THE ACTION OF A DUAL ALGEBRA ON ITS PREDUAL

MICHAEL MARSALLI

1. INTRODUCTION

For a dual algebra \mathcal{A} on a separable, complex Hilbert space, there are natural left and right actions of the algebra on its predual. These actions give rise to two algebras of operators on the predual, \mathcal{A}_L and \mathcal{A}_R . We show that each of these algebras is the commutant of the other. We show that the lattice of invariant subspaces of \mathcal{A}_R is anti-isomorphic to the lattice of weak* closed left ideals of \mathcal{A} . We give two sufficient conditions for the reflexivity of \mathcal{A}_L and \mathcal{A}_R . Finally, we apply the previous results to describe the invariant subspaces of a von Neumann algebra acting on its predual and the invariant subspaces of H^{∞} acting on L^1/H_0^1 .

2. THE ALGEBRAS \mathcal{A}_L AND \mathcal{A}_R

Let \mathcal{X} be a complex Banach space. Then \mathcal{X}^* will denote the dual space of \mathcal{X} , and $\mathcal{L}(\mathcal{X})$ will denote the algebra of bounded operators on \mathcal{X} . Let \mathcal{H} be a separable, complex Hilbert space, and let $\mathcal{C}_1(\mathcal{H})$ be the ideal of trace class operators on \mathcal{H} . It is well known that $\mathcal{L}(\mathcal{H})$ is (isometrically isomorphic to) the dual space of $\mathcal{C}_1(\mathcal{H})$ via the pairing

$$\langle T, L \rangle = \operatorname{tr}(TL), \quad T \in \mathcal{L}(\mathcal{H}), \ L \in \mathcal{C}_1(\mathcal{H}).$$

A subalgebra \mathcal{A} of $\mathcal{L}(\mathcal{H})$ that contains the identity operator I and is closed in the weak* topology on $\mathcal{L}(\mathcal{H})$ is called a dual algebra. (For an in-depth development of the theory of dual algebras, see [1].) Let ${}^{\perp}\mathcal{A}$ denote the set $\{K \in \mathcal{C}_1(\mathcal{H}) : \langle A, K \rangle = 0 \text{ for all } A \in \mathcal{A}\}$. The predual of \mathcal{A} is the quotient space $Q_{\mathcal{A}} = \mathcal{C}_1(\mathcal{H})/{}^{\perp}\mathcal{A}$. It follows from general Banach space theory that \mathcal{A} is (isometrically isomorphic to) the

dual space of Q_A via the pairing

$$\langle A, [K] \rangle = \operatorname{tr}(AK), \quad A \in \mathcal{A}, [K] \in Q_{\mathcal{A}}.$$

Consequently, $Q_{\mathcal{A}}$ can be identified with the space of weak* continuous linear functionals on \mathcal{A} .

Fix $A \in \mathcal{A}$. Define maps $L_A: Q_{\mathcal{A}} \to Q_{\mathcal{A}}$ and $R_A: Q_{\mathcal{A}} \to Q_{\mathcal{A}}$ by

$$L_A([K]) = [AK] \text{ and } R_A([K]) = [KA], [K] \in Q_A.$$

First we establish some basic properties of L_A and R_A .

THEOREM 1. Suppose A is a dual algebra, and $A \in A$. Then L_A and R_A are elements of $\mathcal{L}(Q_A)$, and $||L_A|| = ||R_A|| = ||A||$.

Proof. The linearity of L_A is clear. We will show that L_A is bounded. For each $[K] \in Q_A$, there is a $T \in A$ with $||T|| \leq 1$ such that $||L_A([K])|| = ||[AK]|| = \langle T, [AK] \rangle$ by the weak* compactness of the unit ball of A. Now

$$\langle T, [AK] \rangle = \text{tr}(TAK) = \langle TA, [K] \rangle \leqslant ||TA|| \, ||[K]|| \leqslant ||A|| \, ||[K]||.$$

Thus $||L_A([K])|| \le ||A|| ||[K]||$ for all $[K] \in Q_A$. So $||L_A|| \le ||A||$.

We must now show that $||L_A|| \ge ||A||$. We have

$$||L_A([K])|| = ||[AK]|| \geqslant |\langle I, [AK] \rangle| = |\langle A, [K] \rangle|$$
 for all $[K] \in Q_A$.

Thus $||L_A|| \ge \sup\{|\langle A, [K]\rangle| : [K] \in Q_A$, $||[K]|| \le 1\} = ||A||$. The proof for R_A is similar, but it uses the fact that $\operatorname{tr}(TKA) = \operatorname{tr}(ATK)$.

We can now define maps $\pi_L: \mathcal{A} \to \mathcal{L}(Q_{\mathcal{A}})$ and $\pi_R: \mathcal{A} \to \mathcal{L}(Q_{\mathcal{A}})$ by

$$\pi_L(A) = L_A$$
 and $\pi_R(A) = R_A$, $A \in A$.

COROLLARY 2. The maps π_L and π_R are isometric algebra homomorphisms.

Proof. It is easy to show that the maps are algebra homomorphisms, and Theorem 1 shows that they are isometries.

Thus Q_A is a Banach bimodule over A. Let $A_L = \pi_L(A)$ and $A_R = \pi_R(A)$. We proceed to study the action of A on Q_A via these algebras. If S is a subset of $\mathcal{L}(X)$, then $S' = \{T \in \mathcal{L}(X) : ST = TS \text{ for all } S \in S\}$. The weak topology on $\mathcal{L}(X)$ is the topology induced by the functions $\varphi(T) = \langle f, Tx \rangle$, $x \in X$, $f \in X^*$. The next result establishes a connection between A_L and A_R .

THEOREM 3. Let \mathcal{A} be a dual algebra. Let $\mathcal{Z} = \mathcal{A} \cap \mathcal{A}'$.

- (a) $(A_L)' = A_R$, and $(A_R)' = A_L$.
- (b) $(A_L)'' = A_L$, and $(A_R)'' = A_R$.
- (c) A_L and A_R are weakly closed.
- (d) $\pi_L(\mathcal{Z}) = \pi_R(\mathcal{Z}) = \mathcal{A}_L \cap \mathcal{A}_R$.
- (e) A is abelian if and only if $A_L = A_R$.

Proof. First we prove $(A_L)' = A_R$. A simple computation shows that $A_R \subset (A_L)'$. So suppose that $G \in (A_L)'$. Then (I, G([K])), $[K] \in Q_A$, defines a bounded linear functional on Q_A . Thus there is an operator $S \in A$ such that (S, [K]) = (I, G([K])) for all $[K] \in Q_A$. Fix $[K] \in Q_A$. We have

$$\langle A, R_S([K]) \rangle = \langle I, L_A R_S([K]) \rangle = \langle I, R_S L_A([K]) \rangle = \langle S, L_A([K]) \rangle =$$

= $\langle I, G(L_A([K])) \rangle = \langle I, L_A(G([K])) \rangle = \langle A, G([K]) \rangle$ for all $A \in \mathcal{A}$

It follows that $G = R_S$, and so $(A_L)' = A_R$. The proof that $(A_R)' = A_L$ is similar.

Statements (b) and (c) immediately follow from (a). We prove (d). Suppose $Z \in \mathcal{Z}$. Fix $[K] \in Q_A$. Then

$$\langle A, L_Z([K]) \rangle = \langle AZ, [K] \rangle = \langle ZA, [K] \rangle = \langle A, R_Z([K]) \rangle$$
 for all $A \in \mathcal{A}$

Thus $L_Z = R_Z$. This implies that $\pi_L(\mathcal{Z}) = \pi_R(\mathcal{Z})$, and $\pi_L(\mathcal{Z}) \subset \mathcal{A}_L \cap \mathcal{A}_R$. Now suppose that $G \in \mathcal{A}_L \cap \mathcal{A}_R$. Then there are operators S and T in \mathcal{A} such that $G = L_S = R_T$. So for all $A \in \mathcal{A}$ and $[K] \in Q_A$, we have

$$\langle AS, [K] \rangle = \langle A, L_S([K]) \rangle = \langle A, R_T([K]) \rangle = \langle TA, [K] \rangle.$$

So AS = TA for all $A \in \mathcal{A}$. In particular, S = IS = TI = T, and so $S \in \mathcal{A}'$. Hence $G \in \pi_L(\mathcal{Z})$, and the result follows. Finally, statement (e) is an easy consequence of (d).

3. INVARIANT SUBSPACES AND IDEALS

If \mathcal{M} is a subspace of \mathcal{X} , then \mathcal{M}^{\perp} is the weak* closed subspace $\{f \in \mathcal{X}^* : \langle f, x \rangle = 0 \text{ for } x \in \mathcal{M}\}$. If \mathcal{F} is a subspace of \mathcal{X}^* , then ${}^{\perp}\mathcal{F}$ is the (norm closed) subspace $\{x \in \mathcal{X} : \langle f, x \rangle = 0 \text{ for } f \in \mathcal{F}\}$. Let \mathcal{S} be a subset of $\mathcal{L}(\mathcal{X})$. Then Lat \mathcal{S} is the lattice $\{\mathcal{M} \subset \mathcal{X} : \mathcal{M} \text{ is a (norm closed) subspace, and } \mathcal{S}\mathcal{M} \subset \mathcal{M} \text{ for all } \mathcal{S} \in \mathcal{S}\}$. For $T \in \mathcal{L}(\mathcal{X})$, T^* will denote the Banach space adjoint of T. We use \mathcal{S}^* to denote the set $\{\mathcal{S}^* : \mathcal{S} \in \mathcal{S}\}$, and Lat \mathcal{S}^* is the lattice $\{\mathcal{M} \subset \mathcal{X}^* : \mathcal{M} \text{ is a weak* closed subspace of } \mathcal{X},$

366 MICHAEL MARSALLI

and $S^*\mathcal{M} \subset \mathcal{M}$ for all $S \in \mathcal{S}$. The following proposition describes the relationship between Lat \mathcal{S} and Lat \mathcal{S}^* . We include it here for convenience.

PROPOSITION 4. Let \mathcal{X} be a Banach space with dual space \mathcal{X}^* . Let \mathcal{S} be a subset of $\mathcal{L}(\mathcal{X})$.

- (a) If $\mathcal{M} \in \operatorname{Lat} \mathcal{S}$, then $\mathcal{M}^{\perp} \in \operatorname{Lat}_{\mathcal{W}} \mathcal{S}^*$.
- (b) If $\mathcal{F} \in \operatorname{Lat}_W \mathcal{S}^*$, then ${}^{\perp}\mathcal{F} \in \operatorname{Lat} \mathcal{S}$.
- (c) The map $\eta : \operatorname{Lat}_W \mathcal{S}^* \to \operatorname{Lat} \mathcal{S}$ defined by $\eta(\mathcal{F}) = {}^{\perp}\mathcal{F}$, $\mathcal{F} \in \operatorname{Lat}_W \mathcal{S}^*$, is a lattice anti-isomorphism with $\eta^{-1}(\mathcal{M}) = \mathcal{M}^{\perp}$, $\mathcal{M} \in \operatorname{Lat} \mathcal{S}$.

Proof. First we prove (a). For all $x \in \mathcal{M}$, $f \in \mathcal{M}^{\perp}$, and $S \in \mathcal{S}$, we have $\langle S^*f, x \rangle = \langle f, Sx \rangle = 0$, because $Sx \in \mathcal{M}$. So \mathcal{M}^{\perp} is invariant under S^* . A similar computation establishes (b). We now prove (c). It is well known that η interchanges spans and intersections. For $\mathcal{F} \in \operatorname{Lat}_W \mathcal{S}^*$, $(^{\perp}\mathcal{F})^{\perp} = \mathcal{F}$. For $\mathcal{M} \in \operatorname{Lat} \mathcal{S}$, $^{\perp}(\mathcal{M}^{\perp}) = \mathcal{M}$. Thus the maps η and η^{-1} are indeed inverses.

The following application of Proposition 4 yields a description of the invariant subspaces of A_R in terms of the weak* closed left ideals of A.

THEOREM 5. Let A be a dual algebra. Let Λ be the lattice of weak* closed left ideals of A

- (a) If $\mathcal{I} \in \Lambda$, then ${}^{\perp}\mathcal{I} \in \operatorname{Lat} \mathcal{A}_R$.
- (b) If $\mathcal{M} \in \operatorname{Lat} \mathcal{A}_R$, then $\mathcal{M}^{\perp} \in \Lambda$.
- (c) The map $\eta: \Lambda \to \operatorname{Lat} \mathcal{A}_R$ defined by $\eta(\mathcal{I}) = {}^{\perp}\mathcal{I}$, $\mathcal{I} \in \Lambda$, is a lattice anti-isomorphism with $\eta^{-1}(\mathcal{M}) = \mathcal{M}^{\perp}$, $\mathcal{M} \in \operatorname{Lat} \mathcal{A}_R$.

Proof. Fix $S \in \mathcal{A}$. For all $[K] \in Q_{\mathcal{A}}$ and $A \in \mathcal{A}$, we have $\langle A, R_S([K]) \rangle = \langle SA, [K] \rangle$. Thus $(R_S)^*(A) = SA$ for all $A \in \mathcal{A}$. It follows that $\text{Lat}_W(A_R)^* = A$. The result now follows immediately from Proposition 4.

Of course, we could also show that the lattice of weak* closed right ideals of \mathcal{A} is anti-isomorphic to Lat \mathcal{A}_L via the map η . We will now obtain more information about the structure of the weak* closed left ideals of \mathcal{A} . For $\mathcal{E} \subset Q_{\mathcal{A}}$, we define the left annihilator ideal of \mathcal{E} by Lan $\mathcal{E} = \{A \in \mathcal{A} : L_A([K]) = 0 \text{ for all } [K] \in \mathcal{E}\}$. It is easy to verify that Lan \mathcal{E} is a weak* closed left ideal of \mathcal{A} . The next result describes the left annihilator ideal of a single element. If \mathcal{S} is a subset of $\mathcal{L}(\mathcal{X})$ and $x \in \mathcal{X}$, then $[\mathcal{S}x]$ denotes the closed linear span of the set $\{Sx : S \in \mathcal{S}\}$.

THEOREM 6. Let A be a dual algebra. For all $[K] \in Q_A$, Lan $\{[K]\} = [A_R[K]]^{\perp}$.

Proof. Fix $[K] \in Q_A$. Let $S \in \text{Lan}\{[K]\}$. Then for all $A \in A$, $\langle S, R_A([K]) \rangle = \langle A, L_S([K]) \rangle = 0$. Thus $S \in [A_R[K]]^{\perp}$. Now suppose that $S \in [A_R[K]]^{\perp}$. The same computation then shows that $S \in \text{Lan}\{[K]\}$.

Let S be a subset of $\mathcal{L}(\mathcal{X})$. A vector $x \in \mathcal{X}$ is separating for S if Sx = 0 implies S = 0 for every $S \in S$. A vector x is cyclic for S if $[Sx] = \mathcal{X}$. When S is a von Neumann algebra on a Hilbert space, a vector is separating for S if and only if it is cyclic for S'. We also obtain this result for A_L . Of course, there is a similar version for A_R .

COROLLARY 6. Let A be a dual algebra. The element [K] is separating for A_L if and only if it is cyclic for A_R .

The next corollary describes the weak* closed ideals of a dual algebra in terms of the left annihilator ideals of single vectors.

COROLLARY 7. Let \mathcal{A} be a dual algebra with weak* closed left ideal \mathcal{I} . Then $\mathcal{I} = \bigcap_{[K] \in {}^{\perp}\mathcal{I}} \operatorname{Lan}\{[K]\}.$

Proof. Let
$$\mathcal{M} = {}^{\perp}\mathcal{I}$$
. Now $\mathcal{M} \in \operatorname{Lat} \mathcal{A}_R$, so $\mathcal{M} = \bigvee_{[K] \in \mathcal{M}} [\mathcal{A}_R[K]]$. Thus $\mathcal{I} = \mathcal{M}^{\perp} = \bigcap_{[K] \in \mathcal{M}} [\mathcal{A}_R[K]]^{\perp} = \bigcap_{[K] \in {}^{\perp}\mathcal{I}} \operatorname{Lan} \{[K]\}$ by Theorem 6.

4. REFLEXIVITY

For S a subset of $\mathcal{L}(\mathcal{X})$, Ref $S = \{T \in \mathcal{L}(\mathcal{X}) : Tx \in [Sx] \text{ for all } x \in \mathcal{X}\}$. It is easy to see that Ref S is a weakly closed subspace of $\mathcal{L}(\mathcal{X})$. The set S is reflexive if S = Ref S. When A is a unital subalgebra of $\mathcal{L}(\mathcal{X})$, Ref $A = \text{AlgLat }A = \{T \in \mathcal{L}(\mathcal{X}) : TM \subset \mathcal{M} \text{ for all } \mathcal{M} \in \text{Lat }A\}$. We will establish two sufficient conditions for the reflexivity of A_R and A_L . First we require the following result.

PROPOSITION 8. The maps $\pi_L: (A, \text{weak}^*) \to (A_L, \text{weak})$ and $\pi_R: (A, \text{weak}^*) \to (A_R, \text{weak})$ are homeomorphisms.

Proof. Suppose $A_i \to A$ weak * in A. Then $\langle BA_i, [K] \rangle \to \langle BA, [K] \rangle$ for every $[K] \in Q_A$ and $B \in A$. Thus $\langle B, [A_iK] \rangle \to \langle B, [AK] \rangle$, and so π_L is continuous.

Now suppose $\pi_L(A_i) \to \pi_L(A)$ weakly in A_L . Then $\langle I, [A_iK] \rangle \to \langle I, [AK] \rangle$ for every $[K] \in Q_A$. Thus $\langle A_i, [K] \rangle \to \langle A, [K] \rangle$, and so π_L is a homeomorphism. The proof for π_R is similar.

The next theorem provides a sufficient condition for the reflexivity of A_L and A_R .

THEOREM 9. If the algebra generated by the idempotents of A is weak* dense in A, then A_L and A_R are reflexive.

Proof. Let E be an idempotent in A. Then L_E and L_{I-E} are idempotents in A_L with $L_E L_{I-E} = L_{I-E} L_E = 0$. It is easy to see that $L_E Q_A$ is an element of Lat A_R . Suppose $G \in \text{AlgLat } A_R$. Then

$$L_E G([K]) = L_E G L_E([K]) + L_E G L_{I-E}([K]) = G L_E([K])$$
 for $[K] \in Q_A$,

because $GL_E([K]) \in L_EQ_A$ and $GL_{I-E}([K]) \in L_{I-E}Q_A$. Thus G commutes with L_E for every idempotent E in A. Now the algebra generated by the set $\{L_E : E \in A, E^2 = E\}$ is weakly dense in A_L by Proposition 8. It follows that $G \in (A_L)' = A_R$. The proof for A_R is similar.

An element [M] in Q_A is multiplicative if

$$\langle AB, [M] \rangle = \langle A, [M] \rangle \langle B, [M] \rangle$$
 for all $A, B \in A$

We establish some useful properties of multiplicative elements in the following proposition.

PROPOSITION 10. Let [M] be a multiplicative element of Q_A . Then $L_A([M]) = R_A([M]) = \langle A, [M] \rangle [M]$ for $A \in \mathcal{A}$. If [M] is nonzero, then $\langle I, [M] \rangle = 1$.

Proof. Fix $A \in \mathcal{A}$. If [M] is a multiplicative element of Q_A , then $\langle B, L_A([M]) \rangle = \langle BA, [M] \rangle = \langle B, [M] \rangle \langle A, [M] \rangle = \langle AB, [M] \rangle = \langle B, R_A([M]) \rangle$ for all $B \in \mathcal{A}$. It follows that $L_A([M]) = R_A([M])$. Also, $\langle B, L_A([M]) \rangle = \langle B, [M] \rangle \langle A, [M] \rangle = \langle B, \langle A, [M] \rangle [M] \rangle$ for all $B \in \mathcal{A}$. Thus $L_A([M]) = \langle A, [M] \rangle [M]$. In particular, $[M] = \langle I, [M] \rangle [M]$. So if [M] is nonzero, then $\langle I, [M] \rangle = 1$.

Thus the multiplicative elements of Q_A are eigenvectors for the elements of A_L and A_R . We can now prove a second reflexivity result.

THEOREM 11. If Q_A is the closed linear span of its multiplicative elements, then A is abelian, and both A_L and A_R are reflexive.

Proof. First we will show that $\mathcal{A}_L = \mathcal{A}_R$. Let [M] be a multiplicative element of Q_A . By Proposition 10, $L_A([M]) = R_A([M])$ for $A \in \mathcal{A}$. Because the multiplicative elements span Q_A , we have $L_A = R_A$ for $A \in \mathcal{A}$. Thus $\mathcal{A}_L = \mathcal{A}_R$. By Theorem 3 (e), \mathcal{A} is abelian.

Now we show that A_L is reflexive. If Q_A contains no nonzero multiplicative elements, then $Q_A = (0)$ and the result is trivial. So we may suppose there are nonzero multiplicative elements in Q_A . Let $G \in \text{AlgLat } A_L$. Then $\langle I, G([K]) \rangle$ defines a continuous linear functional on Q_A . So there is a $T \in A$ such that $\langle T, [K] \rangle = \langle I, G([K]) \rangle$ for all $[K] \in Q_A$. If [M] is a nonzero multiplicative element of Q_A , then $G([M]) = \lambda[M]$ for some $\lambda \in \mathbb{C}$ by Proposition 10. Thus $\langle A, G([M]) \rangle = \lambda \langle A, [M] \rangle = 0$

 $= \lambda \langle A, [M] \rangle \langle I, [M] \rangle = \langle A, [M] \rangle \langle I, \lambda[M] \rangle = \langle A, [M] \rangle \langle I, G([M]) \rangle = \langle A, [M] \rangle \langle T, [M] \rangle =$ $= \langle AT, [M] \rangle = \langle A, L_T([M]) \rangle \text{ for } A \in \mathcal{A}. \text{ Consequently, } G([M]) = L_T([M]) \text{ for every multiplicative element } [M]. \text{ Because these elements span } Q_A, G = L_T.$

We recall from [4] that a subalgebra \mathcal{A} of $\mathcal{L}(\mathcal{X})$ is weakly elementary if for every weakly continuous linear functional φ on \mathcal{A} there exist vectors $x \in \mathcal{X}$ and $f \in \mathcal{X}^*$ such that $\varphi(A) = \langle f, Ax \rangle$ for all $A \in \mathcal{A}$.

THEOREM 12. The algebras A_L and A_R are weakly elementary.

Proof. Let φ be a weakly continuous linear functional on \mathcal{A}_L . Then there exist vectors $[K_1], \ldots, [K_n]$ in $Q_{\mathcal{A}}$ and operators A_1, \ldots, A_n in \mathcal{A} such that $\varphi(G) = \sum \langle A_i, G([K_i]) \rangle$ for $A \in \mathcal{A}$. Thus

$$\varphi(L_A) = \sum \langle A_i, [AK_i] \rangle = \sum \langle I, [AK_iA_i] \rangle = \left\langle I, L_A\left(\sum [K_iA_i]\right) \right\rangle.$$

The proof for A_R is similar.

COROLLARY 13. If A_L (respectively, A_R) is reflexive, then every weakly closed subspace of A_L (respectively, A_R) is reflexive.

Proof. Let S be a weakly closed subspace of A_L . Because A_L is weakly elementary, $\operatorname{Ref} S \cap A_L = S$ by [4, Theorem 4]. Clearly $\operatorname{Ref} S \subset \operatorname{Ref} A_L$, and $\operatorname{Ref} A_L = A_L$, so $S = \operatorname{Ref} S \cap A_L = \operatorname{Ref} S$.

5. APPLICATIONS

We will now apply the previous results to the action of a von Neumann algebra on its predual. In particular, we can characterize the invariant subspaces of this action. The reader should consult [2] for the theory of von Neumann algebras.

THEOREM 14. Let A be a von Neumann algebra. Then Lat $A_R = \{L_E Q_A : E \in A \text{ and } E = E^* = E^2\}$, and every weakly closed subspace of A_R is reflexive.

Proof. Let E be a projection in A. Then L_E is an idempotent in $\mathcal{L}(Q_A)$, so L_EQ_A is a closed subspace. Clearly L_EQ_A is invariant for A_R . We now show every invariant subspace is of this form. Let $M \in \text{Lat } A_R$. By Theorem 5, $M = {}^{\perp}\mathcal{I}$ for some weak* closed left ideal \mathcal{I} . By [2, Part I, Chapter 3, Corollary 3] there is a projection E in A such that $\mathcal{I} = \{AE : A \in A\}$. Thus

$$\mathcal{M} = {}^{\perp}\mathcal{I} = \{ [K] : \langle AE, [K] \rangle = 0, \ A \in \mathcal{A} \} = \{ [K] : \langle A, [EK] \rangle = 0, \ A \in \mathcal{A} \} =$$
$$= \{ [K] : L_E([K]) = 0 \} = \{ [K] : L_{I-E}([K]) = [K] \} = L_{I-E}Q_{\mathcal{A}}.$$

370 MICHAEL MARSALLI

Because the algebra generated by the projections in \mathcal{A} is weak* dense in \mathcal{A} , \mathcal{A} and all its weakly closed subspaces are reflexive by Theorem 9 and Corollary 13.

We now apply the previous results to the algebra H^{∞} . The reader should consult [3] for the theory of H^{∞} . It is known that H^{∞} is a dual algebra on H^2 with predual isometrically isomorphic to L^1/H^1_0 (cf. [1, Chapter IV]). So we can use the previous results to characterize the invariant subspaces of H^{∞} acting on L^1/H^1_0 . Let $\mathbf{D} = \{\lambda \in \mathbb{C} : |\lambda| < 1\}$ and let $\mathbf{T} = \{z \in \mathbb{C} : |z| = 1\}$. For $h \in H^{\infty}$, let \hat{h} denote the analytic extension of h to \mathbf{D} . For $f \in L^1$, [f] will denote the equivalence class of f in L^1/H^1_0 , and $[\overline{\phi}H^1_0] = \{[f] \in L^1/H^1_0 : f = \overline{\phi}g$ with $g \in H^1_0\}$.

Theorem 15. Let $A = H^{\infty}$. Then

- (a) $A_L = A_R$.
- (b) Lat $\mathcal{A}_R = \{ [\overline{\phi}H_0^1] : \phi \text{ is inner} \}.$
- (c) Every weakly closed subspace of A_R is reflexive.

Proof. Because H^{∞} is abelian, part (a) follows from Theorem 3. Let $\mathcal{M} \in \text{Lat } H^{\infty}$. Then $\mathcal{M} = {}^{\perp}\mathcal{I}$ for some weak* closed ideal \mathcal{I} in H^{∞} . Now $\mathcal{I} = \phi H^{\infty}$ for some inner function ϕ by [3, Chapter II, Theorem 7.5]. Thus

$$\mathcal{M} = {}^{\perp}(\phi H^{\infty}) = \{ [f] \in L^{1}/H_{0}^{1} : \langle \phi h, [f] \rangle = 0 \text{ for all } h \in H^{\infty} \} =$$

$$= \{ [f] \in L^{1}/H_{0}^{1} : \langle h, [\phi f] \rangle = 0 \text{ for all } h \in H^{\infty} \} =$$

$$= \{ [f] \in L^{1}/H_{0}^{1} : [\phi f] = 0 \} = \{ [f] \in L^{1}/H_{0}^{1} : \phi f \in H_{0}^{1} \} =$$

$$= \{ [f] \in L^{1}/H_{0}^{1} : f = \overline{\phi}g \text{ with } g \in H_{0}^{1} \} = [\overline{\phi}H_{0}^{1}]$$

It is easy to see that every set of this form is in Lat \mathcal{A}_R . This establishes part (b). Finally, we show part (c). For each $\lambda \in \mathbf{D}$, let

$$P_{\lambda}(z) = (1 - |\lambda|^2)|1 - \overline{\lambda}z|^{-2}, \quad z \in \mathbb{T}.$$

Then $\langle h, [P_{\lambda}] \rangle = \hat{h}(\lambda)$, $h \in H^{\infty}$. Thus $[P_{\lambda}]$ is a multiplicative element for each $\lambda \in \mathbb{D}$. If $0 = \langle h, [P_{\lambda}] \rangle = \hat{h}(\lambda)$ for each $\lambda \in \mathbb{D}$, then h = 0. Thus the multiplicative elements span L^{1}/H_{0}^{1} , and so H^{∞} is reflexive by Theorem 11. Statement (c) now follows from Corollary 13.

We conclude with a question and some remarks. Does every dual algebra have a non-trivial weak* closed left ideal? In view of Theorem 5, this is equivalent to solving the invariant subspace problem for \mathcal{A}_R . Thus a negative solution would provide a new transitive algebra on a Banach space. A singly generated dual algebra with only trivial weak* closed ideals would provide a new example of a transitive operator on a Banach space. An affirmative answer to the question would lead to invariant subspaces for certain dual algebras via [4, Proposition 5].

REFERENCES

- 1. BERCOVICI, H.; FOIAŞ, C.; PEARCY, C., Dual algebras with applications to invariant subspaces and dilation theory, CBMS Reg. Conf. Ser. Math., no. 56, Amer. Math. Soc., Providence, RI, 1985.
- 2. DIXMIER, J., Von Neumann algebras, North-Holland, Amsterdam, 1981.
- 3. GARNETT, J., Bounded analytic functions, Academic Press, New York, 1981.
- 4. MARSALLI, M., The structure of linear functionals on spaces of operators, J. Operator Theory, 17(1987), 301-308.

MICHAEL MARSALLI
Department of Mathematics
Illinois State University,
Normal, IL 61790,
U.S.A.

Received July 17, 1991.