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1. INTRODUCTION

Lel H be a complex, separable, infinite dimensional Hilbert space, and let B(H)
be the algebra of all bounded, linear operators on H. In 1988, Scott Brown and
Bernard Chevreau proved the following beautiful theorem about reflexivity of op-
erators in B(H) (cf. [6]). (For a review of pertinent notation and terminology, see
below.)

THEOREM 1. Fuvery absoluiely conlinuous contraction in B(H) having an
isomelric H®-functional calculus is reflexive.

This theorem has been used several times in subsequent work to obtain re-
flexivity theorems for operators (see [12], [16]), and an outline of the proof was
given in [6] and [9)].

Unfortunately, a complete proof of this theorem has never been published, to
the author’s knowledge. Thus the purpose of this note is to give such a complete
proof of Theorem 1. The main contributions of the present author are a new

Lemma 3 and a new Lemma 5.
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2. NOTATION AND TERMINOLOGY

We begin by reviewing some notation and terminology for the convenience of the
reader. If T is in B(M) and M is a (closed) subspace of H, then Tx; denotes
the compression of T to M, i.e., Tas = PT|M, where Py denotes the orthog-
onal projection from H onto M. Also the spectrum of T, the point spectrum
of T, the essential spectrum of T, and the resolvent set of T will be denoted by
o(T), op(T), 6.(T), and p(T), respectively.

1t is well known (cf. [13]) that B(H) is the dual space of Banach space C;(H)
of trace-class operators on M equipped with the trace-norm |- |1, and the duality
is implemented by the bilinear form (T, L) = trace(T'L), T € B(H), L € C:(H).
If T is an operator in B(H), Ar will denote the dual algebra generated by T, (i.e.,
the smallest weak*-closed algebra containing T' and the identity operator on H),
Qr (= Ci/*+ Ar) the natural predual of Ay, and Wy the smallest weak operator
topology (WOT) closed subalgebra of B(H) containing T and the identity operator
on H. The elements of Qr will be denoted by [L]r when L € C;(H). As usual
Lat{T') denotes the lattice of invariant subspaces of 7", Alg Lat(T') = {X € B(H) :
Lat(T") C Lat(X)}, and T is reflexive if Wp = AlgLat(T).

Let N denote the set of positive integers, D the open unit disc in C, and
T = 8D. If E is a measurable subset of T (with respect to normalized Lebesgue
measure m on T), aset A C D is said to be dominating for E if almost every point
of E is a nontangential limit of a sequence of points from A, and the set of all
nontangential limits of A on T will be denoted by NTL(A). For any 1 < p < oo,
the spaces LP(:= LP(T)) and HP(:= HP(T)) are the usual Lebesgue and Hardy
function spaces on T, relative to the measure m, and if & is a function in H®, the
analytic extension of h to D will be denoted again by h.

If 7' is an absolutely continuous contraction in B(H), the H*-functional
calculus (cf. [4], [15]) @7 of T is a weak*-continuous, norm decreasing, algebra
homomorphism of H® onto a weak*-dense subalgebra of Ap, and there exists a
bounded, linear, one-to-one map o7 : Qp — L!/H} such that o} = ®r. If his
a function in H®, &(h) will be denoted by A(T), and if f is in L, the image of
f under the natural projection from L' onto L!/Hg will be denoted by [f]i1/m:-
If U in B(X) is the (absolutely continuous) minimal unitary dilation of T and £
is the spectral measure of U, for any vectors z and y in H, the Radom-Nykodym
derivative of the complex measure {E(-)z,y) on T with respect to m is denoted by
2"y and it is well known (cf [4]) that er{z @ ¥l)r) = [:cq-‘y]l_x/"}’, where z ® ¥
denotes the usual rank one operator in B(}). A simple computation yields that

the n'" Fourier coefficient of the function ¢ y is (T "z,y) if n is negative and
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(T*"z,y) if n is nonnegative, so, in particular the sequence {T}, converges to
0 in the wot.
Recall that the minimal isometric dilation Uy of T'is the restriction of U to

the invariant subspace K4 = \/ U"H, and K4 can be decomposed as K =. &R,
n=0
corresponding to the Wold decomposition of Uy as Uy = S. @ R, where S, is a

unilateral shift operator and R is unitary. Similarly, if K. = Y U*"H, then
n20
B := U, is the minimal coisometric extension of T', and the Wold decomposition

of B* yields K. = ®R,, B* = S @ R}, where S is a unilateral shift operator and
R, is unitary. The orthogonal projections from K4 onto , and R will be denoted
by Q. and A, and similarly, the orthogonal projections from K. onto and R. by
Q and A..

The unitary operators R and R. being absolutely continuous, there exist
measurable subsets £ and £, of T, such that mg, myz, (defined by mg(E) =
m(E N L) for any measurable subset E of T, and similarly for my, ) are scalar
spectral measures for R and R., respectively.

If M is a semi-invariant subspace for 7', the minimal unitary dilation of T
(acting on K*™) will be denoted by U M The meaning of the notation K¢ :=:=
(KM)y, KM = (KM)., etc. is now clear.

In what follows, the concept of essential set will be needed so we recall the
. definition here (cf. [8]). If T is an absolutely continuous contraction, a subset E
of T is essential for T if either it has Lebesgue measure 0, or for any function h
in H®, ||A(T)|| = ||hl|e where {|h|lg = ||h|El|oo. It is known (cf. [8]) that for T'
as above there exists a maximal (up to a set of measure 0) essential set Ex for T
such that if E is any essential set for 7' then m(E \ Er) = 0. Let us also recall
(cf. [8], Lemma 3.5), that

(1) NTL(¢(T) D) C Er.

As usual the classs A = A(K) (cf. [4]) will denote the set of all absolutely
continuous contractions T in B(H) for which ®7 is an isometry. In this case ®p is
a weak *-homeomorphism of H® onto Ar (cf. [7]), and @7 is an isometry of Qp

onto L!/H}. For any f in LY, 7' ([f]L1/my) is denoted by [flr. If X € D and Py
1—

o ,\e“[,) we write

is the associated Poisson kernel on T (i.e., PA(t) :=

[Calr = o7  ([PAlLym2),
and it is easy to check that for any function h in H*,

(R(T), [Calr} = h(}).
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For T in A, it is known (cf. [1], [8]) that for any [L]7 in Q7 and for any € > 0,
there exist vectors 2 and I in H such that

(Lr =[z@ylr, lzllliyll < (1 + )Lzl

Furthermore, the class A; x, = A} x,(H) is the set of all contractions T in
A such that for any sequence {[Ln)r}S%, in Qf there exist z and {y,}5%, in H
such that [z ® yn]r = [LnlT, n € N, and by duality one may define the class
Rxoi = Agy1(H) to be the set of all contractions in B(H) such that 7" € Aj y,.

Let us also recall that if T is a contraction in A, M is a semi-invariant
subspace for T, and 4 € [0,1), then &£ (A7, M) (£)(Ar) if M = H) denotes the
set of all [L]7 in Or for which there exist sequences {z,}5%;, {ya}5%, in the unit
ball of M such that

() T l{Llr ~ 20 ® unrl] < 0, and

(1) {zn}5%, converges weakly to 0, and for any w € M, ||[w® ya]r| — 0.
Similarly one defines £ (A7, M) (£5(Ar) if M = M) by changing (ii) in the
definition above to

(1)’ {yn}52, converges weakly to 0, and for any w € M, ||[z, @ w]z|| — 0.
Note that if A € D and [Ca]r € E{(Ar), it is known that in the definitions above
one may take z, = y, and ||z,|| = 1 for any n € N (<f. [4]).

If A(6, M, T) denotes the set of all A in D for which there exist z and y in
the unit ball of M such that ||[[Ci]lr — [z ® y}r]] < 8, let us recall that (cf. [8],
Lemma 3.5)

(2) NTL(A(8, M,T)) C Er,,.

3. PROOF OF THEOREM 1

The proof will follow the steps mentioned in [6]. From now on we fix a complex,
separable, infinite dimensional Hilbert space #, a contraction 7" in A(H) and an
operator A in AlgLat(T). Since Ar = {h{(T) : A € H®} and Ar C Wr C
Alg Lat(T) (actually for T' € A, Ay = Wr; cf. [4], Proposition 2.09), in order to
show that T is reflexive it is sufficient to produce a function g in H* such that

g(T) = A, or, equivalently,

(3) (9(T)z,y) = (Az,y}, z,y€H.
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If T € Ap xo URg,,1, then T is reflexive (¢f. [10], Theorem 6.2), so in what follows
we may and do assume that

(4) T ¢ Apx, URg,1-

The next three lemmas will produce a function g in H® such that (3) holds
for all vectors z and y for which [z ® y]r is in £ (see the definition below).

Let us recall the following 1&mma from [8], which is the main ingredient in
the definition of g.

LEMMA 2. Let A €D.

(1) If A € 0. (TYU p(T), then [Calr € EL(AT) N ES(AT).

(i1) If M. is an invariant subspace for T* and A is a limit point of 0p(Tha, ),
then [CA]T € S(X)(.AT)

Define now ) = {A € D : [C)] & E}(Ar)} and Q = Q1 \0,(T). Since £5(Ar)
is closed and the function A — [C]r is continuous on D, it follows that Q; is open.
If Q) is empty, T is in Ay,,1 (cf. [10}, Theorem 6.2), which contradicts (4). Thus
2, is not empty. If A € 2; No,(T), by Lemma 2 (ii), A is isolated in o,(T'), so
Q is open and dense in ;. Let us also note that by Lemma 2 any A in Q is in
(pe(T) N o(T)) \ 0»(T), hence ker(X — T*) is not zero. Therefore for any X in Q
there exists a complex number m such that

A;er(:—T‘) = g(’\)‘[ker(x—f(“)‘

The first step in showing that § is the restriction of an H_function to  is the
following lemma (cf. [6]).

LEMMA 3. Let A be in Q, and lel = and y be veclors in M such that [C)]r =
[t ® ylr. Then (Az,y) = G(A).

Proof. By a standard argument one may suppose that £ = y, and we set

M=\ T"z. Since (A—-T) is a one-to-one Fredholm operator and M is invariant
n20
for T, (A — Ta) is a one-to-one Fredholm operator, and since [Cilr = [z ® z]7,

it follows that T,z = Az and dim(ker(X — T%)) = 1, 50 i(A — Tag) = —1. Since
A is in AlgLat(T), it follows that A(A ~ T)M C (A — T)M, hence Aj,z is in
ker(A — T34), and thus A%,z = az for some complex number a. Now

(2, Az) = (2, Amz) = (A, 2) = {0z, 2) = alzl]’ = a,
SO

() Az = {z, Az)z.
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(i) If z is not orthogonal to ker(X — T*), there exists u in ker(A — T*) such
that (z,u) ;é 0, and using the fact that M is invariant for T, we obtain that
Ti Prmu = /\PMu Hence Papqu is in ker(A — Ta), so Pyu = o'z for some
complex number o', and the same computations as above yield ¢’ = {u, z), so

Ppu = {u,z)z.

Therefore
(Az,z) = <Az, (u—,l—)PMu> = rlu_)(A:’PMu)

LAz ) = ——(z, A = — )(x,g“i(_»\)u) = §(A).

(x u) ( (v (z,u

(i) If z is orthogonal to ker(A —T*), we assert that for any sequence {A,}%2,
in © such that A, — A and A, # X for every n, then z is not orthogonal to

V ker(X, — T*). Indeed, assume that 2 is orthogonal to \/ ker(A, — T*). Since
nz2l nzl

M =\ T"z, it follows that M is orthogonal to \/ ker(h, — T*), so ker(h, —
n20 nz0

T*) = ker(A, — 'mas) for every n, and since A, — A, without loss of generality
we may assume that i(A —T) = i(A, —T) and ¢(A — Tap) = i(An — Tq) = —1 for
every n. Hence for every n € N,
i(An = T) = — dim(ker(Ag — T™)) = i(An — Tt) + i(An — Taqs)
= —1 4 dim(ker(As — Taqs)) — dim(ker(M, — Thya )
= —1+ dim(ker(Ay — Ty )) — dim(ker(A, — T*)),
from which it follows that for any n € N, dim(ker(A, — Thy+)) = 1. Hence A €€
(6p(Tasr))', and by Lemma 2 (ii) we get [Ch]r € £5(Ar), which is a contradiction.
Thus we may find a sequence {},}2%, in Q converging to A for each n € N
a vector z,, in ker(),, — T*) such that ||z} = 1 and {z,z,) # 0.
We show now that §(A,) — §(2). We have
IN = T°YI = Pryzgey)@all = I3 = T")zall
=[|(A = An)znll = [A = Aal.
from which it follows that (A—T"*)(I— Prer(r- 7+) Yo, ~ 0,80 (I- Prec(r-7 )):cn —0
since (A — T*) is bounded from below on (ker(/\ T*))*. Moreover,

G(An) = (Azn,z0) = (AI’“Pker(/\ T‘)x") + {Azn, (I - Prer(x-1- ))zn)
= (zn, A7 Prer(x-r+)Zn n) + (Azn, (I - Prex(x-1- ))z")
= §O0)2n, Prec(rre)n) + (AZn, (I = Pyeyz_1+))2n)
= FOPreez_royZnll® + (AZn, (I = Pey_g+))%n),
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(6) §(An) — §(3).
To conclude the proof we set, for each positive integer n,

Uy = Paaza_
(7) [|Prezn II1

Yn = (I — Prerir- 7yt = Un — {un, z)z.

2n = PoGiore < tn = {un, z)z,

Taking into account that M is invariant for T, T" z,, = Xﬂxn, and A"z,
we obtain that

(8) Thitin = A ttn, Ajtn = §(An)ttn.
The same computations as above yield 3, — 0, or equivalently,
llyall = (1 = [{un, 2)[*)"/* — 0.

By (8), (5), and (7), we obtain

g(A ) (A.Munuun) {AMumzﬂ) + (AMUn.,yn>
= (z, un){(un, AT} + {Artun, ¥n)
I(uﬂi )I (A:C,.’L‘)-*— (AM“myn):
(9) g(An) — (Az, 2).

By (6) and (9) we get §(A) = {Az, z) and the proof is complete. 1§

261

= g()‘n)mm

Define now £q to be the linear span in Qp of the set {[Ci]r : A € Q}. Taking
into account that Q% = Ap, if h is an H®-function such that, for every {L]r in
Ea, (M), [L]r) = 0, it follows that h(A) = 0 for any X in £, so k is identically

zero. Hence &g is dense in @r. Furthermore, define for any A € §2,

pa([Crlr) = §(A),
[}

and note that ¢, can be extended by linearity to all of £n since {[{Calr}rep is

linearly independent in Qr.

The next lemma comes from [6] and shows that § is the restriction of an

H%-function to €.



262 RADU GADIDOV

LEMMA 4. If z and y are veclors in H such thet [x ® y]r s in Eq, then

pa(lz ® ylr) = (Az,y).

In particular g4 1s bounded on £q.

By Lemma 4, ¢4 can be uniquely extended to a bounded linear functional
on Qr, and using again the fact that Q7 = Ar, one gets that there exists an
H*-function g such that for any vectors z and y in H for which [z ® y}r is in £q,
{9(T), [z ®@ylr) == wa([z ®y)r), or equivalently, (3) is true for any vectors z and
y such that [z ® y]r €€ &q.

To complete the proof of Theorem 1 we need to show that (3) is true for any
vectors # and y in M, and this it will be done in the next few lemmas.

Define

(10) Hy=\ kee(A=T"), Ho=H{.
AEN

For any vector =z in H we will write the decomposition of z relative to Ho and H;
as ¢ = z° 4 z!.

REMARK. By Lemma 4, it follows that (3) is true for any vectors z € H and
y € H,, so the proof of Theorem 1 will be complete once we show that (3) is also

true for any vectors z € H, y € Hp.

I\fote that by the definition of #,, T3, € Cq, and hence if m(ET;“) =1,
then T}, € A, so T}, € Ax,;1 (cf. [3], Theorem 2, and [10], Theorem 6.2).
Then obviously T* € Ay,,1, which contradicts (4). Hence m(ET;n) < 1 and the

following lemma shows that Er; has positive Lebesgue measure.
1

LEMMA 5. For any 6 € (0,1) the set {A € D : [Ci]r- € &;(Ar-,Ho)}
dominates T\ ET;h .

Proof. We need to show that T\Er; CNTL{A€D: [Co)r- € E5(AT-, Ho)},
or equivalently, that T\ NTL({X € D : [Ci]r- € &;(Ar+, Ho)}) is essential for
Ty, . Since T\NTL{A € D : [Chlr- € £}(Ar-,Ho)} C NTLB\{A €D : [Cilr- €
&5 (Ape, Ho)}), it suffices to show that NTL(D\ {} € D : [Cy]r. € & (A7, Ho)})
is essential for T3, . We assert that

(11) D\ {XeD:[Cilr- € E(Ar+, Ha)} C o(T5, UA((1 — 6%)*/2, 1y, T")
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which completes the proof since

NTLD\ {) € D : [Calr- € & (Ar-, Ho)}) C
C NTL(o(T}, ) UA((L - 62)Y2 3, T))
= NTL(o(T3,)) UNTL(A((1 - 6*)*/%, H,, T*)) C Ery,

3
1

where the last inclusion follows from (1) and (2).

To prove (11) let us first note that if A € (i, then X € o(T4;,) since Q is
dense in Q, and if y is in Q, 7 € ap(TH, ) C o(T3,). LA €D\ (o(TF, ) UA((1 -
§2)1/2,H,,T*)) then ¢ Q80 ([Cidr € EN A7), and hence [Ch]p+ € EF(Ar-).
Therefore there exists a sequence {#,}5%, of unit vectors in H such that

I[CA7e = [zn ® zalrel| = 0, [[[Zn @ w7-|| =0 for any w €.

Without loss of generality we may suppose that & = lim [|z}]| exists, and since
7n—00
A ¢ A((1 — 62)/2, 1y, T*), it follows that for any positive integer =,

(1= 62 < |{Colre — [=) @ zp]r-1l = I[Co)r — [zg, ® za]7e | <
< Clre = [2n ® Zalr-|| + |25 ® Talz- |} < [[[Clz+ — [20 ® 2n]7-|| + ll2ll.
From the above relation it follows that (1 — 6?)!/2 € @, and since for any n € N,

[Calr+ — [zn ® 20+l = H[Calrs = l|za ® 23)1-||
< l[Calrs = [2a ® zalr- [ + |22 ® )7
< IClr- = (20 ® Zalr-{l + [zl

we obtain
Tim (I[Ch)r+ — [0 ® zplr- || < Jim [lz3]| = (1~ a®)'/? <6,
Moreover, for any w in Ho,
lI(z2 ® wlr-|| = ll[zn ® wlr-1l = 0,

so [Ch]re € E5(Ap-,Ho), and the proof is complete. &

As an application of the previous lemma we get the following.
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COROLLARY 6. The set Ers, kas positive Lebesgue measure.
1

Proof. We will show that if m(ET;ﬂ) = 0, then T, is in A. Once we have
done this, the proof of the corollary is completed as follows. For any vectors z?, y°
in Mo,

=" ® ¥°kr- Il = lI[=° ® ¥°);, I,

so for every 6 € (0,1),
{reD: [C,\}T;{o € EE(AT&U)} ={XeD:[Ci]r € £ (Ar-, Ho)}.

By (12), for any 8 € (0,1), NTL(D\{} € D : [C\]r € £;( A7+, H0)}) has Lebesgue
measure 0, so {A € D : [Ch]r € & (A7, Ho)}) dominates D, which implies that
T3, is in Ay x, (cf. [10]). Then T* is in Ay x, and this contradicts (4).

Now we show that if m(ET;ﬁ) = 0, then T3, is in A. For this, let h be
an H®-function, Ej be a set of Lebesgue measure 0 such that for every e ¢ E,
the limit rﬁl‘{l‘ h(re'') = h(e'') exists, and let {#,}5%, be a sequence of positive
numbers converging to 0. Again by (12), for any n € N, NTL(D\ {) € D :
[Calr- € & _(Ar+,Ho)}) has Lebesgue measure 0, so I' := Ex U Ej NTL(D\{X €
D : [C]r- € & (Ar+,Ho)}) has Lebesgue measure 0. If ei:}; not in I’ and
{rr}$2, is a sequence of positive numbers increasing to 1, then for each n € N,
rie® @ D\ {A € D : [Chlr+ € & (Ap-,Ho)} for sufficiently large k (otherwise e't
isin NTLD \{} € D : [Cslr- € &, (Ar+,Ho)}), 50 [Cryelre € &, (Are,Ho) if
k is sufficiently large. For such k let {z) ,}52;, {30 £ 1521 be sequences in the unit
ball of Hg such that pl_i‘To”[Cue“]T' — [0 ® 9 )7+ |l < 6. Then

[A(ree')| < |h(ree) = (h(T5,)zp ks Y )| + 10 T50 )20 k. Up 2|

< |h(ree'') — (AT )zp &, vp )+ I1R(T3 )|
< [Allooll{Cryeitkrs = [2p 1 ® 23 el + [1R(T3, )N,

S0
h(rre'*) < l1lleo lim [Cryeie]r ~[2p k@25 kI 4+ 1A(T5,)| < Onl[Rlloo+IA(T7 -

Since h(rxe't) — h(e't), it follows that |h(e't) < Bnllh|loo + [|R(T5,)l], and taking
into agcount the fact that 6, — 0, we get [A(e'*)| < ||~(Ty, )|l which proves the
assertion. B

The following theorem is an easy adaptation of Theorem 10 in [2].
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THEOREM 8. Let T be an absolulely continuous contraction in B(M). IfT
is an essential set for T with possitive Lebesgue measure, then for any function f
in the unit ball of L}(T'), there ezist sequences {zn}3%,, {¥n}32, of vectors in the
unit ball of H converging weakly to 0 such that ||f — z,, - ynl1 — 0.

Proof. Tt is known (cf. [3]) that there exists a Hilbert space D such that if
U is the unitary operator of multiplication by the independent variable on L?(D),
then T is unitarily equivalent to the compression of U to some semi-invariant
subspace H such that L®(D)YNH is dense in H. So we may assume that T = Us,
and let us note that Assumption 1 in [2] holds for any subset & of I' with positive
Lebesgue measure. Indeed, given such a subset o, a positive number ¢, and a
finite sequence {h,}Y., of functions in H, we want to find an essentially bounded
function z in H such that

(i) (z,hn) =0, n=12,...,N,

(ii) lIxmyozll < ellxo=(l-
The proof of this is exactly the same as the proof of Corollary 10 in [3]; namely, let
P be the orthogonal projection from H onto (span{h,}~_,)*, let § > 0 such that
6/(1 — 26) < €%, and let u be any H®-function such that |u(e)| = 1 for almost
every e € o and |u(e®)] = 6!/2 for almost every e € T\ o. Then [lull, = [|u/loo,
so {lu(T)]| = ||w{T)}|e (cf. [7], Proposition 3.2). Since 1 — P is a finite dimensional
projection, [[u(T)|| = [{u(T)le = |u(T)P}||, and L®(D) N PH is dense in PH, so
one can find a function z in L(D) N PH with [|z[| = 1 and {ju(T)z|| > (1 - §)1/2.
Obviously z satisfies (i}, and since |luz]| = |Ju(U)2]] 2 ||[w(T)z|| > (1 — §)/2, by
the choice of 6 it follows that z also satisfies (ii).

Now Proposition 2-9 in [2] can be carried out, with the minor modification
that the sets o considered in [2] must be subsets of T. 8

In order to complete the proof of Theorem 1, let us recall the folowing two
lemmas (cf. [8}, Lemma 2.3 and Lemma 2.4).

LEMMA 9. Let T € A be a contraction, Ho be a semi-invariant subspace
for T such thal Ty, is nol a unitary operator, and AJ°Ho = R¥o. Then given
y°,2% € Ho, [K]r € Baco&s(Ar, Ho), 8 € (0,1), and 0 < B < &, there exist
{28}, (L83, {42}, {¥89)3%,, sequences of vectors in Ho such that

(i) y® @ 2% + (K] — [up @ 2]]7l] < 66,
(i) llva ® ¥°ll < 362, Jlqll < (121 + 672,

(i) {82}, converges weakly 1o 0, y3 — y° = ud + 43,
fleal|l — 0, ||[uf ® wr]| =0, weH.
The dual of the ebove lemma is the following.
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LEmMA 10. Let T € A be a coniraction, H; be a semi-invarianl subspace
for T such that Ty, is not unilary operator, and AM1H; = R™ . Then given
y',z! € Hy, [Klr € BacoEl(Ar,H1), 0 € (0,1), and 0 < f < 6, there exist
{zh)o2y, {ul}ssy, {@32%:, {WL)2,, sequences of vectors in My such that

(i) Iy’ ® 1z + [K)r ~ [ya ® z3)r || < 85,
(ii) llzn © 2} < 362, [lghll < |l=*]] + 6172,
Gii) {&L )52, converges weakly 10 0, yl —y' = ul + @}

IQeaL| — 0, [|[w® ublr|| = 0, w € Hy.
The last result needed for the proof of Theorem 1 is the following lemma (¢f
[8], Lemma 6.1), which shows that the approximation scheme in [8] also works for
the deomposition of  as in (10).

LEMMA 11. Let 4° 2% 4!, 2! be vectors in Ho and H, respectively, let [L]7-
€ Qr., and let § be a positive number such thal
[[L)re = ((0° + ') ® (2° + V)i || < 6.
Then there exist §1, 2%, %}, 5} in Mo and My, respectively, such that
N[L)re — (&0 + 1) ® (22 + EDlr- 1l < 6/2,
N9 - 4°Il < 3612, ||&3)] < (l°]} + 8*/2,
8] = 2| < 362, gt < lly*[l + 672,
Proof. Let f in L(T) be such that [fl;. = [L]z. = [(3°+4 , )2 (~0 'V

lflls < &, and define fo := XT\E;, £, h= XE3,, f, 8o = HfoHL.
and ¢ := 6 — (6o + 61)/5. As in 8], the first term to be transformed is

[Lojr- = [4° ® 21+ + [fol .-

For this, there are two cases.
(i) If T3, is unitary, then Ho, H, are reducing for T, and T, is also unitary.
Since T is in A, then obviously

T\ Br;, C%,

so fo € L1(Z). Then by [8], Proposition 2.1, or by [11], Theorem 3.11, there exist
vectors u® and »° in H,, such that

Tr
90 20 4+ fo = (00 + ) OOy <,
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and

1/2 1/2
1l < 20lally’®, 11 < 12+ 1ol

Hence if we define 9 = y° + u°, & = r°, and we take into account that

B ezl =¥’ @2 =0,

we obtain

(13) I[5° ® (=° + 2)z- + [folpe — (67 @ (8] + 2')lre|| < /2 + ¢,
and

(14) N80 — ol < 3672, ||23)| < ||| + 6.

(ii) If T3, is not unitary, let us first note that if B = §* @ R, is the mini-
mal coisometric extension of T* (acting on”~@® ’R..) then the minimal coisometric
extension B of T}, is the compression of B to a *-invariant subspace (H, is
invariant for T'), so for any ho in Ho, [|[AThg|| < ||Asho|, from which it follows
that

(15) 1Qholl < 1Q™ holj.

Let us also remark that if AY°Mo # R, then T}, is in A (cf. [15], Proposi-
tion 2.2.5), and by the proof of Corollary 6, T* € A; x,, which again contradicts
(4). Hence A¥°H, = R}°, and from Lemma 6 and Lemma 1.2 in {5],

[folr. € 80aco{[Chlr- : [Chlr- € &]/4(Ar-, Ho)}-

So we may apply Lemma 9 to T* by taking [K}r- = [fol7., 6 = 6o, and find the
sequences {y0}5%,, {28}%,, {v8}%,{ad}3%, of vectors in Mg such that

(16) i° ® 2%+ + [folpe — 192 ® 20}zl < b0/2,
(17) Il — v°ll < 3657%, 13l < [12°l] + 6%, and

(18)  wa -y’ =ug+ipy, QM@ —0, |lup@ulr-| -0, weH.
Taking into account that ||T*"z|| — 0, it follows that z! is in”, so

(19) (@ ® z']p- = [Qid ® 2]z
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On the other hand, by (15) and (18), [|Q&C|| — 0, so
Qa7 ® ='}r-l| 0.
Then again by (18),
(un + 83) @ =']r-[l = (v — ") ® rllT;Il —0,
so if N is large enough,
(20) liwh — ¥*) @ z']r-ll <e.
If we define ] = ¥, 20 = z%, then by (17),
158 — "Il < 36'/%, 120 < ||=°]| + 8*/2,
and by (16) and (20),

iy’ ® (z° + z"))r- + [folye — (8 ® (25 + 8")]z-|| :
< Y° ® %) + [folr. — [ ® 2)r-ll + (5] - ¥°) ® ']+ || < bo/2+e.

Hence in both cases one may find 0,0, vectos in Ho such that (13) and (14)
hold.

Now we consider the term [Li]p+ = [#} ® £l]r- + [fil;.. Obviously T, is
not unitary, and Rt = 0. We shall prove that [fi};. € 6:E}(Ar-,H;). Once we
show this the proof is completed as follows. By Lemma 10 (applied to T* by taking
(K)r+ = [f1}p. and 6 = §;) we can find sequences {y}},, {z1}12,, {uv}},,
{1} }%%.,; of vectors in #; such that

(21) Hiy' ® z']pe + [filp- — (vl ® m,l,]T'H < 6,/2,
(22) leh — =l < 36177, [lwill < |lo*)l + 6172,
and

{21}, converges weakly to 0, =z} —z' = ul + @},

23
@3 IR 2] =0, [wdullrll—0, weH.
Since for any positive integer n,zl,z! € H; C,

82 ® (2 — =" || = QK ® (25 — ="z~ I
= HQH ® (2 — 251l = QR & (=5 — 2")]5.1l.
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Hence,

(24) IR ® (25 — )z || = I1QF ® (21 — 2" )]zell = 0

since {a) — 2192, converges weakly to 0 and §* € Cy (cf. [7]).
Thus if M is large enough, by (23) and (24) it follows that

(25) I8 @ (2l = 2" )] || < e
Defining i} = z}m gi = y}lrf' by (22)
51~ 2| < 36,2, (18] < llg*|l + 6,72,

and by (21) and (25),

M@ + o) @ ='lrell + [filpe — [ + 51) @ 23] ||
(26) <y ® 2r- + (Al — (5 @ Elr-ll + |[5] ® (] — =")]r- |
<& /2+e¢. :

Putting together (13) and (26) we obtain
I[Llre = (3 + 31) ® (#] + E)r-|| < 80/2+61/2+ 26 < 6.

Now we prove that [fi]p. € 8:E{(A7-,H1)}. To show this, let us note that
since ET‘ is essential for T3 and m{E7;, ) is not gero (cf. Corollary 6), by
Theorem 8 there exist sequences {z,}52, {y,,.] >, of vectors in the unit ball of

H;, converging weakly to 0, such that

‘ T
1fi — 61(zn "~ yn)|ly — O.

Then
I[filrs — é1lzn ® galr+|| — 0

and since T}, is in Cp, one obtains as in (24) that for any vector w in X,

lw ® yalr-I] = N[Qw © ya) 5t = [Qw ® yals-1l = O,

since $* € Co and {yn }3%, converges weakly to 0. Hence [fi]p. € 8:E5(Ap-, Hy),
and the proof of the lemma is complete. 1
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Proof of Theorem f. By the remark preceeding Lemma 5, it is sufficient to
show that (3) is true for any vectors z € H, y° € Ho. Take first vectors z° and
y° in Ho, let [L]r = [z° ® y°]r be in Qr, and let {[z, ® yn]}%%; be a sequence in
&q such that

l[2n @ ynlr ~ [z° @ ")zl = [lyn @ znlre — [¥° ® 2%} || "= 0.

An easy application of Lemma 11 yields the existence of bounded sequences of
vectors {zn}n 1 {yn n=1s {izl};.lnzll {g:;}rolo:h in Ho and Hh respectively, such
that :

[2n @ yn]r = [(2} +21) ® (85 + ¥3 )T,
IZ5] — 0, |72 — °|| — 0.

By passing to subseqgences if necessary, without loss of generality we may assume
that there exist vectors ° in Hg, §' in M, such that {£2}2, converges weakly
to z° and {§.}5%, converges weakly to §'. Then

(9(T)zn, yn) = (g(THE + £), (Fn + 9n)) = (9(TEL, T2 9(T) 25, (Bn + Tn)),
and since ||Z1|} — 0 and {Z]}%%, converges weakly to Z°, it follows that
{9(T)zn, yn) — {9(TIE°, ).

Similarly one obtains

(Azn,yn) — (A2°,4°),
and by Lemma 4 it follows that
(27) (@(T)2°%,4°) = (A2°,5°).
On the other hand,

I(z5 + 22) ® (35 + Ga)lr — [° @ ¥¥lrll — O,

and as above we obtain

°®1']r = [z°® ¥'lr.
Since A € AlgLat(T), it follows that
(28) (Az°,9%) = (42°,4°).
Putting together (27) and (28), we obtain

(29) (Az°, %) = (g(T)=°, ).
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Let us take now any vectors z! € H;, y° € Hp. As above we can find sequences
{20y, {382, {BLY5,, {#h)5%,, of vectors in Ho and H;, respectively, and
vectors % € Ho and §* € My such that {#2}%2, converges weakly to #°, {F1}3%,,
converges weakly to Z°, and

[:c,, ® yﬂ]T = [(:E?, + ﬁflfl) ® (372 + ?3111)]’1‘,
iz — =l =0, [lgn—¢°ll—0.
Then
(9(T)zn,yn) = (9(T)En + &2), (B + 8)) = (9(T)E3, G0} + {o(T)ep, (¥ + Fn))

50
(9(T)2n, ) — (9(TE°,3°) + {o(T)2", (° + 7).

Similarly one obtains
(Azn,yn) — (AZ°,4°) + (A2), (4" + 7))
By Lemma 4, it follows that
(9(T)2°,4°) + (9(T)z", (3° + 7)) = (A5°,¢°) + {42, (v + 7)),
and since §' is in Hy, by (3) and (27) we obtain
(g(T)=",4°) = (Az*, "),

and the proof is complete. 1
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