b) is also true under the weaker hypothesis of a), and we give
a proof in Section 6.

A useful consequence of Lemma 2.1 is that if f is non-negative or in L?, and
T—=! % -measurable, one may define, in a unique fashion, a X-measurable function
g = foT~1 even if T is not invertible. For a non-negative integrable function ¢,
the change of variables implies that ¢ o T = 0 if and only if u(o(p) Na(h)) =
Now for f as above there exists a Z-measurable g satisfying go T = f. g will be
unique if we require o(g) C o(h) ({2], [6]) hence f o T~! is defined as the unique
Z-measurable function ¢ whose sup-port is contained within the support of h, which
satisfles go T = f.

Associated with each transformation 7' is a so-called conditional expectation op-
erator E(-|T~1X) = E(.). E(f) is defined for each non-negative measurable function
f, or for each f € L? (1 £ p), and is uniquely determined by the conditions

(i) E(f) is T~? Z-measurable, and

(ii) ¥ B is any T~! ¥-measurable set for which / fdu converges we have / fdp=

B B

= [ B(an.

This expectation is at the center of our work, and we list here some useful prop-
erties it possesses. The essential nature of E is that while it is defined on a possibly
infinite o-finite measure space it behaves similarly to expectations on standard prob-
ability spaces.

El If f 2 g then E(f) 2 E(g).

E2. (Monotone Convergence) If f, 1 f pomtwme then E(f,) T E(f) pointwise.
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E3. If f is T~ £-measurable then £(fg) = fE(g).

E4. E(1) = 1.

B5. |B(f9)> < B(S1?)E(gl).

E6. If f > 0 then E(f) > 0.

E7. If f > 0 then o(f) C ¢(E(S)).

For proofs and discussions of these facts see [8], [2], [6]. For a deeper study of
the properties of E see the interesting paper {17].

Properties E3 and E4 imply that E is an idempotent. As an operator on L?, E
is the projection onto the closure of the range of Cp. E is the identity on L? if and
only if T=1X = X. On the other hand, if X is non-atomic and F is not the identity,
the kernel of E (Ker E) is infinite dimensional ([18], [6]).

If w: X — C is a non-negative finite-valued measurable function we define a
linear transformation Wr o, of measurable functions on X by the equation

(1 Wrwf(z) = w(z)f(Tz).

If w is fixed we just write W, or (if T is fixed) just W, and denote operators of this
form as weighted composition operators (w.c.0.’s). As an application of the properties
of the conditional expectation we observe that for each f € LP we have

\welP = /iwl”lfl”onﬂ:/E(le”)lfl"onu =fhE(IWI”)°T"|f|”dﬂ-

Setting J(z) = h(z)E(jw|P) o T~1(z) we see that W defines a bounded operator on
L? if and only if J(z) is essentially bounded, and the operator norm of W is given by
17]1e4”.

The assumption of non-negativity for w does two things. First it guarantees
the existence of E(w), which is important because W could be a bounded operator
without w being a bounded function or even an If function. Of course this could
have been guaranteed by the assumption that w is conditionable. But we also want
the non-negativity of w in order to simplify the calculations in the proofs. The astute
reader will see how generalizations for complex-valued w may be made.

We need an important notion first used in [9], refined in [2] and [1} and studied
deeply in [17].

DEFINITION; If B C ¥ is a o-algebra and C is any set, we define Bo = {BNC:
: B € B}.

If C is an element of B then every element of B¢ is B-measurable; in fact Be in
this case consists of the B-measurable subsets of C. If C ¢ B then there will exist
elements of B¢ not in B.
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With this convention, the following lemma holds:

LEMMA 2.2. a) (Ran Wr) = cls{wxa € I? : A € (T ) o)}
b) f € RanWr if and only if there exists X-measurable ¢ € LP(Jdyu) with
f=wgoT.

This lemma holds even in case Wy is a densely defined unbounded operator; a

proof of this more general fact is given in Section 6.

3. SURVEY OF SEMINORMAL CHARACTERIZATIONS.

This survey is intended to delineate previously known characterizations of sub-
classes of the bounded seminormal c.0.’s and w.c.0.’s on L? (normal, quasinormal, and
hyponormal w.c.0.’s, plus subnormal ¢.0.’s), and to serve as an accesible reference for
the reader. In all of the characterizations listed, it is assumed that the weight function
w is non-negative and the operators are bounded. Because L? is a Hilbert space the
adjoint W3 acts on L2, and Wi f = h[E(wf)] o T~1. This is not, in general, a w.c.o.

The article by Nordgren ([19]), appearing in 1978, is seminal. In it (inter
alia) he posed the question of determining measure theoretic conditions on T' which
would characterize the normality of Cr. The question was first answered in 1978 by
R. J. Whitley (21}) and independently around the same time by R. K. Singh (who
had written his disertation under Nordgren) and A. A. Kumar ([12]). The normality
of Wy was characterized in 1990 in ([1]) and may be steated as

TBEOREM 3.1. ([1]) Wr is normal if and only if the following conditions hold:
a) wE(wYhoT = hE(w?) o T, and
b) (T”IE)U(w) = 27:7(10)-

CoroLLARY 3.2. ([21]; [12]) Cr is normal if and only if
a)h=hoT and
b) T-1y = 3.

In particular, if p(X) is finite, condition a) can be shown to imply that & = 1,
so that C7 is normal if and only if Cr is unitary ([21]).

There, are related results in ([2]), although the attempted characterization of
normality appearing there is correct only in case T is conservative (see section §
of this paper, Theorem 5.3; [3]). There is a simplification of Theorem 3.1 given as
Corollary 4.4.1 of this paper. .

Also in the paper of Whitley, the quasinormal Cr were characterized (b = hoT),
and in ([1]) the quasinormal Wy were characterized (J = J o T on a(w)).
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The paper by D. Harrington and R. Whitley ([9]) appearing in 1984 contains
many interesting results on seminormal composition operators, and in obtaining those
results the authors laid out a nice collection of basic techniques. In that paper they
obtained the following characterization of cohyponormality for Crp:

THEOREM 3.3. ([9]) Cr is cohyponormal if and only if
a) E,,(h) - T-1% and
by h<hoT.

This theorem is generalized to the weighted case in our Theorem 4.2. Some other
interesting results in the Harrington-Whitley paper are:

1. Cr is coquasinormal if and only if Zo(a) C 77! L and h = hoT on o(h). This
result is generalized to the weighted case below (Thorem 4.4).

2. If u(X) is finite then Cr is hyponormal if and only if T is measure-preserving
(so that Cr is an isometry and hence quasinormal).

3. If h > hoT then Cp is hyponormal, and if h is 7! Z-measurable and Cr is
hyponormal then A > hoT.

4. Several characterizations of hyponormality that, unfortunately,were norm con-
ditions that needed to be checked on each f € L?.

In 1986 Alan Lambert was able to give a measure-theoretic characterization of
hyponormality for Wr. Here is a statement of his result, slightly sharper than as it
appeared in 1986:

TueoreM 3.4. ([13]) Wr is hyponormal if and only if
a) o(w) C o(J) and
2
b) hoT (E [Qt;— ) < Xo(E(w)) @€ (the fraction is interpreted as 0 of 0(J)).

h
The idea he used, which is fundamentally different from earlier techniques, is
the observation that an arbitrary w.c.o. induces an isometry from L2(Jdu) to L2(p).
This is the starting point for our work in Section 6 on the unbounded case. We do

CoOROLLARY 3.5. ([13]) Cr is hyponormal if and only if k>0 and hoTE(-l—)..{ 1.

not know of any other proofs of Theorem 3.4 or Corollary 3.5.

From Corollary 3.5 one may easily deduce the hyponormality results mentioned
above from ([9]). In ([5]) it was shown that A > ho T implies that Cy is power
hyponormal, that is, C} is hyponormal for n > 0. However examples are known ([2])
of power hyponormal Cr which do not satisfy A » hoT. It is an open problem to
characterize the power hyponormal class.

Here is another characterization of normality for Wr given in analogy with the
hyponormal result above:
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THEOREM 3.6. ([1]) Wi is normal if and only if the following conditions hold:

a) o(w) = a(J),

b) Zyw) = (T'IZ),,(W), and

¢) hoTE ([E-U;]) = Xo(E(w)) ( the fraction is interpreted as 0 of o(J)).

With the appearance of the three papers ([14], [15], [16]), Lambert gave a mea-
sure-theoretic characterization of when Cr is subnormal, and showed that in this case
the minimal normal extension of Cr may be described as a composition operator. Let
hp:=dpoT~"/dpu.

THEOREM 3.7. ([14]) Cr is subnormal if and only if {h.(z)}n>1 is a moment
sequence for almost every . ?

Here, a moment sequence is a sequence of moments for some probability measure
on the interval I = [0, nhni!,'?] That is, for a.e. z, there exists a probability measure
vz on I so that h,(z) = / 1" dug(t).

I
A moment sequence characterization of subnormality involving the Radon-

-Nikodym derivative is entirely natural. However the relative complexity of this cri-
terion when compared with the other seminormal criteria is intriguing. It would be
nice to somehow simplify the subnormal characterization, and a conjecture given at
the end of Section 5 addresses this.

Finnaly, in the recent paper [7], Embry-Wardrop and Lambert have provided a
characterization of subnormality of the adjoint C7. Let Xy, denote the o-algebra
A T-*s.
k=1

THEOREM 3.8. ([7]) C% is subnormal if and only if T7'5 = o, h is T2
measurable, and {h, © T} is a moment sequence for almost every z.

Another interesting result is Theorem 5 of [7]: If C} is hyponormal, then C7,
must be power hyponormal. This result should be compared with the weighted shift
case, and also Theorem 5.4 below.

Thus the seminormal class for Cp is completely delineated. The coquasi- and
cohypo-normality for Wy are determined in this paper, leaving only sub- and cosub-
normality for Wep.

4. CHARACTERIZATIONS OF THE COHYPONORMAL AND COQUASINORMAL CLASSES

In this section we assume Wy : L? — L2 is a bounded w.c.0. with non-negative
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weight function w and adjoint W;. The Hilbert space inner product of f with g will
be denoted (f, g). We characterize the cohyponormal and coquasinormal w.c.0.’s. For
the cohyponormal cases we need the following lemma, inspired by [9].

LEMMA 4.1. The following are equivalent:

a) Ker W7 C Ker Wr.

b) ZI47(.7) c (Tnlg)o(w)-

Proof. First observe that condition a) implies that o(J) C o(w). For if A is any
Z-set of finite measure disjoint from o(w), we have x 4w = 0 so that Wzxa =0 and
hence, by a), Wrx4 = 0. But this is equivalent to the disjointness of A and o(J).

Suppose a) holds. If b) does not hold then 34de X, AcC o)), with A ¢
(T2 Z)o(w)- A muBt contain a set of A of a positive finite measure'with the same prop-
erties. Indeed if every measurable subset of A with finite measure were in (T’lﬂ),(w )
then A would be in (7715),(,) (by o-finiteness and the fact that 712 is a o-
algebra). Finally, since 31\ C o(J) C o(w), we have

o o

A=An{ U {z:27™ g w(z) £ 2™}},

m=1

and the same type of argument gives the existence of a set A of finite measure with
the same peoperties, as well as wys € L?. But by Lemma 2.2., wxa ¢ (RanWr).
This implies that there is some f # 0, f € (Ran Wr)* = Ker Wy C Ker Wr with 0 #
# (f,wxa). But 0 = WpWar f = J £, so that p(o(f)Ne(J)) = 0. Thus u(4\o(J)) >
0, a contradiction. Thus a) implies b).

Suppose b) holds and suppose f ¢ Ker Wy; then 0 < ||Wrf]|? = /Jlflzd,u.
Hence there is some measurable subset A of ¢(J) with positive measure and, say,
Re(f) > 0 on A. By b), 0(J) C o(w) so that w > 0 on A; and as above we may
choose A so that wxs € L?. Then /w(Re(f))d,u > 0. Again by b) we know that

A
A = T71B N o(w) for some Z-set B. Letting {B,} be a nested sequence of sets of
finite measure increasing to B, we apply the Monotone Convergence Theorem and
conclude that for some ng,

0< [ wRe()dn = (Wrxo,, Re(£)) = (xan,, Wi (REA),
T~1Bqa,
so that f ¢ Ker W,;i L
REMARK 4.1.1. Condition b) implies: ¢(J) € o(w) and (T~ 2),(zy = Zy(s)-

THEOREM 4.2. Wp is cohyponormal if and only if



SEMINORMAL COMPOSITION OPERATORS 331

a) Lysy C (T~ 2)o(w), and
b)JLJoT.

Proof. Suppose a) and b) hold. Write any f € L?(p) as f = f1 + fo with f; €
€ (Ran Wr) and f; € (Ran Wr)+. By Lemma 4.1 we have (Ran Wr)L = Ker W C
Ker Wr, hence {|Wzf|| = ||W7 fa]] and ||Wr f|] - IWr f1]|. Therefore to establish the
cohyponormality of Wr it suffices to show that ||W3 fl|2 > ||Wr f]|2 for f € (Ran Wr).
By Lemma 2.2 any such f is of the form f = wg o T for some g € L%(Jdy). Hence

W3S = We 1P = [(whoTE(S)-In)Fau= [(whoTEwgoT- 1N Fdu=
- ](h o TE(w?) — J)|f|?dp = /(J o T = 1)|f[2dp.

By b) Wr is cohyponormal.

Suppose Wr is cohyponormal; then Ker W} C Ker Wr and by Lemma 4.1, a)
holds. ,

Consider the set A = {JoT < J} C o(J). By a), A = T"1BNe(w) for some
B € Y. Write B as the union of an increasing sequence {Bp} of Z-sets each of
finite measure and set A4, = T-!B, No(w). Then wya, = Wrxs., € L*(u). By
cohyponormality we have

0 < IWiuxa I = [Wa(wxa P = [ (70T - Nwdu <o,
An

hence u(An) = 0 for all n and A is a nullset. a

Examples 5.5 and 5.6 (in Section 5) are cohyponormal, non-normal w.c.0.’s.

If an operator is both hyponormal and cohyponormal then it is normal. Although
the conditions for hyponormality and cohyponormality of W are not symmetric, we
still may quickly check that together they imply the conditions of Theorem 3.6. It is
clear that conditions a) and b) of 3.6 hold. As for condition ¢) we have

w? f w?
Xo(BE(w)y 2 hoTE ([-j—D 2hoTE ([WD = Xo(E(w?)) = Xo(E(w))s

where the first inequality follows from b) of 3.4, the second is from b) of 4.2, and
the last equality holds because w 2 0 so that o(E(w)) = o(E(w?)) = ¢(E(Xo(w)) =
smallest T'~1 Z-measurable set containing o(w) ([17]).

In order to characterize the coquasinormal w.c.0.’s we need the following lemma.

LeEMMA 4.3. Let A be a measurable set of positive measure and suppose 54 =
= (T-'X)4. If f is any non-negative X-measurable function supported in A, then
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there exists an increasing sequence {gn} of non-negative T~! Z-measurable functions
s0 that g,xa converges pointwise to f. If f € LP, we can choose the {gn} so that
gnXa € LP and the convergence is also in LP.

Proof. By the hypotheses we may choose an increasing sequence of non-negative
simple functions of the form

My

fa= Y b XT-1By 04
kp=1

which converge to f a.e. (aﬁd if f € LP, the f,, may chosen in L?, and to converge to
My
Fin LP). Let go = Z: CkoXT-1B,,, - |
n=1 .
THEOREM 4.4. Wi Is quasinormal if and only if
a) Zo(7y € (T2 D)o(w) and’
b) hE(w?) o T~ ! = wE(w)ho T on o(J).

Proof. Suppose a) and b) hold. By Lemma 4.1, it suffices to verify the quasi-
normal condition for Wy applied to each f € Ran Wr. Hence f = wgoT for some
g € L*(Jdpu). By considering the positive and negative parts of real and imaginary
parts of f, we may assume that f (and hence g} is nonnegative. We have

WrWaWE(f) = WeWp(Jg) = wh o TE(wlg).

Using Lemma 4.3 find an increasing sequence of non-negative 7~! Z-measurable
functions {t¥n} so that Ynx,sy — Jg a.e. and in L?. There is some Z-measurable
set B so that ¢(J) = T~1B N o¢(w), and applying condition E2 from Section 2 we
have

whoTE(wlg) = nliﬁlo wh o TE(wnXo(s)) = nlirgo wh o TE(wnxB © TXo(w)) =

= nlingo wh 0 TE(wXo(w))¥nXB © TXo(w) = who TE(w)Jg.

On the other hand, (Wi WrW3)(f) = J%g. By condition b), W is quasinormal.
Conversely suppose that W} is quasinormal. Then W3 is hyponormal and a)
holds. Thus Lemma 4.3 applies and we observe that

(4.4.1) J?g = Jwh o TE(w)g for each g € L:(Jdy).

Taking an increasing sequence of measurable sets each of finite measure whose
union is all of a(J), and letting {g,} be the corresponding sequence of characteristic
functions of those sets, we apply (4.4.1) to each g,, and see that b) holds. n
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See Example 4.6 below.
At this point it is convenient to apply the technique of Lemma 4.3 and Theorem
4.4 to give simpler reformulations of Theorems 3.1 and 4.4:

COROLLARY {THEOREM 3.1 SIMPLIFIED). Wr is normal if and only if
a’) J = Xo(u)J o T and
b’) Zaw) = (T71 2)otuy-

Proof. Suppose a) and b) of Theorem 3.1 hold. Then by Lemma 4.3 we may
find an increasing sequence {gn} of non-negative 7~! X'-measurable functions so that
gnXo(w) converges a.e. to w. Proceeding as in the proof of Theorem 4.4, we see that

wE(w) = Hm xoquygnE(w) = Hm Xow)E(gnt) = Xow)E(w?),

by property E2 of Section 2. Hence a') holds. Conversely, if a’) and b’) hold, the
reverse chain of equalities shows that x,w)E(w?) = wE(w), and a) of Theorem 3.1
holds. . [ ]

COROLLARY (THEOREM 4.4 SIMPLIFIED). Wy is quasinormal if and only if
o) J = xo2)J o T and
b') Ty € (771 2)ow)-

Proof, Apply Remark 4.1.1 and the above technique. |

COROLLARY 4.5. Wr is normal if and only if W3 is quasinormal and o(J) =
= a'(w)

The proof is left to the reader.

EXAMPLE 4.6. W3 quasinormal, not normal. Let X = Z, ¥ = 2%, y = counting
measure. Let Tz = z+2 ifz € —2, Tz = z+1 otherwise, and set w(n) = 1forn 2 0,
w(n) = 0 otherwise. Then o(J) = N and a(w) = NU{0}, (T 2)o(w) = Loy, J =
= wE(w)ho T on &(J), but J(0) = 0 and (wE(w)h o T)(0) = 1.

5. CONSERVATIVE TRANSFORMATIONS

In this section we show how the assumption of conservativity on T yields tighter
results in the classifications for the subclasses of the semi-normal class of w.c.0.’s.
There are many notions of conservativity for both transformations and operators; we
use a simple condition on the transformation 7. Recall that we assume po T~ is
absolutely continuous with respect to 4 and that all set and functional relations are



334 JAMES T. CAMPBELL and WILLIAM E. HORNOR

defined to within a.e. equivalence. With these conventions, the following theorem
holds (see [11] especially pages 13-19):

TueoreM 5.1. The following are equivalent:

a) The only W € T with {T~*W}i30 a pairwise disjoint collection is the empty
set.

b) ForalAe £, A={z € A:3n > 1sothat T"z € A}.

¢)Forall Ac £, A= {z € A:T"z € A for infinitely many n 2 1}.

d)IfA e Z (B¢ %) satisties T"'ACA(BC T 'B)thenT"'A=A(B=
=T-'B).

e) If f(g) is measurable and satisfies f 2 foT (g < goT) then f = foT (g = goT).

A transformation T satisfying any one (hence all) of the above conditions is called
conservative. The intuition behind conservativity is that generic points cannot wan-
der throughout the space without returning to the initial event they were observed
in. Conservative transformations are studied extensively in the ergodic theory litera-
ture (see [11]) and many examples are known. For example, any measure-preserving
transformation on a finite measure space is conservative; this is known as Poincare’s
Recurrence Theorem, and is one of the oldest results in ergodic theory. W.c.0.’s on
atomic measure spaces are often used to model weighted shifts; we may deduce that
in this case the underlying transformation cannot be conservative. Indeed, suppose
that a conservative transformation T acts on a purely atomic infinite measure space.
Then the space may be decomposed into a pairwise disjoint infinite sequence {A;} of
non-empty sets, each containing finitely many atoms, so that T acts on each 4; as a
cyclic permutation of its atoms.

The following result was first proved in [4]:

THEOREM 5.2. Suppose T is conservative.

a) If h is T~! X-measurable then Cr is quasinormal if and only if Ct is hyponor-
mal.

b) If T~1X = 5 then Cr is normal if and only if Cy is hyponormal.

The value in this theorem is that it reduces the calculation involved for deter-
mining the hyponormality and subnormality of Cr (see Theorems 3.5 and 3.6). The
following theorems continue in this spirit.

THEOREM 5.3. Suppose T is conservative. Then Wy is normal if and only if
a) T~ lo(w) = o(w), and
b) T_I(Zg(w)) = Ea(w)a and

¢) w is T~ o-measurable and hw? o T~! = ho Tw?.
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Proof. Conditions a), b) and ¢) are stronger than those determining the normality
of Wr (Theorem 3.1). Suppose Wy is normal. It was shown in the proof of Theorem
2 of [1] that this implies o(w) C T~ lc(w). By conservativity, a) holds. Hence
T-4(X \ o(w)) = X \ o(w). Since Wr is normal we know that for each A € Z,(u)
there exists a B € X' so that A = T~'B N o(w). But by the invariance of ¢(w) and
X \ o(w) we may suppose that B C o(w). Thus b) holds. Note that a) and b) imply
that w is 77! X-measurable. The functional equation in ¢) now follows from this fact
and condition a) of Theorem 3.1. .

Example 1 in [1] satisfies Wr is normal, T is not conservative, neither a) nor b)
hold, and e is not T~! Z-measurable.

THEOREM 5.4. Suppose T is conservative. If Wrp is cohyponormal then Wy is
normal,

Proof. By Theorem 4.2 we have J £ JoT hence J = JoT, so that ¢(J) = e(J o
oT) = o(w) is invariant under T". Thus a) of Theorem 5.3 holds. By part a) of
Theorem 4.2 we have Ly(,) C (T‘IZ‘),(,,,). Because the reverse inclusion always
holds these algebras are equal. But by the invariance of o(w) we have (T~' Z)g(y) =
T=Y(Z,(w)) so that b) of Theorem 5.3 holds. Thus w is 7~ £-measurable, and since
J = J oT, condition ¢} of Theorem 5.3 holds and W is normal. n

ExaMpPLE 5.5. In this example T is invertible but not conservative and Wep
is cohyponormal but normal. Let X = Z equipped with counting measure on the
algebra 2Z. Define T(z) = z + 1. () will be 1/2 for all # € 0 and w(z) = 1 for all
z 2 1. Then h = 1, w is T~ Z-measurable, J € J o T but equality does not hold
when z = (.

ExampLE 5.6. In the previous example, X contained no subset on which T was
conservative (and Wr was a “backwards” weighted shift). We may obtain examples
where X contains a subset on which 7 is conservative, Wr is not equivalent to a shift,
yet T' is not conservative and Wr is cohyponormal but not normal. Let X = NU {0}
with counting measure on 2% and define T'(z) =  — 1 for nonzero , T'(0) = 0. Direct
(mildly tedious) calculations show that if w(z) is defined by w(z) = 1 if z € {0, 1,2}
and w(z) = 27"+2 for n > 3 then Wr is cohyponormal but not normal.

We conclude this section with a discussion of conservativity and subnormality
for composition operators Cp. The conditions for normality, quasinormality, and
hyponormality each involve functional equalities or inequalities involving A and h o
T. On the other hand the condition for subnormality involves conditions on the
sequence {h,} of Radon-Nikodym derivatives dy o 7" /dy (Theorem 3.7). While
these conditions arise naturally enough from the definition of subnormality, they do
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not seem to fit easily with the other seminormal criteria, as well as being several
degrees of magnitude more difficult to verify.

The condition for hyponormality implies the condition E(h) = h o T, while the
condition for quasinormality is simply k = ko T. The subnormal class lies strictly
between these two classes. For every hyponormal example we know, if one applies
the Hopf decomposition (see [3]), the relation h = h o T holds on the conservative
part. We conjecture that if 7 is conservative and Cr is hyponormal then b = ho T
We point out that this conjecture is true in finite measure (because Cpr hyponormal
implies A = 1, see result 2 listed after Theorem 3.2), and in case (X, X, u) is purely
atomic. To see this, apply the description of a conservative transformation acting on
a purely atomic space given in the beginning of this section. For each i, L?(4;) is
reducing for Cr. But A; has finite measure so we are in the previous case. If the
conjecture holds in general then combined with the quasinormal criterion this would
greatly simplify the determination of subnormality in the conservative case.

6. EXTENSIONS TO THE UNBOUNDED CASE

An unbounded operator acting on Hilbert space has a uniguely determined ad-
joint when the operator is densely defined. For w.c.0.’s acting on L2(g) this is equiva-
lent to the function J attaining only finite values (a.e.). This last condition is sufficient
for the w.c.o. to have a closed graph. We establish these results, and characterize the
hypo- and cohypo-normal unbounded w.c.0.’s.

We drop the assumption of uniform boundedness on & but retain the assumption
that k is finite valued. Thus (X, T712, p) is o-finite, E(-) is defined and behaves as
in Section 2, and in particular E(w) exists (we still assume that w is non-negative}.
Recall that J(z) = h(z)E(Jw[P) o T~1(z). J exists and is well-defined by Lemma 2.1
a) and the discussion in the following two paragraphs. All set relations and funétional
equations are taken p-mod0. We set dv = Jdp and D = LP(u) N LP (v).

LEMMA 6.1. Suppose 1 < p < oo.
a) If f is ¥'-measurable, then f is in L?(v) if and only if wf o T is in LP(p).
b) Wr : LP(u) — LP(u) has dense domain D if and only if J is finite valued.

Proof. a) Define D : LP(v) — LP(u) by Df = wf o T. Then for each f € LP(v),

101 = [wifpoTau= [ B@)irpoTan= [ ifpdv = isle.

b) By a), the domain of Wr is D. But it is an easy exercise to show that D is
dense in L?(yu) if and only if J (which is non-negative) is finite valued. [
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If E and F are Banach spaces, £ @, F will denote their L? direct sum.

LEMMA 6.2. Suppose Wy has dense domain in LP(uj.
a) Wy is closed.
b) RanWr = {f € L?(y) : f = wg o T for some g € L?(v).}

REMARK 6.2.1. Under this hypothesis, D is also dense in LP(v).

Proof. a) Define @ : LP(p +v) — LP(p) @, LP(p) by &(f) = f @, Wrf. $isan
isometry, so the range of @ is closed; but range of @ is the graph of Wrp.

b) For f € Ran Wr, find a sequence {f,} C Ran Wr converging to f in L?(s). By
Lemma 6.1 there exists a sequence {gn} C D with Wpg, = fn. Because D : LP(v) —
— L?(p) (as in the proof of Lemma 6.1) is an isometry, {gn} is a Cauchy sequence
in L?(v), and converges to say, g, in LP(v). Again because D is an isometry we have
Dg=7f.

Conversely, suppose f = Dg for some g € LP(v). Since D is dense in LP(v) we
may find a sequence {g,} C D with g, — ¢ in L?(v). Because Wy and D agree on
‘D, and D is an isometry, the result follosw. [ |

REMARK 6.2.2. These results establish lemma 2.2 and show Lemma 2.1 holds
even in the unbounded case.

COROLLARY 6.3. Suppose Wr acts on L?2. With the conditions of Lemma 6.1,
W} is closed, the domain of W} is dense, Wi* = Wr, and (Ran Wr)*+ = Ker W;.

Proof. The two previous lemmas showed that Wy is densely defined and closed.
The result follows immediately from Theorems 13.9 and 13.12 of [20]. |

Henceforth our standing assumption is that J is finite valued. We denote the
domain of Wy by D*.

LEMMA 6.4. If Wy has dense domain then for all g € D*, Wg = hE(wg)oT"1.
Proof. If g € D* we have

(Wrf,g) = jwfo Tgdp = /f o TE(wg)dp < 0o, forall feD.

Thus f o TE(wg) is a T=!X-measurable function in L*(y), and by Lerama 2.1
there exists a unique X-measurable function F, supported in ¢(h), so that Fo T =
= foTE(wg); ie, F = fE(w§) o T~'. By Lemma 6.2 a), F € L*(hdy) and we
conclude that

{(Wrf,g)= ff -hE(wg) o T *dp, forall feD andall g €D".

The conclusion of the lemma follows because D is dense in L?(y). |



338 JAMES T. CAMPBELL and WILLIAM E. HORNOR

By setting w = 1 in results 6.1-6.4 we obtain the corresponding results for Cr.
Thus the condition that h < oo a.e., necessary for the existence of E, is actually
sufficient for T to induce a densely defined, closed operator Cr with a computable,
densely defined adjoint.

We turn now to the problem of seminormality in the unbounded case. In [10], a
definition of hyponormality for unbounded operators was given as:

DEFINITION 6.5. Let S : H — H be a densely defined operator on the Hilbert
space M. S is hyponormal if

(i) Domain S € Domain 5*, and

(i1) ||Sk|| = ||S* k|| for each h € Domain S.

Also in [10], a characterization was given for Cr to be cohyponormal in the
special case when T is invertible. The preliminary lemmas in this section, combined
with this definition of hyponormality, allow us to show that the characterizations of
hyponormality and cohyponormality for w.c.0.’s carry over in full generality from the
bounded case to the unbounded case:

THEOREM 6.6. Let Wy be a densely defined w.c.o. Then
(i) Wr is hyponormal if and only if the conditions of Theorem 3.4 hold.
(ii) Wr is cohyponormal if and only if the conditions of Theorem 4.2 hold.

Proof. The idea to modify the proofs from the bounded cases by restricting
calculations to the correct domains instead of all of LZ%(u). In the hyponormal case
the proof goes through practically verbatim, underscoring the elegance of the original
proof due to Lambert. The cohyponormal case requires more care.

Proof of (i): Suppose Wr is hyponormal. Then by Lemma 4.4, Wi f = h[E(wf)]o
oT~! for each f € D. Now we may proceed as in the prof of Theorem 3.4 given in [13].
If B C X \ 6(J) has finite measure then xg € D and Wrxp = 0. By hyponormality,

Wixp=0. But0= /hE(wa) o T ldp= /wxgd,u = /wd,u, so that w vanishes

B
on B and hence on all of X \ o(J). This shows o(w) C o{J).
Still proceeding as in [13], one establishes that
h-|E(wf)2oT !
E(w?) o T-1

IWrflls = dv for each f € D.

Define G : D — L%(v) by

1

G(f) = [E’_(wi’)hﬁ] * HE(f)] 0T, feD.

As in [13], calculations verify that
IGF|l. < |Ifll2» £ €D.
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Hence G extends to a contraction on all of L?(v). Then G* is also a contraction on
L*(v) and

G'g= [w_%o_T_]goT, gE€D.

But -
iIG*9II3=/[hE [E}-} OT‘I] -lg|*dw, g€ D.

2
Because dv = Jdp and D is dense in L2(v), we see that hE [1—;—
2
w

J

] oT~! £ 1. Because

2
hE [iu'—]—] o T-! is non-negative we have ho TE { ] £ 1. Moreover the conditions

2
o (H_) = o(w), z 20, w 2 0 imply that

J J
o (2[%]) = e,

w?

hoTE [ J] € Xo(E(w))-

and since h o T we have

Thus conditions (a) and (b) of Theorem 3.4 hold. (This last inequality is not explicitly
established in [13]. The inequality given there has 1 in place of Xs(E(w))-)

Conversely suppose conditions (a) and (b) of Theorem 3.4 hold. As in [13], define
H on D by

Hf:w{VJJOT}foT, feD.

It follows that
HHfIIZ = |IFlIZ = |[Wrfll, for each feD,

so that H extends to a contraction on all of L2(v) and moreover
WE*fII; = IWFfll% for each feD.
These conditions imply that
WWE AL = IH AL < IfI2 = 1WrAll%, for each f € D.

Thus inequality (ii) of definition 4.5 holds, and consequently condition (i} of 6.5 holds.
Proof of Theorem 6.6. part (ii): We need the following extension of Lemma 4.1:

LEMMA 6.6.1. Let Wr be a densely defined w.c.o. The following are equivalent:
a) Ker W} C Ker Wr.
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b) Loy ST 2)o(w)-

Proof of Lemma 6.6.1. Conditions a) implies 6(J) € o(w). Indeed, if A is any
S-set of finite measure disjoint from o(w) then wx.a = 0 so that AE(x s w) oT-1=0.
Thus x4 € D*, and Wixa = 0 implies that Wrxa = 0, by a). This implies that A
is disjoint from (J).

Because Lemma 2.2. and tﬁrﬂ/&)l = Ker Wy still hold in the densely defined
case, the rest of proof that a) implies b) goes through as in the bounded case.

Suppose b) holds. If Wy is the 0 operator then a) holds trivially. If Wr # 0,
choose f € D outside of Ker Wr:

0 < ||Wrfl® = /J|f|2dp < 0.
We may find a set A C o(J) of positive measure with x 4w € L?(p) and

0< /wRe(f)dp.

A

By b), A = T-'B N o(w) for some Z-set B. But wxs = wxpoT € L*(p)
implies xp € L2(v). Since D is dense in L?(v) we can find an increasing non-negative
sequence {f,} € D with f, T xp in L?(v) and a.e.. By Monotone Convergence,

0< /waRe(f)d;z :/wxg o TRe(f)dp =-/E'¥/’TXBRe(f)d,ux=ﬂli'nc':o /(WTf,,)RJe(f)du.

Hence there exists ng such that
0< [ (Wr faJRe(1)dp = (W faes () = (s WERRLI)

so that f ¢ Ker W5. | =

Continuation of the proof of Theorem 6.6. part (ii). We first suppose conditions
a) and b) of Theorem 4.2 hold and show that W is hyponormal. Our task is simplified
by observing that it is sufficient to establish the inequality ||W3 f]| = ||Wr f|| for each
f € {RanWz ND*}. As in the proof of Theorem 4.2 write f € L?(u) as f, + f2, with
fi € Ran Wz and fo € (Ran Wr)*. By Corollary 4.3, Lemma 4.1, and condition a),
(Ran Wr)t = Ker W3 C Ker Wy so that ||W3 f|| = |Wz f1]] and ||Wr f|| = Wr fil|.

Set K = {Ran WrND*}; by definition X = {f = wgoT: g € L(v) and h[E(wf)]o
oT-! € L*(p)}. The fact which allows our calculations to go through in the un-
bounded case is :

CraM. K = {f =wgoT:g € L2((J + J*)dp)}.
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Proof of Claim. If f = wgoT € K then g € L?(Jdyu) and

00> [WIB@AP T dp = [hoT|BwNPds= [hoTlE@W) ol o Tdy

:/hzlE(w2)|20T_1|g|2du=/lgizﬁdu.
Hence g € L?(J2dp) and K C {f = wgo T : g € L*((J + J%)du)}. Conversely if
g € L%((J + J?)dy), the reverese calculation shows that f = wgo T € K. |

Now the proof that ||[W3 fil > [[Wrf}| for each f € K goes through as in the
bounded case:

Wz A2 ~Wr fII? = /(whoTE(wf) —Jf)fdp = /(whDTE(wz)goT—Jfﬁdﬂ =

= / (ho TE(w?) ~ J)|f|*du = / (J o T = J)|fPdn.

By condition b) of our hypotheses, Wy is hyponormal.

Suppose Wy is hyponormal so that D* C D and ||W7f]| > ||Wr fl| for all f € D*.
In particular Ker W C Ker Wr so by Lemma 6.6.1 condition a) of Theorem 4.2 holds.
Let A= {JoT < J} C o(J). We want to show that A is a nullset. By condition
a), A = T~'B No(w) for some Z-set B. Because L2((J + J%)dp) N L?(p) is dense
in L?(p), for each Z-set C with finite measure contained in B we may find a non-
negative increasing sequence {fn} € L2({(J + J*)dg) N L?(p) with f, T x¢ pointwise
and in L%(u). For each n,

[|W7 W fal? = / who TE(wwf, o T)wf, o Tdy = / w?h o TE(w?)|fa|? 0 Tdp =

= [hoTE@YIfaP oTau= [ BB@ o T-fultdn < o,
since fn € LY((J + J?)dp) C L2(J?dy). Thus Wrf, € D* for each n and
0 < WaWr fall? - 1Wr Wi fulf? = / (J o T = 1YW fodp.

Because f, is supported in C for each n, the support of Wrf, is contained in A4 so
the last integral is non-positive and the entire line reduces to 0. But then

0:/(J0T—J)WTfndp =TJC(JOT—J)an o Tdpu.

Because 0 € fn € xo we have 0 € f, o T € x¢c o T and hence

/ (JoT—J)wfnoTdp £ / (JoT' = JNywxcoTdu= / (JoT—=J)wdp < 0.
T=1c T1Cno(w) T=1Cne(w)
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Because J oT — J is strictly negative on 7-'C'No(w) and w is strictly positive there,
w(T~1C Na(w)) = 0. By o-finiteness, we see that A is a nullset and condition b)

holds. B
CoRroOLLARY 6.7. Let Cy be a densely defined composition operator. Then
1
a) Cr is hyponormal if and only if h > 0 and ho TE 5 <1

b) Cr is cohyponormal if and only if (i} Dy CT'Z and (i) A< hoT.

ExaMmpPLE 6.8. This is an e;cample of an unbounded densely defined cohyponor-
mal composition operator, whose adjoint is an unbounded densely defined hyponormal
weighted composition operator.

Let (X, X, 1) be the unit interval and Lebesgue measurable sets equipped with

1 1 - i
Lebesgue measure, and T(z) = 22, Then h = 57z hoT = 55 T-'Y = ¥ and
h < hoT, so by Corollary 6.7, Cr is cohyponormal.
But C; = Ws, where S(z) = /z and w(z) = % S71Y = %, hs =
-1
iﬁ% =2, Js = 51;, JsoS = % Directly from Theorem 6.6, Ws is hy-

ponormal. Observe that if D denotes the domain of Cr and D* denotes the domain
of Ws then D* S’D.
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