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RELATIVE ENTROPY FOR FINITE VON NEUMANN ALGEBRAS

YUKI SEO

1. INTRODUCTION

Nakamura and Umegaki [11] extended the notion of the entropy formulated by
J. von Neumann [12]. Umegaki [18] introduced the relative entropy as a noncom-
mutative version of the Kullback-Leibler entropy, which is given by the trace of
aloga — alogbh, i.e. sy(alb) = r(aloga — alogd) for positive operators a, b affiliated
with a semifinite von Neumann algebra.

J. L Fyjii and E. Kamei [4] introduced the relative operator entropy s(a|b) for
positive operators a,b as a relative version of the Nakamura-Umegaki operator en-
tropy. In the case where a, b are commutative, this relative operator entropy coincides
with the Umegaki relative entropy, but in general they do not coincide. On the other
hand Belavkin and Staszewski have defined in [1] a relative entropy sps in C*-algebra
setting. Hiai and Petz [9] pointed out that sps(e, b) = Tr(s(a, b)) for density matrices
a, b where Tr denotes the usual trace matrices.

In noncomutative probability theory, F. Hiai studied the relative entropy of nor-
mal positive functionals in general von Neunann algebras and showed some remark-
able results in [8] [9]. Also, the relation between the Umegaki relative entropy sy and
Belavkin and Staszewski relative entropy sps was investigated.

Now, let M be a finite von Neumann algebra with the faithful normal trace
7, 7(1) = 1, N a von Neumann subalgebra of M and Epn denotes the unique 7-
-preserving conditional expectation of M onto N. Let X be the set of all families

n
Zi,...,zp of positive elements in M with Z: z; = 1 and this be called a partition

i=1
of the unity in M. Then Connes and Stgrmer [2] introduced the relative entropy
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H(M|N) of M relative to N as follows:

HMIN) = sup 2 BNz - rofas),

where 7 is defined by n(t) = —~tlogt and 5(0) = 0. The entropy H(M|N) was used to
study the entropy of Kolmogorov-Sinai type for automorphisms of finite von Neumann
algebras. Lately, Pimsner and Popa [13] exactly calculated the entropy H(M|N) of
a factor of type II; M relative to its subfactor N in terms of Jones’ index. The
general relation between H(M|N) and Jones’ index [M: N} is given by H(M|N) <
£ log[M: N}, and several characterization for the equality H(M|N) = log[M: N]
were established in [13]. The complete computation of the entropy in the finite di-
mensional case is also contained in [13].

In the previous paper [16], we introduced an entropy S(M|[N) of a finite von
Neumann algebra M relative to its subalgebra N as a noncommutative version of
the Umegaki relative entropy which is not identical with the Connes Stgrmer relative
entropy H(M|N) [2] and showed a version of the Pimsner-Popa Theorem on the
entropy and Jones’index for factors of type II;. Also we showed that if M D N are
finite dimensional von Neumann algebras, then

(*) , S(M|N) > H(M|N).

In this paper, we shall show that if M D N are factors of type II;, then the relative
entropy coincides with Jones’ index in the sense that S(M|N) = log[M : N]. In
Section 4 we shall exactly estimate the entropy S(M|N) of a finite dimensional von
Neumann algebra M relative to subalgebra N in terms of the Pimsner and Popa’s
generalized index.

2. PROPERTIES OF ENTROPY

Following {3] the relative operator entropy s(al|b) for positive operators a and b
is given by
s(alb) = — lim a*’?(log a*?(b + )~ a/?)al/2.

if the strong limit exists.
The relative operator entropy for noninvertible positive operators does not always
exist, but if there exists A > 0 such that & > Ae, then s(a|b) exists and

(log )a < s(alp) < —aloga + (log1bl])a.
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First we summarize the basic properties concerning the relative operator entropy and
use them frequently. If s(a|b) exists, then

(2-1) monotonity: b < ¢ imply s(alb) < s(alc).

(2-2) transformer inequality: z*s(e|b)z < s(z*az|e*bz) for all z.

(2-3) subadditive: s(alc) + s(b|d) < s(a + blc + d).

(2-4) upper semicontinuity: b, | b implies s(alb,) | s(alb).
where @,b,c and d are positive operators. Note that in (2-2) z*s(alb)z =
= s(z*az|x*bz) for invertible operators z. For some general results on the relative
operator entropy, see [3], [4].

Let M be a finite von Neumann algebra with the faithful normal trace 7, 7(1) =
= 1, N a von Neumann subalgebra of M and En denotes the unique r-preserving
conditional expectation of M onto N. Let X be the set of all families 3, ...,z of

n
positive elements in M with Zm* = 1 and this be called a partition of the unity in

i=1
M. Then the relative entropy S(M|N) is defined by

S(M|N) = (ms.;lgx Z —r(s(z: | En(2:)))

Also, Pimsner and Popa introduced the generalized index A(M, N) as a more
analytical characterization of Jones’index [M : N] as follows:

AMM,N)=max{A > 0: Ex(z) > Az forall z€ M,}.

In [16], we showed the relation between the relative entropy S(M|N) and the gener-
alized index A(M, N), namely S < —log A
We collect the basic properties of the generalized index.

PROPOSITION 1. If M D N D L are finite von Neumann algebras, then
(1) MM, M) =1

(2) 0K MM, N1

(3) A(M, L) = MM, N)X(N, L)

(4) M(M,L)y=1 impliessM =N

(5) AM(My ® M2, N1 ® N3) > MMy, N1)A(M2, N3)

(6) )\(Ml B My, N1 ® Nz) = min{)\(Ml,Nl), /\(Mz, Nz)}

Proof. (1), (2), (5) and (6) are clear by the definition. In (3), let Er : M — L,
En :M — N and EY : N — L be the expectation. Then we get

Er(z) = EY En(z) 2 M(N, L)En(2) 2 MN, L)A(M, N)z.

Therefore we get (3).
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If \(M,N) =1, then En(p) > p for all projections p € M. Since En(1-p) >
2 1 —p, we have p > En(p), so that En(p) = p. Hence M = N. [ |

We present general properties of entropy S(M|N).
ProrosiTiON 2. Let M = Z Mg and N = Z N, for countable families
{Mi} and {N} of finite von Neumann algebras with Mk D Ni. Then

S(MIN) = > S(Mg|Ni).
k

Proof' By the definition of the relative operator entropy, we have s(a|b) =

= Z s(ax|by) with ¢ = zeak, b = E bp. For z; = Z 25 with 24 €

k k
€ My, Zz; = 1, we have

Y —mm(s(zil En(:)) = 3 3~ (s(zaxl En(zia))) < 3 S(Mi V).
3 i k k

Hence S(M|N) < 2 S(My|Ny). The reverse inequality is similarly shown. n
k

We examine how the entropy behaves under tensor products.

LEMMA 3.
s(a®clpb®d) = s(alb) ® c+ a ® s(c|d)

Proof. By the upper continuity of the relative operator entropy, we can assume
that the operators a, b, c and d are invertible. Since

log(a® b) = log(a @ 1)(1® ) = log(a ® 1) +log(1 ®b) = (loga) ® 1 + 1 ® (log b),
we have

s(a®@clb®d) =
= (a2 @ c!/?)(log(a'/? @ cM/?)(b~1 @ d~1)(a}/? @ /) (a2 @ cM/?) =
= (0% @ c/?)(log a*/2b~a1/? @ cH/2d~1eM?)(al? @ ¢11?) =
= (a2 ® /?)(log a*/%b~1a? ® 1 + 1 ® logcH2d~ c/?) (a2 @ ¢M/?) =
= s(ald) ® c+ a @ s(c|d).
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PROPOSITION 4. Let M DO N and P D @Q be two pairs of finite von Neumann
algebras. Then
5(M @ PIN ® Q) = S(M|N) + S(P|Q)-
Proof. Let a; € M;with Za,; = 1 and b; € Py with }:bj = 1. Then
i J
Zat-@bj = 1® 1 and we have
if
SMO®PIN®Q) 2~ mar(s(a ®b;j|En(a:) ® Eq(b;))) =
)

= - Z ™ (s(a;|En(a;))me(b;) — Z ae(a;)7p(s(bj | Eq(b;))) =
ij ij
= =3 rrlo(eal B (as) = (ol o))

Hence S(M ® P|N ® Q) < S(M|N) + S(P|Q). -

REMARK. The above equality does not hold in the finite dimensional case. For
instance, let M,, = M,(C) be the n x n matrix algebra with the normalized trace 7,.
As for the conditional expectation T, @ ida, : Mm ® My — C® M, with respect to
Tm ® Tn, we have by [15 Corollary 10]

2 <
S(Mm®Mn]C®Mn):{logm' m < n,
logmn, m>mn,

which is not equal to S(Mpn|C) = logm whenever m,n > 1.

LEMMA 5. Let B C M be arbitrary finite von Neumann algebras and {fa}n>1
a sequence of projections in B' N M with ||fs — 1]z — 0. Let My, = M,,B;, = B,
and AM( My, By,) # 0 for all n. Then

S(M|B) > limsup S(Mn|Bn).

Proof. Let A = limsup S(M,|B,) and € > 0. Suppose that A < co. There exists

n
a sufficently many n such that
— Y 1. (s(il BB, (z:)) 2 A — e,
H
where z; is a partition of Jn, 2 = foyifn for some y; € M.

(f)

transformer inequality [3], we have

- Z T, (5(xi| BB, (7)) = — Z ;(-%jf <s (fnyifn';z%')‘anB(yi) fn)) <

Since Ep, (z:;) = ——fn EB(3:) f» and the relative operator entropy satisfies the
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<= X iy (e (ol

Hence A — & < S(M|B) and as ¢ > 0 is arbitrary we get

—5Ba)) ) = = X r(s(ulEp(w).

S(M|B) 2 hmsupS(anlen)
Also, if A = oo, then for any ¢ > 0 there exists a sufficently many n such that

- Z 1. (8(%i|EB,(2i))) 2 €

By above discussion we get the same consequence. u

The next lemma is similar and has the same proof as Lemma 4.2 in [1]. We
reproduce the proof though, for the reader’s convenience.

LEMMaA 6. Let N C M be finite von Neumann algebras with a nonzero gener-
alized index X. If ¢ € M is a projection such that Ennnm(g) = cf for some scalar ¢
and some projection f € N'N M, then

S(MIN) 3 ~<r(s(alEn (o).

Proof. For any ¢ > 0 there exist unitary element v1,...,v, in N such that
lly = fll2 < €l|fl|2 with y = c_lrlzqu;' Let § > 0 and denote by p the spectral
projection of y corresponding to [0,1 + §] in the algebra fM f. Put

1 * *
T; = mp Aviqul, zi = viqu] — p A vigu;.

Since Yz < f,7(z:) < (€671)2r(f), and S(uiquf|En(vige})) = vis(g|En(g))v], we
have

- Z 7(s(z:i|En(z:))) 2
> — Z (—1—-:6_)‘:1;7.(8(”"@: [En(vigu))) + m z 7(s(zi|En(zi))) 2
>~ 3 5 BN @) + 75 0B NES ().

Letting first € — 0 and then § — 0, then we have S(M|N) > —%r(s(qIEN(q))). n

PROPOSITION 7. Let M be a finite factor. If {ex} is a set of projections in M
with Zek =1, then

-1
S(M|Z$Mek) = log A (M,zeMek) .
k k
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Proof. Put N = Z M,,. Suppose that {ex} is a finite set {ej,.. em} Let

0 # ¢; € ¢; be some rnutually equivalent projections and choose {v;j}1¢i,jgm @ set of

matrix units such that vy; = ¢;. If ¢ = Z(r e,)r(e,)) vi; then ¢ is a projection of

ij
the same trace as g;.

m m L
9W(En(g)+€) lg=gq (Z (r(ex) + &) orr +£77 (Z 'vkk) ) q=

k=1 k=1
1

= Y5 (rlesyr(e) M r(er)(r(ex) + €)Mt =
it k

= (zm: r(er)((ex) + e)"‘) q.

k=1

Hence lin’é q(En(g) + 5)"1q = mygq. Therefore we have
£—

s(g|En(a)) = s - lim —q(log g(En(q) + €)™ 0)g = —q(logmg)g = —glog m.

Since Ennm(q) = Z 7;_(:::)) er = Z 7(gx)er = 7(¢)1, it follows from Lemma 6 that
3

1 1
S(M|N) > —@T(S(qIEN(q)) = RE)_T(Q) logm = logm.

On the other hand, for z = (e;ze;) € My and £ = (&), we have

(mEn(2) - 2)6,8) = Y ((m = 1)(eiveibs, &) — Y _(eizejé &) =

i=1 F#e
= E((m — 1)(x&i, &) ~ Z(xe.,e,)) = Z a2 — &) >
i# i<j

Hence En(z) > —:c for all z € M,.. Therefore A(M,N) > —1— Hence
log A\(M, N)~! logm < S(M|N) < logA(M, N)™ %,

so that S(M|N) = log A\(M, N)~1.

n
Next suppose that {e;} is a infinite set. Put f, = Ee.'. Then f, e N'N M
i=1

with ||fn — 1]|2 — 0. Since A(M,, N,,) > = it follows from Lemma 5 that

S(M|N) 2 limsup S(Mp|Nn) =
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= limsup log A(My, N,)~! = limsuplog n.

Hence we have S(M|N) = log A\(M, N)~! = co. [ |

3. COMPUTATION OF $(M|N) FOR FACTORS OF TYPE II;

In this section we shall obtain a formula for the relative entropy S(M|N) in the
case M and N are factors of type 1I;.

THEOREM 8. Let M be a factor of type I} and N a subfactor of M. Then

S(M|N) = log[M : N].

Proof. The proof in the following is a slight modification of that of [13, Theorem
4.4]. Suppose that [M : N] < oo, it follows from Jones’result [10: Corollary 2.2.3)
that N’ N M is finite dimensional. Let {f.}ogkgm be the atoms in N' N M such

m
that ka = 1. Let My, = M, Ny, = Ny, 15, = 7 and Ep, the 7g-preserving

k=0
conditional expectation of M; onto Ni. Fix the projection fy € {fi}» and denote by

6; : No — N; the isomorphism making commutative the diagram.

N

[\
65

Ng ——— N;
Note that if #; € N; then En(z;) = r(fj)za,-ej‘l(z,-). Let r;j be mutually
i

orthogonal projection in Ny with er = ln, = fo and 7(r;) = %
g :

Denote by p; = 8;(r;) € Nj and s; = »_6i(r;). Then En(p;) = 7(fj)s; and
i

ZSJ‘ = 1n. There exist projections e; € Mj such that En;(e;) = [M; : N;]™ 1,
and [e;, p;] = 0, 75(ejp;) = 75(ej)75(ps)-

Put g; = pje; and it follows that En,(g;) = [M; : N;]7'p; and 7(g;) =
= [M : N]=!. Then we get that g; are mutually equivalent projections in M so that
there exists a set of matrix units in M, {vij }og:i,jgm having ¢; as diagonal ¢; = v;;.

2
Put ¢ = Z (r(£:)r(£3)) " *vij, then (g) = [M : N]", En(g) = 3 [—Alf:f%s’”' and

1] k
Eniam(e) = m(9)1nm.
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Since a partial isometry v;; : rang; — rang; satisfies v;;vf; = ¢i,vjvij =

i, Vijq; = vij and g;vi; = vij, we have vy;s; = 0 for j # k and vy;s; = v;; ZG;(T,-)
I

vi0;(r;) = vi;p;. Also since
Vij = YipWkj = VikQkVkj = 'Uzkpkek’vk; Uik PEVkj < vij,

then we have v;; = viprvk;.
In [10] Jones showed the relation between Jones’index and the local index, namely
if [M : N] < oo and fi € N'N M are projections with Z fr =1 then

e = S

. B [My : N
Since E 1o Lk Tk
N(Q) ; T(fk)2

BN = D3 r(f,)rm»”?[M’g - f’“(r(fs)r(ft»” vijorvs =

= ZZ(T(fz)T(f D M’(cf ;Vk] (r(fe)r(f)) Pvinprvne =

—-ZZ B S ety oo =
= [M : N] Z(r(ﬂ)r(ﬁ))" 2v5, = [M : Ng.

it
Hence —7(s{q|En(q))) = 7(glog[M : Nlg) = 7(¢q)log[M : N]. Since ¢ € M is a
projection such that Enina(g) = 7(g)1a, it follows from lemma 6 that we have

51, then we have the following:

S(MIN) > —;%l;)-r(s(qmm)» = log[M : N]

Therefore we have S(M|N)=log[M: N]. Next we consider the case when [M: N] =
= oo. If N' 0 M has a completely nonatomic part, then by [16: Theorem 6] we have
S(M|N) = o0, so that S(M|N) = log[M : N]. '

Next assume that N’ N M is atomic and {fi}» are atoms in N' N M such that
ka =1

If {fi}r = {fo,- .-, fm} is a finite set, then there exists some projection f € {fi}x
such that [M; : Ny] = co. . Then for any ¢ > 0 there exists a projection e € My
such that En,(e) € €. Thus En(e) = En,(e) < ¢ and Ennp(e) = T(fe'f)

r(f )
= r(e)r(f)~1 f. Then we have

SMIN) > = r(e) logl|Ew(e)l| = ~r(H)log | Ex(@)] > (7 loge™
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Next let {fi}& is an infinite set with [My : Ni] < oo for all k. Put g, = Z f-

Since (Ng, Y N M,, = (N'N M), is finite dimensional by [15: Lemma 2. 1] and
[Mg,: N, 1< o00,it fol]ows from the above discussion that S(M,, |N,, ) =log[M,,: Ng.].
Since

0=[M :N])~! 2 limsup[M,, : N,.]7! > liminf[M,, : N,,]7" 2 0
we have the follows:

log[M : N] > S(M|N) 2 limsup S(M,, |N,,) = limsuplog[M,, : N, ] =
= limsup - log [M,, : N,,]”! = —liminflog[M,, : N;,]™" =
= ~logliminf [M,, : N,,]™" = .

By combining Theorem 8 and H(M|N) £ log[M : N], we shall denote the rela-
tion between the Connes-Stgrmer relative entropy H(M|N) and the relative entropy
S(M|N) as follows:

COROLLARY 9. If M O N are factors of type I, then

H(M|N) < S(M|N).

4. COMPUTATION OF S FOR FINITE DIMENSIONAL ALGEBRAS

In this section we shall calculate the relative entropy S(M|N) of a finite dimen-
sional von Neumann algebra M relative to subalgebra N in terms of the Pimsner and
Popa’s generalized index.

Let M will be a finite dimensional von Neumann algebra with faithful trace

7, 7(1) = 1,and N C M a von Neumann subalgebra. Thus M = @ M, N= @ N;
el keK
where M is the algebra of m; x m; matrices, Nj the algebra of ny x ny matrices and

the set of indices L and K are finite. We denote by A = (ai)rek tez the embedding
" matrix of N in M and by t; respectively s; the traces of the minimal projections in
M; respectively Ni. Thus if m = (my), n = (ng), t = (&1), s = (sz) are column
vectors, then At = s, A'n = m (A? is the transpose of A). We denote by e* and f'
the minimal central projections in N and respectively M (e* is the support of Ny in
N and f! the support of M; in M).
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From now on the inclusion N C M will be described in the following way: For
each k € K, | € L we fix a finite set Ay of cardinal ap; and identify [1,my] with
U(ext x [1, ng], where the intervals are integer valued and the A are supposed to be
%

disjoint. According to the above decomposition we shall fix a system of martix units
for M denoted by (f(’a’i)(b‘j)), {€L, a€ Ag g, bE Ay, 1<iCmyg,, 1 <7< Ny
and a system of matrix units (efj), ke K, 1<1i,j<n;for N, and express the
inclusion N C M by the formula

= . faiir

lel a€Ax,

In terms of these matrix units the minimal projections in N and M respectively,
i.e. e* respectively f', have the form:

F=3230 2 fanms

EEK i=1 a€Ax,

Note also that the conditional expectation En acts as follows:

1}
En(fla o) = ;;ef:"

k being the index such that a € Az,
Br(flepp) =0 if a#b.

We shall denote by f!, e € Ay, the minimal projections in N’ N M defined by:

Ny
f}z = Zf(]a,a')(a,i) for a € Ak].

=1

Pimsner and Popa defined in [13], [14] the local generalized index A;(M, N) for
1 € L such that

M(M,N) =max{\ > 0: En(z) > Az,z € Mf} ,}.

They showed that

-1
b .
M(M, N) = (Z kwk) y b= mm{ak;,nk}

b
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and
AM,N)"t = max X (M, Ny

Now we shall calculate the relative entropy S(M|N) for finite dimensional von
Neumann algebras M O N in terms of the generalized index A;(M, N).

THEOREM 10,
S(MIN) =Y mitrlog a(M,N)™".
!

To prove Theorem, we need some preliminaries.

ProrosiTioN 11.

SMINY S mutrlog (M, N) ™
I

Proof. It is sufficient to consider partitions of the unity in M consisting of positive
multiples of miminal projections in some M;. Let {z:1}ies e be such a partion and
write #;; = ¢ypy with ¢;; € Ry and p;; a minimal projection in M.

Using Zx,-;': f' and T(pi) = 41, one gets Ec,-;t; = myt;. Since En(py) 2

R i
= Mi(M, N)p;; for each ! € L, it follows from the property of relative operator entropy
that

(log (M, N))pir < s(pir| En(pir))-

Therefore we have the follows:

> =r(s(zalEn(za))) = p_ —ear(s(pul Enlpa))) €
i i

< Z —c,-;‘r(pu) log .)\J(M, N) = Zc;;t; log Ai(M, N)‘l =
] i1

- Z myt; logA;(M, N)il.
1

|

To prove Theorem is devoted to the proof of the opposite inequality, by exhibiting
a partition of the unity in M with entropy equal to the right hand side in Theorem.

Now, we shall compute the relative operator entropy for the projection with the
following properties:

For each {, let p be a minimal projection in M;. For each &, if €* f' # 0, then there
exist nonnegative nunbers ay € Ry such that pef f¥p = ayp. Put ¢ = a—kekf‘pekf'.
By easy calculation and 7(gx) = 7(p), it follows that g; is 2 minimal projection smaller
than e* 7.
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Also, if i flgr # 0, then there exist nonnegative numbers ur. € Ry such that

Gk fEqr = UkaQr.

Suppose that the value uy, does not depend on a € Ay, that is, up = uz, for
a € Ag;. Then it follows that there exist minimal projections r¥ in Ne¥ such that
Flarft = uprk f1. Moreover suppose that r¥ is an orthogonal projection for a € Ay

LEMMA 12. Let the situation be as above. Then
s(plEn(p)) = ~ {log} —=
PILONP g - urts P

Proof. It follows that

upts &

EN(q’ﬂ)= Z EN(fiQkf;)z Z ukrﬁEN(f;)z “';—ra~
a€Ay; a€Axi a€An k

Since p is a minimal projection in Mj, it follows that gxe® f1€ = e* f'¢ and rl fle* fi¢ =

= flefflefork € K, a € Ay. Since rk is orthogonal for a € A, Z'rﬁ is projection.

a

1
Let (Z rﬁ) be an orthogonal complement of Z rﬁ. For k € K, we have
a a
p (Z 9‘5) p=p (Z ri’) Fffp=>p (Z rﬁ) flekflp =
a a al a

—p(zr"fa) f'lp= p(Zfa) F'p=pe* flp = arp.

L
Also, P(Z r';) p = 0. Hence we have

-1
P(En(p)+€)'p=p (Z En(e* fipet 1) + e) p=
-1
:p(Zme(q::)ﬁ-s) p= P(Zzaku—kir"+e) p=
k t -1 Ao
(9% _
=p 2};(——‘—::1-?'6) za:rf-i-e l(grﬁ) p=

arurl; ) -1 ( Sk )
-y wr— (S2)
( — urhi
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as € — (. Therefore we have

s(p|En(p)) = lim —p(log p(En(p) +£) 7' p)p =

] Sk J Sk
i - _ z :__ . [}
—-p (]og (Ek _uktz) p) p= (log 4 ukt,) r

Proof of' Theorem 10. In *[13 Theorem 6.2], Pimsner and Popa showed that there

(1) zi1 = capar, i € R,., [ ERLE mlmmal projection in M;,

(2) e*zief = cu(nragi/m)ge with g a minimal projection in M;.

(3) gt flqim = E:—q“k where by; = min{ag, ng}.

(4) " eats = myt; and (gik) = tu.

Then’ {pit}ier,ier satisfies the condition in Lemma 12. Therefore by Lemma 12

we have

> —r(s(zalEn(za))) = Y —eur(s(pal Exlpa))) =

i il

o b .
= E —ear(pi1) (Iog E ktlzsk) = E cirty log A;(M,N) I =
] k

]

= Zm;t; log)q(M, N)_l.
i
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