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ABSTRACT. In this paper we carry on further study of the problem of ap-
proximation of semigroups for both the continuous and the discrete cases
which were considered in ([1], [2]). These problems arise naturally when one
considers the'question of numerical solutions of linear Canchy problems.
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1. INTRODUCTION

In a previous study ([1], [2]) the problem of convergence and approximation of
semigroups of operators was investigated for class (1,A) semigroups, for both the
continuous and the discrete cases. The object of the present paper is to extend that
study to more general classes, namely those of class (0,A) and (A). Specifically, we
shall be concerned with the question of approximation of a continuous semigroup
T(t),t > 0 by means of discrete semigroups (F¥), where {F, : n = 1,2,...} are
bounded operators. This problem, as is well known, has its origin in the subject of
numerical approximations to solutions of initial boundary value problems. It turns
out that the mode and rate of convergence, as well as the information retrieved
concerning properties and characteristics of the solution family of the associated
Cauchy problem, are all governed to a large extent by the stability condition sat-
isfied by the approximating systems. Thus the earlier studies of the problem were
based on a uniform type of stability condition, originally due to Von Neumann. It
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was considered later by P.D. Lax and R.D. Richtmyer, in connection with finite
difference systems, cf.[8], and introduced in operator-semigroup form by H. Trotter
[12], namely

| Fall < Metewrn

where (p,) is a null sequence of positive numbers and M,w are independent of &
and n.

More recent studies (cf. [2], [6]) show that convergence of discrete semigroups
to a continuous one may still hold under weaker stability conditions. We shall
resume this line of investigation in sections 4 and 5 below and show that other
forms of stability conditions are also usable, in which case the limit semigroup
belongs to one of the more general classes (0,A) or (A).

In Section 2 the question of convergence of continuous parameter semigoups
is considered in a rather general setting for both classes (A) and (0,A). Section 3
is concerned with the question of convergence of certain types of Riemann sums to
Lebesgue integrals. This will be useful in the subsequent sections 4,5 when dealing
with the discrete case. These results are then applied to a Cauchy problem of
parabolic type in the sense of Shilov, (cf. [11]).

Let (X, ||-]|) be a Banach space, and (X, ||-||n), 2 sequence of Banach spaces
approximating X in the following sense: There exist bounded linear operators
P, : X — X;,n € N such that for each z € X

lim || Pazlln = |l=il-
N =00
In particular there is a constant 8 > 0 such that:
|Paz|la < Bllzll, ¥n€EN,z€X.

The limit (in a generalized sense) of a sequence of vectors (zn),zn € Xn, is an
element £ € X such that

lim [Pz — znlln = 0.
—00

In this case we write:
limz, = z.

This generalized notion of limit reduces to the ordinary one if we take X, =
X llln = I-l| and P, = I for all n. Next, let A, : Xy — X,,n=1,2,... be linear
operators. The limit (in the generalized sense) of the sequence (A,) is an operator
A in X denoted A = limA, and is defined as follows: z € D(A) and y = Az
if and only if, for all n, P,z € D(A,), and ]’i}'nAnPnz = y. The limit inferior
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A = liminf A, is also an operator in X (possibly multi-valued) that is defined as
follows: = € D(A) and y € Az provided there exists a sequence (z,),zn € D(An),
such that lim T, = z and ]Tr;lAnx,, = y. Finally, we introduce the superior domain
D° of the sequence (An) which we define as follows:

D° = {z € X : there exists asequence (z,), 2 € D(An)such that limz, = =
and sup ||An2Zn||ln < co}.

n

We note here that A is a closed extension of A and that D(A4) C P(A) C D°.

Recall that a semigroup of linear operators on a Banach space X is a mapping
T(t) : (0,00) — L(X) (the space of bounded linear operators on X) satisfying
T(t +s) = T(t)T(s) for all t,s > 0. We assume in this discussion that the
semigroup is a strongly continuous map on {0, o0). The infinitesimal operator of
T(t) is defined as usual by: '

— i h-1 _
Aoz = lim h7(T(h) = De

whenever the limit exists. The closure 4,, when it exists, is called the infinitesimal
generator (i.g.) of T'(t). The type of T'(t), denoted wy, is defined by:

EEETI -1 :
wo = llmtlr;gt In [|T())|-

DEFINITION 1. A semigroup T'(t),t > 0, is of class {A) (cf. Hille & Phillips
[7]) if it satisfies the following:

(i) R[T] = U T(*)X is dense in X,

(i) There e;c?sots an w; > wo such that, for each A with R(A) > wy, there is
an operator R(A) € L(X), with the properties:
(a) )

R(\)z =/0 e MT(t)zdt, =ze€R[T)

(b) ||R())|] is bounded in the half plane R(A) > w, and (¢) Alin:o AR(,\).@- = z for
each z € X.

For such semigroups Ag need not be closed. However, it has a smallest closed
extension denoted by A, which is the infinitesimal generator (i.g.) of T'(2).

DerFINITION 2. T(t) is said to be of class (0,A) if it satisfies the following:

1
/ IT®)z||dt < 00, z€ X,
0

o0 .
lim A [ e MT(t)edt=2, YzeX.

A—o00 0
Every Co semigroup is of class (0,A), and (0,A) semigroups are of class (A).
The converse is not true in general (cf. [7]). For further details and information
on this subject we refer to ({4], [7]).
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2. CONVERGENCE OF (A)-SEMIGROUPS

The main results of this section are Theorem 2.3 and 2.4. They extend the main
result of [1] on (1, A) semigroups and some of the results of [9] on (A) and (0,A)
semigroups. We first state separately a set of conditions that, roughly speaking,
describes the growth condition that would be appropriate for (A) and (0,A) semi-
groups, as well as some type of uniform Abel summability. This also replaces the
commonly used (uniform) bound on the norms in the case of Co semigroups (cf.
[12]). We note here that conditions I; — I, were first used in [9].

Let (Th(f),t > 0) be a sequence of (A)-semigroups defined, respectively, on
the spaces (X,). The i.g. of T,(t) is denoted by A,.

CONDITIONS:
(I1) There exists a non-negative, non-increasing function ¢(t) of negative type
(meaning that, for sufficiently large t, v is bounded by a decreasing exponential),
such that

sup [Ta(t)lln < ¥(2), > 0.
n

(I2) There are positive constants M ,L, and w such that

sup [|[R(}; An)lln € M, R(A) > 0.

(I3) sup |AR(M; An)lln € L, forallA>w,n€eN.
n
(Is) There is a real number yo such that
(o]
sup[ e 1| T, (1) Pazl||n dt = Mz < 00, for z € X.
n Jo

PROPOSITION 2.1. Let (T,(t),t > 0) be a sequence of (A) semigroups sat-
isfying conditions (), (Is). Further, assume that D° and R(Aol — A) are dense
in X for some Mg > w. Then A is a densely defined, single valued operator on X
with p(A) 2 (w, ), such that

lim AR(A; Az =z, z€X.
A—oo
Moreover, for each A > w
lim ||[R(}; An)Pnz — PaR(}; A)z|ln =0, z€X.
N =00

Proof. See ([1], Theorem 1).

We shall use the notation:

Hw) = {3 :R0) >w},
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S(w) = p(A) N H(w).

PROPOSITION 2.2. Suppose that (T,(1),t > 0) satisfy conditions I, I3, and
that D° and R(AoI — A) are dense in X for some Ao > w; then the following
assertions hold:

(a) For each A € S(w),z € X, and sequence (), zn € Xn

limz, =2z = limR(}; An)en = R(X; A)z.

In particular, |[R(), A)|| € M)A > w
(v) H() € o(4)
(c) R(X; AY* = liminf R(X; Ap)t, k2 1,A € H(w)
(d) For each z € D(A?) there exists a sequence (2a), 2n € D(A2), such that
limz, = z, limApz, = Az and l?r?iA?,z,, = A?z; in particular, liminf A2 D

Proof. The proof is similar to that of ([1], Proposition 1).
We now state the main result of this section.

THEOREM 2.3. Let (X,]||-||) be & complez Banach space and (Xn,||-||») &
sequence of Banach spaces approzimating X. For each n € N, let T,(t) be an (A)
semigroup on X, with i.g. Ay salisfying conditions (I1),(I2), and (I3). Then the
following assertions are equivalent:

(i) There ezists a semigroup T(t),t > 0 of class (A), defined on X such that,
forz e X and z, € X,,,n=1,2,3,...

(1) imz, =z = mTa(t)z, = Tz

uniformly on compact subsets of (0,00)
(ii) D° and R(AoI — A) are dense in X for some Mg > w.
In either case, A is the i.g9. of T(t).

Proof. (i) = (ii)
Assume that T'(t) is a semigroup on X of class (A) with i.g. A such that (1)
holds. It suffices to show that

(2 limz, =z = lim R(X; Ap)zn = R(X; A)z

for in this case one can deduce as in ([1], Theorem 2) that A = A, hence (ii)
follows. '

Assume first that z € R[T]. There exists a sequence (£,),zn € R[T.] such
that 1?1‘;13:,, = z. Indeed, there is an so > 0 and an 2 € X, such that 2 = T'(sq)ze.
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Put 2, = Th(s0)Pazo; then z, € R[Ty] and by (1), we find that lim z, = z. Using
this and the relation between resolvent operators and semigroups, (definition (i)-
(a)) we see that

3) [|R(}; An)zn — PaR(A; A)z||n < / e"’\'“Tﬂ(t):cn — P T(1)z), dt
0

Now
sup ||[Tn(t)zn — PaT(t)z||ln < sup [|Ta(t + s0) Pazolln + sup [[PAT(t + s0)zolln
n n n

< Y(t + so)Blizoll + 1T + so)ll |zl
< [#(s0) + v(so))ll=oll8

= a.
Here v(s) = sup ||T'( + s)|| is finite since T(t) is of class (A) and of negative type
>0

(cf. [7]). Hence e *||T(t)zn — PaT(t)z|ln € ae~*, which is integrable over
(0,00). Therefore, by making use of (i) and the dominated convergence theorem,
we obtain

(4) 1lim {[R(}; An)zn — PaR(); A)zln =0

for all z € R[T]. Now the family of operators {R(}; An)Pn — PaR(); A)} is
uniformly bounded. Thus, in view of I and the assumption that R[T] is dense
one concludes that in fact (4) holds for any z € X and any sequence (z4),zn € Xa
satisfying limz, = z.
(i) = @)
We note from Propositions 2.1 and 2.2 that A is a closed operator whose resolvent
R(); A) is bounded in the half plane H(w). Therefore, there exists a v > w such
that .

PR T ALY iy 7242
(1.4) Y({t;2) =z +tAz + ﬁ«[y—im et R(x A)A 33
and Y (t; z) defines a continuous function on ¢ > 0 for each z € D(A?), such that
Y (0; z) = z (cf. [2]). Similarly, since each T,(t) is of class (A) with H(w) C p(An),

¥+ico

(2.4) TG AN w=w+tA,w+ L eMR(z\;An)AiwdA

di 2
o )i 32 w € D(A}).

Now let z € D(A?), and let (z,) be a sequence as given by Proposition 2.2-
(d). Replacing w by z, in (2.A) and passing to the limit in the generalized sense

as n — oo, we find that

(3.4) mTh(t)ze = Y(t;2) = T(t)z,
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uniformly on compacts, (cf. [1], [2]). Next, we note from condition (I;) that
1Y (&2l < lim {75 (t)znlln < $() lim [lzalla = (2)ll=]).

Therefore, by applying the argument of ([2], Theorem A) to the present case, one
concludes that, in fact, (3.A) holds for any £ € X and any sequence of vectors
(zn), 2 € X, satisfying lim T, = z. In particular, T'(¥) has the semigroup prop-
erty, and the resolvent operator of A is related to T(t) (c¢f. [7], Lemma 11.5.2)
via

(4.A) R(); A)z = /Om e MT()zdl, z e D(A?).

It remains to show that T'(2) is of class (A). To verify (i) of Definition 1,
assume to the contrary that R[T] is not dense in X, then there exists z* € X*, z* #
0 such that z*[R[T]] = 0, by (4.A) z*[R(); A)z] = 0, for all z € D(A?), i.e.
z*[D(A®)] = 0. This is a contradiction, since D(A3) is a dense subspace of D(A?)
and hence of X. Next, we note that (ii).(b) and (ii).(c) of the definition are
immediate consequences of Propositions 2.1 and 2.2. For (ii).(a), we let z €
R[T],s > 0 and z € X such that z = T'(s)z, then

IT @)zl = IT(t + )2l| < liminf|Ta(t + ) Pazls
<Pt + 9)ll2ll < $(s)lell < wllzll, ¢ > 0.

So the Laplace transform f0°° e MT(t)z dt exists. As before, we can find a sequence
r, € R[T,] satisfying limz, = z. Hence, limT,(t)z, = T(t)z,t > 0 and by a
Lesbegue convergence argument we find that

p— — (o] (>}
R(X; A)z = lim R(); Ay)zy, = lim/ e M T (1), dt = / e MT(t)zdt.
0 0

THEOREM 2.4. If T,(t) is a semigroup of class (0,A) defined on Xn,n =
1,2,... such that conditions Iy, I, Is and I; hold, then (i} and (ii) of Theorem 2.3
are equivalent. Moreover, T(t) is of class (0,A) and satisfies I4.

Proof. Since (0,A) semigroups are also (A) semigroups, the equivalence of
(i) and (ii) follows from Theorem 2.3. To complete the proof, we show that T'(t)
is of class (0,A). By (1),

IT@)|l < liminf | T (t) Pazln, t>0

and
o0 o0
/ e"\‘||T(t)z||dt</ e M| Ta(t) Pazlln dt = My, ¥n. 8
0 [}
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3. CERTAIN TYPES OF RIEMANN SUMS

It is important for our investigation here to reconsider the question of boundedness

of Riemann sums. This leads one to study also the question of approximation of

Lebesgue integrals by means of Riemann sums. This problem was considered, e.g.,

in [5]. Some results in this direction, due to P. Chernoff, are also quoted in [2].
Consider the function

oa

S(fit) =) _tf(it)

=1
where f(t) is a non-negative function on (0,00). We will be dealing here with
Riemann sums of the type

S(fipn) =Y paflion),
i=1

where (pn) is a null sequence of positive numbers.

PROPOSITION 3.1. Let 0 < f € L*(0,00) be absolutely continuous such that
(14 t)|f'| € L'(0,00). Then the Riemann sums S(f; pn) are uniformly bounded.

Proof. Note that necessarily f(1) — 0 as { — oo, It follows that for all ¢ 2 0
== ro
t

Hence, 0 < f(t) < g(t) = [, |f'(s)l ds. Note also that

fow dt /:o If'(s)|ds = /ooo |f'(s)] ds fo dt
= [Tar@ies <o

Hence, ¢ € L!(0,00). Since this function is decreasing, we see in view of ([2],
Lemma 1) that S(f;pn) € S(g;pn) < K, forallneN. 1

ProposITION 3.2. Let 0 € f € L*(0,00). Then S(f;t) € L'(0,1).
Proof. We note that

1 o 1 )
/OS(f;t)dt:;/n L5(jt) di
=§j—2/0 tf(t)de
e ;
3.6 fj_ltf(t)dt

i=

—
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where C; = z 7. Also note that jC; — 1 as j — 00. (C) = L > Cy > Cs
=j
> ...

Now [ ,f(t)dt <j [I_, f(t)dt. So we have:
% i
/ S(f;t)dt € ZJC,[ f)dt
j=1 -
b
<K 1)dt = J d
-l 1f t {Z/ ft)dt

where K = sup jC; < oo. Thus, § = S(f;-) € L!(0,1), with {|S]: € K||fll:-
1€5 <00
In particular, S(t) < oo for a.e. t € (0,1). W

In some sense, S(f;t) should approach f0°° f(s)ds as ¢ | 0. The following is
a simple result that says that this is true in some ”average” sense.

ProPoOsITION 3.3. Let 0 < f € L'(0,00), then
15%15/ S(f,s)ds—/ F(s)ds.

Proof. For ¢ > 0,

1 7¢ 1 ¢ .
E / S(f;t)dt=;§ /0 1£(jt) dt

Now, given 6 > 0, choose N so that 1 — § < jCj < (1 +8) for j > N. Then

JE

/S(f,t)dt i}C]/ f(z)dz

=1 (F-1)e

je '
16 (z)dz | .
(,< +Z) j f(,-_nef( ) )

iZN



340 NazAr H. ABDELAZIZ AND PauL R. CHERNOFF

The first sum — 0 as ¢ | 0. The second sum satisfies the following inequalities:
o0 o0
(1-5)/ fz)dz < ¥ < (1+5)/ f(z)da.
(N—l)z J?N (N—l)t

As e | 0, the extreme terms converge to (1+4) f0°° f(z)dz. Since § > 0is arbitrary,
we conclude that

limsup / S(f;t)dt < / f(z)dz.
For the reverse inequality, we have
je

/ S(f;t)dt 2 Y (5 - 1)C; f(z)dz.
ji=1

J(i—1)e

Since (j — 1)C; — 1 as j — oo, an argument precisely the same as the foregoing
shows that

1 13 (==}
liminf*/ S(f;t)dt?/ fl(z)dz. ®
€0 € Jo 0
CoOROLLARY 1. Let 0 < f € L(0,00), then for eack ¢ > 0 there is a t, €
(0,¢€) such that the following holds:
oo
lim.S’(f;tt)S/ flz)dz.
610 0

Proof. For each € > 0, we can find a t, € (0,¢) such that

1 €
S(fite) < E/o S(f;t)dt +e.

This can be verified e.g. by a contrapositive argument. The result follows by
passing to the limitase [ 0. &

COROLLARY 2. Let 0 < f,g € L}(0,00), then for each € > 0 there 1s a
te € (0,€) such that:

S(fite) < 3/:° f(s)ds

S(g;te) < 3/000 g(s)ds.

Proof. Assume ]ilr{}clfo‘ S(f;s)ds =L > 0.
Let
Ao ={t:0<t<e S(fit) > 3L},
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Then 1 fe SLu(A,
;/ S(f;t)dt » /S(f t)dt > “( ).
0
Thus LulA
limsup3—‘u(—c)-.<._L
€l0 €
or
limsupM £ ! .
£10 € 3

So if ¢ is sufficiently small, p(A.) € 2¢/5 and therefore u(B,) 2 3¢/5 where
B, ={t:0<t<eS(S;t) < 3L}
Now, suppose similarly ¢ > 0, 11m1~fD (g;8)ds = M > 0. Then u(C;) > 3¢/5

for ¢ sufficiently small, where
C.={t:0<t<¢,S(g;t) <3M}.

So u(B: N Ce) 2 ¢/5. In particular, u(B. N C,.) > 0, so B, N C,; # 0. Therefore,
for ¢ sufficiently small, 3¢,,0 < {, < ¢, with S(f;t.) < 3L and S(g;t.) < 3M. 1

Another useful result in this direction due to P. Chernoff (cf. Corollary 2 in
Section 2, [2]) is the following:

PROPOSITION 3.4. Iff € LY(0,00), then for a.e. t€R

Z flit+ ;)éjowf(s)ds

z+;’,—.—>0

4. DISCRETE APPROXIMATION OF (A)-SEMIGROUPS

In this section, we consider the problem of approximation of (A)-semigroups by
means of discrete semigroups. Aside from being interesting on their own, the
results here have direct consequences in the case of (0,A) semigroups (see Section
5).

In what follows, F, denotes a bounded linear operator on the Banach space
Xn, An the operator defined by A, = p7 (Fn — I),pn > 0,7 €N, A = liminf A4,,,
and D° the superior domain of (A4,).
Finally, to simplify notation we write:

_a jl
Qnst) = 7o (;.) i

fort,pn > 0,n=1,2,... and j a non-negative integer.
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THEOREM 4.1. Let ¥(t,z) be a non-negative mapping on (0,00) x D° that
1s continuous in z for each t, and let v be a non-negative number such that for
each T € D°,e™"'4(t, z) is non-increasing in t (1his also covers the case where for
each z € D°, there is a Ty > 0 such that U(t,z) is non-increasing over (T, 00))
and belongs to L1(0,00) N LP(0,00), for some p > 1. Further, let (p,) be a null
sequence of posilive numbers such that the following condilions are satisfied

(i) D° and R(MoI — A) are dense in X for some Ao > w + 7.

(i1) sup || exp (1An)[ln < o0 for each t > 0.

n

(iii) There are constants L, M > 0, and w 2 0 such that

() NR(A; Anlln € M, R(A) > w,n €N

(6) | "AR(A;An”n £L, AZzwneN.

(iv) For each z € D° and each sequence (zn), zn €D(An), satisfying limz, =
z and sup ||Anznlln < 00, the following holds: .
n

NFEznlln < ¥(pnk,z), k,mneN.

Then A generates an (A)-semigroup T(t),t > 0 on X, such that for any z € D°
and z, € D(An)n = 1,2,... satisfying limz, = z and sup||Anza|ln < o0, we
n

have
) fim i~z = T(t)z,

uniformly on compact t-intervals.

Proof. We shall prove the theorem in the case ¥ = 0. The case ¥ > 0 is
treated as in ([2], Theorem 2). We omit the details for the latter case.

Let Tn(t) = exp (tA,) denote the semigroup generated by A, on the space
Xn. First, we note that (ii) implies (I;), for a proof of this fact we refer e.g. to
[9]. Thus applying Theorem 2.3, we get that A generates an (A)-semigroup T'(t)
on X, such that (1) holds. To establish the limit formula (7), we begin by showing
that for ' € D(A?), there exists a sequence (z},),z,, € Xy, satisfying lim z, =z,
and such that

@®) lim [I(exp (pnknAn) — FA")pln = 0

where for a givent > 0,k, = [t/p,]. Note that ppk, < t,¥n and that p,k, — t as

n — 00.
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Let z’ e’ € D(A?). By Proposition 2. 2t there is a sequence (z'),z!, € D(A2),
such that hmz = z', fim Apzl =z’ and lim Alz! = A%2’. We have the following:

[1(exp (Prkadn) — Fim)zhlla € 3 Qnjlpnka)ll(F3 = Fi»)zplln
j=0
ZQM(Pnk )”(FJ Fy)anlln
=1
+e* (1 - Ff“)xnl!n
=TI, 47,

Here we may assume that k, is non-zero, since this can always be achieved by
taking n sufficiently large. Also, note that the left side is trivially equal to 0 when
k., = 0. Now,

Iy = e (I = Fy)zplln
e = (llenlln + 11327 lln)
e " (Billzl| + $(pnka, z'))

"o _ 1
ﬂl“x “e kn + kne kn. p_k—.orﬂ/)(Pnkm a/"')

NN

N

IS U= :
< ﬁliz’lle'k" + kpe™kn ZPﬂ'J’(PnJ’ z')
Pnkn =1

- 1
< lle'lle™ + ke - =

Awwaﬁqa.

“voce™fnoand kye~*r —.0, while ppk, — { as n — oo, we have that T, — 0.
For Z,, we write

1= Z Qnj(pakn) - II(F2 = Fi™)anln

=t

= (54 52) Quionk) - [(FL = FE)eh e
1 2

where

1= 2 X=X

1 li—kn|>ekn 2 i =knl<ekn

and where ¢ € (0,1). It is noted in (3], page 18, that:
W uet
Z G < 52

li=kal>é
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Hence we find that

> Qnilpakn)ll(Fi = Fam)zpln < Zan(Pnkn)(NFifolln +11F5zplln)

1

ZQm(pn Y(lpnd,2") + ¥(pnkn, ')
< 2(pn, 2’ S

< 2¢/pad pn,x)\/——+m

e

where :;+ gl = 1. Because

UPath(pn, ') € (gpnnb”(jpn,r'))w < (/ﬂmt/)"(s,z')dsy'

for all n € N, we see that the right side in the last sequence of inequelities (for 3)
1

tends to 0 as n — co.
Next, for the sum ), we note that j satisfies (1 —€)t/2 < p, min {j, k. }, for

all n, and since ¢(-, z’) i: non-increasing, we find that
; Qnj(onkn)ll(Fi = Fi)2nln < pn ; Q@nilpnkn) Y_IIFT Anzlin
where the inner sum is taken over all m satisfying
min{j,k,} S mEmax{j-1,kn =1}, 0#j#kn.
Now we recall (iv) to see that
> K Cipn Y Qnilpaka) Y dlmpn, A2')
2 2 m

€ Cipn Z‘an(pnkn)¢(min {J: kn}Pm -'liz')l.? - kuil

£ Cipny((1 — E) Az )ZQnJ(Pn a)li = kal

i=1
€ Cron VEat((1 - 6);—, Az'Y =0 as n— oo,

where the last inequality is justified by the Schwarz inequality and Lemma 2 of
(2]. Thus, Z; — 0 and (8) is established.
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To finish the proof, assume that we have x € D° and z, € D(4,),n =
1,2,..., satisfying lime, = z and sup ||AnZa|ln < co. Since A is the i.g. of an (A)

semigroup, D(A?) is dense in X. Thus, given ¢ > 0, then is an 2’ € D(A?) such
that ||z — 2’| < €. Moreover, there is a sequence (z7,),z], € D(A2), for which (8)
is satisfied and such that limz!, = &', sup [|Anz}|ln < co. Hence

n

IPaT(t)z — Fiznlln < [|Pa(T(t) =~ T(pnkn))elln + | PaT(pnkn}(z — 2')||n
+ “PﬂT(Pnkﬂ)‘cl - T, (Pnkﬂ)m’n”ﬂ + ”F,f"(:l:,—. - z;;)”ﬂ
+ [|(To(pnkn) — F,f“)mi,”,,.

The first term on the right side goes to 0 by the strong continuity of T'(t) for
t > 0. Also, (pnky,) is contained in some interval [a, ] C (0,00), and since ||T'(t)]|
is bounded for all t 2 a > 0, (cf. [7]), the second term is bounded by a constant
multiple of £. The third term tends to 0 as n — oo because of the uniform
convergence on compacts guaranteed by (1). The fourth term is bounded by
¥(t/2,z' — z) for all large values of n. This can be made arbitrarily small by
virtue of the continuity of 4 in its second argument. The last term tends to 0 by
(8). Thus (7) is established. 1

In view of Section 3, one finds that results similar to Theorem 4.1 are also
achieved by choosing functions (¢, z) with certain properties, or by making certain
choices of the sequence (pn). We proceed now with this line of investigation.

THEOREM 4.2. Let ¥(t,z) : (0,00) x D° — [0,00) satisfy the following:
Y(1,z) is conlinuous in x for cach t € (0,00) and is absolutely conlinuous in 1
for each z € D°, and also, for some p > 1, the functions ¥, 97, (1 +t)|¢'| and
(1 +1)yP '] € L1(0,00). Then the conclusion of Theorem 4.1 remains valid
under the hypotheses (1)-(iv).

Proof. We note from the proof of Proposition 3.1 that
[= 4]
Wt,2) <plt,2) = [ bl o)l ds
. 1

where (1, ) is non-increasing in ¢ and belongs to L!(0, 00). Likewise

PP(t,x) € gop(t,m) = /*00 {42 (s, z)|ds

t
and again ¢,(t,z) € L'(0,00). The proof proceeds as in Theorem 4.1 but by
replacing ¥ and ¥? by v and ¢, respectively in the estimates of Z; and 7, where
appropriate. Finally, we use the fact (from Proposition 3.1) that S(¢(-, z); pn) <
Ly and S(pp(-, z); pn) € K; for all n € N and z € D°, where L, K, are certain
constants. ®
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We now consider the case where, for some 2 € D°,e" (i, 2) mlay not be
monotonic for any choise of ¥ 2 0. In a sense, the following result tells us that in
such a case there is always a null sequence of positive numbers (p,) for which the

convergence of the discrete system is established. -

THEOREM 4.3. Let ¥(t,z) : (0,00) x D° — [0,00) be continuous in z for
each t € (0,00) and let there ezist u v 2 0 and p > 3, such that for cach
z € D°,e7"yY(t,z) € L'(0;00) N LP(0,00). Then there exisis a null sequence
(pn) of positive numbers for which the conclusion of Theorem 4.1 holds under the

hypotheses (i) - (iv).

Proof. Again, it suffices here to consider the case where y = 0. Let z € D°;
semicolon according to Corollary 2 of Proposition 3.3, we can find a null sequence

of positive numbers (p,) such that for alln € N

Y n(pai2) <3 [ 9o, 2)ds = Lu(e),
i=1 e

S ont(pni2) <3 [ W(5,8)ds 1= La(a)

i=1

where Li(z), L2(z) are constants depending only on z. The proof goes parallel to
that of Theorem 4.1. Thus, to verify (8), we let z’,(z}), and k, have the same

meaning as before, and we get

[I(exp ‘(PNknAn) - F:")x;”n SLi+7s.
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The proof that Z; — 0 is the same as in Theorem 4.1. For I;, we have

I = Zan(Pnkn)"(FyJ; = Fim)znln

i=1

< Pn Z an(Pnkn) Z ”Fr’tnAnx;x“n

i=1 m

< Copn Z Qm’(l’n kn) E ’J’(mpn 3 fiwl)

i=1 m

o0 ..
< Capn ) Qnj(pakn) - max(mpn; Az') - |j = knl
i=1

L
< Copn (z an (Pnkn) : mrgx ‘/’(mpn;“‘ix’) . IJ - knrl)
N i=1
a

X (Z Qnj(pnkn) - maxd(mpn; AI’))
j=1
= Capn + Ty - T,

where m plays the same role as before (see Theorem 4.1). Next, by noting that

. “ w ~ ~
pn TEX W(mpn; Az') < me,b(pnj; Az'y € Li(AZ'),
i=

Py

[s.]
Pn max pP(mpn; /i:z:') < an"l')p(f’nﬁ Aml) < Lz(fl:n’)

.
fary

we can proceed as in ([2], Theorem 3), with appropriate modifications to establish
(8). For convenience, we present these calculations here.
We find, using ({2], Lemma 2) that

i
4

Ty < pn VL (Aa') (Z Qnj(Pukn)(j — kn)“)

i=1
b I -

= L{(Az')pn *(3p2k2 + pRkn) ¥
S - ) i

< Li (Az")pn * (317 + pnt) .

While for J» we apply Holder’s inequality, with p > 3 and g the conjugate of p to
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find that

Z Qnj(pnka) Y Qnj(pnkn) - (maxp(mpn; Az'))’

j=t

Z Qnjlpnkn) - max pn Y (mpn; /i'r’)

i=1

a1 a
€ pn T L7 (AL').
Therefore,
¢ e 2 L
L Copn-T1 -T2 € c 2(2)on” (3% + pat) ¥,

which tends to 0 as n — oo, as long as p > 3. The remaining part of the proof

goes similarly to that of Theorem 4.1. B8

While Theorem 4.3 is interesting from the theoretical point of view, the fol-
lowing result, which is analogous to Theorem 3 of [2], is important for applications.
The proof uses the same arguments as in 4.3, but depends now on Theorem 3.4
instead of Corollary 2 of Theorem 3.3, (see also (2], Theorem 3) .

THEOREM 4.4. Let 0 € v, and assume that p and v 2 0 satisfy the hy-
potheses of Theorem 4.3. Further, lel p, = 27", n € N, such that (i)-(iii) of
Theorem 4.1 and (iv’) are salisfied, where:

(iv'). There ezisis @ to > 0 satisfying Proposition 3.4 above, such that: For
each £ € D° and each sequence (z,),z, € D(An) salisfying limz, = z and

sup ||Anza|ln < o0,
n

IF2 2, ln < o +2,2), > 0.

Then the conclusion of Theorem 4.1 remains valid.
5. DISCRETE APPROXIMATION OF ({0,A)-SEMIGROUFS
We now discuss the results of Section 4 in the case of (0,A) semigroups. It is worth

noting that the results here cover a range of applications beyond that considered
in [2].
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THEOREM 5.1. If, in the statement of Theorem 4.1, the set D° is replaced
by X, and (iv) holds for all z € X and z, € X, setisfying limz, = z, then the
limit semigroups T(t),t > 0 is of the class (0,A). Moreover, the convergence of the
(iifcrete semigroups in (7) holds for allz € X and 2, € Xa,n = 1,2,... satisfying

limz, = z.

Proof. Theorem 4.1 applies and we conclude that A generates an (A) semi-
group T'(t),t > 0. Furthermore, it is readily verified under the present conditions
that (7) holds for all z € X and z, € X, satisfying Iipxix’m:ﬂ = g. It remains only
to verify that 7'(t) is of class (0,A), and that is satisfies the inequality in ;. Let
z € X and v, > 0; then

oo e
[ e Pl de < [ 1T 0Pusll
0 0

< /0 eu»+k2=1 fu Qo (£)d(pak, ) dt

o0
< pn+ and)(pﬂk: 1’)

k=1

o0
<M1+/ P(t, z)dt
4]

where M, is some constant. The conclusion now follows by Theorem 2.4. 1@

COROLLARY. Let 3 be as in Theorem 5.1, and assume that hypotheses (ii)-
(iv) and (i) are fulfilled where:
(i)’ Core A and R(AoI—A) are dense in X for some core of A and some Ao > w+7,
where A = lim A,,.
Then A (or its closure) generates a (0,A) semigroup T(t),t > 0 such that

(9) Gm FU/o)P,z = T(t)z, =€ X,t>0.
Proof. Core A C D(A) C D(A) and R(AoI — A) C R(Aol — A). Hence,
condition (i) of the theorem is satisfied. 1

Next we present some results analogous to 4.2-4 4.

THEOREM 5.2. Let (2, z) : (0,00)x X — [0,00] satisfy the following: ¥(t,z)
is continuous in z for each t € (0,00) and is absolulely continuous in t for each
z € X, such that for some p > 1, the functions v, ¥?, (1+1)|¢'| and (1+1)y?~1|y/|
belong 1o the space L(0,00). Then the conclusion of Theorem 5.1 remains valid.

COROLLARY. The theorem remains valid if we replace condition (i) by (i')
above.
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THEOREM 5.3. If the set D° is replaced by X in the statements of Theo-
rems 4.3, 4.4, and also (iv) of Theorem 4.1 is assumed for all z € X and all se-
quences (xn), zn € X, salisfying lim z,, = z, then the conclusion of Theorem 5.1
remains valid in both of these cases.

REMARK. Theorems 5.2-5.4 remain valid if we replace condition (i) by (i')
(see corollary to Theorem 5.1).

ExampPLE. Following the examples discussed in [2] and [11], we shall now
deal with a situation in which the results of [2] do not seem to apply while those
of Sections 4, 5 above are applicable. Consider the Cauchy problem:

du
(10) 5 P(D)u, wu(z,0)=1{(z)
in the Banach space L2(R) = L?(R) x L?(R), with the standard norm. Here
u(z,t) = (ui(z,t),us(z,1)) is a vector valued function of the real variables = €
R,t > 0,f(z) = (fi(z), f2(z)), fi(z) € L*(R) is the given initial condition, and
P(D) is the partial differential operator with respect to r, given by:

D2 +iD!  iD}
P(D):( 0 Df.+i1)g)‘

The method of discrete approximation corresponding to this problem is as de-
scribed in [2], namely

(11) u(z,t + p) = F(p)u(z,t), u(zx,0)=1(z),
where Lt oAZ 4 ipAd A4
_ [ 1+ pBh+1p4, 1pA L )
Flp,h) = ( 0 1+ pA2 +ipAt

By taking the Fourier transform in z, this takes the form:
(e, t+p) = F(p)u(€, 1), a(€,0) = £(¢),

where

(€, 1) = \/%Le_ixfu(z,t) dz

while the transformed matrix of F(p, h) is:

dom=(t~ p(h~'sin£h)? +ip(h~'sinER)? p(h~lsin€h)* )
#, )——(1 0 1 — p(h~'sin€h)? +ip(h~'sinEh)Y
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Let (pn), (ha) be null sequences of positive numbers, and write Fy, for F(p,,
hy). Similarly, we write:

Flt/en] — (1+p,,a,,)l'/ on) pult/ pal(hi; sin Ehn )4 (1 + pran )t/ 721=1
" 0 (Fpnan /70

where ap, = —(h;}sin&h,)? +i(h; sin€h, )t

In applying the results of Sections 4, 5 to the present situation, we take X, =
X = L*R) and P, = I for all n € N. In this case, the notion of limit reduces
to the ordinary one. Note that with A, = p;(F, — I), we have that imA, =
P(D) = A in the sense that A,u — P(D)u,u € D(A), in the L% norm. Note
that D(A) = {u: u € L2(R), P(D)u € L?} and that a core for A is {u € L*(®R) :
it has compact support}. Observe that for initial data u(-,0) € D(A)

e*a1(€), €1 aa(¢) € LA(R).

Hence
[FE/enlul| = [[BE/ #=1a]) < w1 ([laa]] + (|8all) + xatlla2])-

Thus, taking %(¢;u) equal to the right hand side, and ¥ = 1, we see that for
example e~y € L' N LP, for some p > 3. Now we can apply Theorem 4.4 in
which case we work with p, = 27". Thus we have shown that condition (i') of
the theorem is satisfied. The remaining conditions follow as in [11]. Therefore,
we conclude that there exists a semigroup T(t),2 > 0 of class (A) on L?(R) which
solves the Cauchy problem (10), and furthermore, that the solution of the discrete
system, namely Fgf/p"]u(a:,O), converges to the solution T(t)u(z,0) of (10) as
n — oo. In closing, we note from {11] that T'(?) is in fact of class (0,A).
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