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THE ACTION OF A DUAL ALGEBRA ON ITS PREDUAL

MICHAEL MARSALLI

1. INTRODUCTION

For a dual algebra A on a separable, complex Hilbert space, there are natural left
and right actions of the algebra on its predual. These actions give rise to two algebras
of operators on the predual, Az and Ag. We show that each of these algebras is the
commutant of the other. We show that the lattice of invariant subspaces of Agr is
anti-isomorphic to the lattice of weak® closed left ideals of .A. We give two sufficient
conditions for the reflexivity of Ay and Ag. Finally, we apply the previous results to
describe the invariant subspaces of a von Neumann algebra acting on its predual and
the invariant subspaces of H* acting on L!/H].

2. THE ALGEBRAS Ay, AND Ap

Let X be a complex Banach space. Then X* will denote the dual space of X,
and £(&) will denote the algebra of bounded operators on X. Let  be a separable,
complex Hilbert space, and let C;(H) be the ideal of trace class operators on H. It
is well known that £(H) is (isometrically isomorphic to) the dual space of C;(H) via
the pairing

(T, L) =t(TL), Te€LMH), LeCi(H).

A subalgebra A of £(H) that contains the identity operator I and is closed in the
weak™ topology on L£(H) is called a dual algebra. (For an in-depth development of
the theory of dual algebras, see [1].) Let *.A denote the set {K € Ci(H) : (4,K) =
= 0 for all A € A}. The predual of A is the quotient space Q4 = Ci(H)/*A. It
follows from general Banach space theory that A is (isometrically isomorphic to) the
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dual space of Q4 via the pairing
(4,[K]) = tr(AK), A€A, [K]€Qa.

Consequently, @4 can be identified with the space of weak* continuous linear func-
tionals on A.
Fix A€ A. Definemaps Ly : Q4 — Qa and Rg: Q4 — Qa by

La([K]) = [AK] and Ra([K])=[K4], [K]€Qua.

First we establish some basic properties of Ly and R4.

THEOREM 1. Suppose A Is a dual algebra, and A € A. Then L, and RA are
elements of £L(Q4), and [|La|| = ||Ral| = }All.

Proof. The linearity of L4 is clear. We will show that L, is bounded. For each
[K] € Qu, there is 2 T' € A with ||T|| € 1 such that ||La([K]}|| = [[AK]]| = (T, [AK])
by the weak* compactness of the unit ball of A. Now

(T,[AK]) = t2(TAK) = (T A, [K]) € IITAIIII[K]IIS?IIAIIII[K]H-

Thus [|Za (DI < IAINIIKTI] for all [K] € Qa- So [[Lall < [|All
We must now show that ||L4|| > ||A]|- We have

IZa(LEDN = [ITAK]N 2 KL [AKD)] = (A, [K])| for all [K] € Qa.
Thus |Z4ll > sup{l{A, (K| - [K] € Qu, K| < 1} = ||A]l. The proof for Ry is
similar, but it uses the fact that tr(TKA) = tr(ATK). u
We can now define maps 7z : A — L(Q4) and 7r : A — L(Q4) by

7 (A)=Ls and mr(A)=Ra, A€A

COROLLARY 2. The maps 71, and g are isometric algebra homomorphisms.

Proof. It is easy to show that the maps are algebra homomorphisms, and Theo-

rem 1 shows that they are isometries. L

Thus Q4 is a Banach bimodule over A. Let A = m.(A) and Ag = wr(A). We
proceed to study the action of A on Q4 via these algebras. If S is a subset of £(X),
then &' = {T € L(X) : ST = TS for all S € 8}. The weak topology on L£(X) is the
topology induced by the functions ¢(T') = (f,Tz), = € X, f € X*. The next result
establishes a connection between Ay and Ag.
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THEOREM 3. Let A be a dual algebra. Let Z=ANA".
(a) (AL)' = .AR, and (.AR)/ = .AL.

(b) (ArL)’ = Ar, and (Agr)”’ = Ag.

(¢) AL and Ag are weakly closed.

(d) 7g(2) = 7r(2) = AL N AR.

(e) A is abelian if and only if Ar, = Ar.

Proof. First we prove (Ar) = Ag. A simple computation shows that Ap C
C (Ar). Sosuppose that G € (Ar)’. Then {I,G([K])), [K] € Qa, defines a bounded
linear functional on Q4. Thus there is an operator S € A such that (S,[K]) =
= (I, G([K))) for all [K] € Q4. Fix [K] € Q4. We have

(A, Rs([KD)) = (I, LaRs([K])) = (I, Rs La([K])) = (S, La(IK])) =

— (I, G(LA(IKD)) = (I, La(GUKD)) = (4, G(K])) forall A€ A

It follows that G = Rs, and so (Ar) = Ag. The proof that (Ag)' = Ag is similar.
Statements (b) and (c¢) immediately follow from (a). We prove (d). Suppose
ZeZ. Fix [K] € Q4. Then

(A4, Lz([K])) = {AZ,[K]) = (ZA,[K]) = (A, Rz([K])) forall Ac A

Thus Lz = Rz. This implies that 77(2) = mr(Z), and 71(Z) C AL N Ar. Now
sappose that G € A N Ag. Then there are operators S and 7' in A such that
G=Lg=Rp. Soforall Ae A and [K] € @4, we have

(AS, [K]) = (A, Ls([K])} = (4, Rr([K])) = (T'4, [K]).

So AS = TA for all A € A. In particular, S =IS =TI =7 andso S € A'. Hence
G € 7z(Z), and the result follows. Finally, statement (e) is an easy consequence
of (d). [}

3. INVARIANT SUBSPACES AND IDEALS

If M is a subspace of X, then M is the weak* closed subspace {f € X* : {f,z) =
= 0 for £ € M}. If F is a subspace of X*, then 1F is the (norm closed) subspace
{z€ X :(f,z) =0for f € F}. Let & be a subset of L(X). Then Lat§ is the lattice
{M C X : M is a (norm closed) subspace, and SM C M forall S € §}. For T €
€ L(X), T* will denote the Banach space adjoint of 7'. We use S$* to denote the set
{5*: S € 8}, and Laty 8* is the lattice {M C X*: M is a weak* closed subspace of X/,
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and $* M C M for all § € S}. The following proposition describes the relationship
between Lat S and Laty S*. We include it here for convenience.

PRropPOSITION 4. Let X be a Banach space with dual space X*. Let S be a
subset of L(X).

(a) f M € Lat S, then M* € Latw S*.

(b) If F € Latw S*, then 1 F € LatS.

(c) The map 75 : Latw 8* — Lat S defined by 9(F) = *F, F € Latw 8*, is a
lattice anti-isomorphism with = (M) = M1, M € Lat§.

Proof. First we prove (a). For all 2 € M, f € M%, and S € S, we have
(8" f,z) = (f,8z) = 0, because Sz € M. So M' is invariant under $*. A similar
computation establishes (b). We now prove (c). It is well known that # interchanges
spans and intersections. For F € Latw S*, (1 F)t = F. For M € LatS$, (M) =
= M. Thus the maps 5 and 5! are indeed inverses. ]

The following application of Proposition 4 yields a description of the invariant
subspaces of Ag in terms of the weak® closed left ideals of A.

THEOREM 5. Let 4 be a dual algebra. Let A be the lattice of weak* closed left
ideals of A

(a) If T € A, then *T € Lat Ap.

(b) If M € Lat.Ag, then Mt € A.

(c) The map 5 : A — Lat.Ag defined by n(Z) = 1Z, T € A, is a lattice anti-
-isomorphism with n7}(M) = M+, M € Lat Ag.

Proof. Fix S € A. For all [K] € Q4 and A € A, we have (4, Rg([K])) =
= (SA,[K]). Thus (Rs)*(A) = S;A for all A € A. It follows that Latw (Agr)* = A.
The result now follows immediately from Proposition 4. |

Of course, we could also show that the lattice of weak* closed right ideals of A
is anti-isomorphic to Lat. Ay via the map #. We will now obtain more information
about the structure of the weak* closed left ideals of A. For £ C @4, we define the
left annihilator ideal of £ by Lan& = {A € A : L4([K]) = 0 for all [K] € £}. Tt is
easy to verify that Lan& is a weak* closed left ideal of .A. The next result describes
the left annihilator ideal of a single element. I § is a subset of £(X) and z € X, then
[Sz] denotes the closed linear span of the set {Sz : § € §}.

THEOREM 6. Let A be a dual algebra. For all [K] € Q 4, Lan {[K]} = [Ar[K]]*.

Proof. Fix [K] € Q4. Let S € Lan{[K]}. Then for all A € A, (S, Ra([K])) =
= (A, Ls([K])) = 0. Thus S € [Ag[K]]*. Now suppose that S € [Ar[K]]*. The
same computation then shows that S € Lan {[K]}. _ =
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Let S be a subset of £(X). A vector z € X is separating for S if Sz = 0 implies
S = 0 for every S € S. A vector z is cyclic for S if [Sz] = X. When § is a von
Neumann algebra on a Hilbert space, a vector is separating for § if and only if it is
cyclic for 8’. We also obtain this result for Az. Of course, there is a similar version
for A R

COROLLARY 6. Let A be a dual algebra. The element [K] is separating for Ar
if and only if it is cyclic for Ag. ‘

The next corollary describes the weak* closed ideals of a dual algebra in terms
of the left annihilator ideals of single vectors.

COROLLARY 7. Let A be a dual algebra with weak* closed left ideal I. Then

I= [ Lan{[K]}.

[KletZ

Proof, Let M = 1Z. Now M € Lat Ar, so M = V [Ag[K]]. Thus T =
[Klem

=Mt = [ [Ag[K]]*= [\ Lan{[K]} by Theorem 6. |
[Klem [Kle+Z

4. REFLEXIVITY

For S a subset of £(X), RefS = {T € L(X) : Tz € [Sz] forall z € X}. It
is easy to see that RefS is a weakly closed subspace of £(X). The set S is reflex-
jve if § = RefS. When A is a unital subalgebra of L(&X), RefA = AlglatA =
= {T € L(X) : TM C M for all M € Lat A}. We will establish two sufficient
conditions for the reflexivity of Ap and Ayr. First we require the following result.

PROPOSITION 8. The maps : (A, weak®) — (Ar, weak) and Tr: (A, weak™) —
— (AR, weak) are homeomorphisms.

Proof. Suppose A; — A weak * in A. Then (BA;,[K]) — (BA,[K]) for every
[K] € Qa and B € A. Thus (B, [A;K]) — (B,[AK]), and so m is continuous.

Now suppose 71 (A;) — 71,(A) weakly in Az. Then (I,[A;K]) — (I, [AK]) for
every [K] € Q4. Thus {4;,[K]) — (A, [K]), and so 7z, is a homeomorphism. The
proof for 7 is similar. n

The next theorem provides a sufficient condition for the reflexivity of Ar
and Ag.

THEOREM 9. If the algebra generated by the idempotents of A is weak® dense
in A, then Ay and Apg are reflexive.
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Proof. Let E be an idempotent in A. Then Lg and Lj.g are idempotents in Af,
with LgL;-g = Li_gLg = 0. It is easy to see that LgQ is an element of Lat Ag.
Suppose G € AlgLat Ag. Then

LsG(K]) = LGLe((K])+ LeGLi_([K]) = GLe(IK]) for [K] € Qu,

because GLE([K]) € LQa and GL;_p([K]) € Li—gQ4. Thus G commutes with
Lg for every ideh]potent E in A. Now the algebra generated by the set {Lg : E €
€ A, E? = E} is weakly dense in Ay by Proposition 8. It follows that G € (AL) =
= .Ag. The proof for .Ap, is similar. u

An element [M] in Q4 is multiplicative if
(AB, [M]) = (A,M]{B,[M]) forall A,B€A

We establish some useful properties of multiplicative elements in the following propo-

sition.

PROPOSITION 10. Let [M] be a multiplicative element of Q4. Then La([M]) =
= R4([M]) = (A4, [M])[M] for A € A. If [M] is nonzero, then {I,[M]) = 1.

Proof. Fix A € A. If [M] is a multiplicative element of Q 4, then (B, Lo([M])) =
= (BA,[M]) = (B,[M]}{A,[M])) = (AB,[M]) = {B,Ra([M])) for all B € A.
It follows that La([M]) = R4([M]). Also, (B,La{[M])} = (B,[M)(A,[M]) =
= (B, (A, [M]))[M]) for all B € A. Thus Ls({M]) = (A, [M])[M]. In particular,
[M] = {I,[M]}[M]. So if [M] is nonzero; then {I,[M]) = 1. [ |

Thus the multiplicative elements of @} 4 are eigenvectors for the elements of Az
and Ap. We can now prove a second reflexivity result.

THEOREM 11. If Q4 is the closed linear span of its multiplicative elements, then
A is abelian, and both Ay, and Agr are reflexive.

Proof. First we will show that A, = Ag. Let [M] be a multiplicative element of
Q4. By Proposition 10, La([M]) = Ra([M]) for A € A. Because the multiplicative
elements span Q 4, we have L4 = R4 for A € A. Thus Ay = Ag. By Theorem 3 (e),
A is abelian.

Now we show that A is reflexive. If Q4 contains no nonzero multiplicative
elements, then @4 = (0) and the result is trivial. So we may suppose there are
nonzero multiplicative elements in Q4. Let G € AlgLat Ar. Then {I, G([K])) defines
a continuous linear functional on Q4. So there is a T' € A such that (T,[K]) =
= (I, G([K])) for all [K] € Q4. If [M] is a nonzero multiplicative element of Q 4, then
G([M]) = A[M] for some A € C by Proposition 10. Thus {4, G([M})) = M4, [M]) =
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= MA, [MI{L, [M]) = (A, MY, AIMY) = (A, M), G([M])) = (A, [M])N(T, [M]) =
= (AT, [M]) = (4, Lr([M])) for A € A. Consequently, G([M]) = Lr([M)) for every
multiplicative element [M]. Because these elements span Q4, G = Lr. [ |

We recall from [4] that a subalgebra A of £{X) is weakly elementary if for every
weakly continuous linear functional ¢ on A there exist vectors z € A and f € A~
such that o(A) = (f, Az) for all A € A.

THEOREM 12. The algebras Ay, and AR are weakly elementary.

Proof. Let ¢ be a weakly continuous linear functional on Ar. Then there ex-
ist vectors [K1],...,[Kn] in Q4 and operators Aj,...,An in A such that ¢(G) =
=Y (A, G([Ki])) for A € A. Thus

o(La) = Y {Ai, [AKL) = > (L JAKA) = <I, La (E[KiAi])> .
The proof for Ag is similar. n

COROLLARY 13. If Ay (respectively, Ar) is reflexive, then every weakly closed
subspace of Ay (respectively, Agr) is reflexive.

Proof. Let 8 be a weakly closed subspace of Ag. Because Ay, is weakly elemen-
tary, RefS N AL = S by [4, Theorem 4]. Clearly RefS C Ref Ay, and Ref Ar = Ay,
s0 § = RefS N Az = Ref S. a

5. APPLICATIONS

We will now apply the i)revious results to the action of a von Neumann algebra on
its predual. In particular, we can characterize the invariant subspaces of this action.
The reader should consult [2] for the theory of von Neumann algebras.

THEOREM 14. Let A be a von Neumann algebra. Then Lat Ap = {LgQu4 : E €
€ .A and E = E* = E?}, and every weakly closed subspace of Ar is reflexive.

Proof. Let E be a projection in A. Then Lg is an idempotent in £(Q.a4), so
LgQ.4 is a closed subspace. Clearly LpQ 4 is invariant for Ag. We now show every
invariant subspace is of this form. Let M € Lat.Ar. By Theorem 5, M = 17 for
some weak™ closed left ideal Z. By [2,' Part I, Chapter 3, Corollary 3] there is a
projection E in A such that 7 = {AE : A € A}. Thus

M =4T = {[K]: (AE,[K]) =0, A€ A} = {[K] : {4, [EK]) =0, Ac A} =

= {[K]: Lp([K]) = 0} = {[K] : L1-p([K]) = [K]} = L1-EQ4-
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Because the algebra generated by the projections in .4 is weak* dense in A, A and all

its weakly closed subspaces are reflexive by Theorem 9 and Corollary 13. [ |

We now apply the previous results to the algebra H*. The reader should consult
[3] for the theory of H®. It is known that H* is a dual algebra on H? with predual
isometrically isomorphic to L'/ H} (cf. [1, Chapter IV]). Se we can use the previous
results to characterize the invariant subspaces of H*® acting on L'/Hj. Let D =
={deC:|A\<1}andlet T={s€C:|z| =1} Forhe H®, let h denote the
analytic extension of i to D. For f € L, [f] will denote the equivalence class of f in
LY/H}, and [¢HY) = {[f] € L'/ H} : f = ¢g with g € H}}.

THEOREM 15. Let A = H*. Then

(a) AL = Ar.

(b) Lat Ag = {[#H}) : ¢ is inner}.

(¢) Every weakly closed subspace of Ag Is reflexive.

Proof. Because H*® is abelian, part (a) follows from Theorem 3. Let M €
€ Lat H®. Then M = +7 for some weak* closed ideal T in H*®. Now Z = ¢ H* for
some inner function ¢ by [3, Chapter II, Theorem 7.5]. Thus

M="L(@H®) = {[f] € L'/H} : {¢h,[fl} =0 forall h € H®} =
={[fle L'/H; : (h,[¢fy =0forall he H*} =
={[fle L'/H} : [¢f] =0} ={[fl€ L'/H : ¢f € H}} =
={[f] € L'/H} : f = $g with g € Hy} = [¢H}]

It is easy to see that every set of this form is in Lat Ag. This establishes part (b).
Finally, we show part (¢). For each A € D, let

P(z)=0 =21 -2z, ze€T.

Then (k,[Py]) = h()), h € H®. Thus [P:] is 2 multiplicative element for each A € D.
If 0 = (h,[Py]) = h(]) for cach A € D, then h = 0. Thus the multiplicative elements
span L!/H}, and so H*® is reflexive by Theorem 11. Statement (c) now follows from
Corollary 13. [ |

We conclude with a question and some remarks. Does every dual algebra have a
non-trivial weak* closed left ideal? In view of Theorem 5, this is equivalent to solving
the invariant subspace problem for 4g. Thus a negative solution would provide a
new transitive algebra on a Banach space. A singly generated dual algebra with
only trivial weak* closed ideals' would provide a new example of a transitive operator
on a Banach space. An affirmative answer to the question would lead to invariant
subspaces for certain dual algebras via [4, Proposition 5].
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