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ABSTRACT. 1t is shown that, if the algebra generated by a compact operator
on Hilbert space is amenable, then the operator is similar to a normal op-
erator. Problems arise with attempts to extend this to Banach spaces other
than Hilbert space, for example it cannot even be shown that the operator
is not quasinilpotent. The approximation property appears to be implicated
in these problems.
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Many properties of an operator, 7', on some Banach space, X, are related to
properties of the Banach algebra, A7, which it generates. For example, T is quasi-
nilpotent if and only if Ay is radical. For another example, there is a non-trivial
subspace hyperinvariant for 7" whenever Ay is not an integral domain because, if
A and B in Ar are not zero and satisfy AB = 0, then (AX)~ is such a subspace.
Amenability is a finiteness condition for Banach algebras which in many cases has
strong consequences for the algebra. Some instances of this are discussed below.
The aim of this paper is to investigate the consequences for the operator T which
follow from the amenability of Ap. It is shown that, if T' is a compact operator
on Hilbert space and Ay is amenable, then T is similar to a normal operator. The
properties of Hilbert space are used in an essential way at several points in the
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proof and it is an intriguing problem whether an analogous statement holds for
operators on other Banach spaces.

A Banach algebra, A, is said to be amenable if, for every Banach A-bimodule
X, every derivation, D : A — X*, is inner. Here a Banach A-btmodule is an
A-bimodule, X, which is a Banach space such that the bimodule maps (a,z) —
z -a and (a,z) — a -z are jointly continuous from A x X to X. If X is a
Banach .4-bimodule, then the dual space, X*, is also, with the A-actions defined
by {z,a-2*) = {z-a,z*) and {z,z"-a) = (¢-2,2"),(a € 4, z € X; and 2" € X*),
A derivetion is a linear map, D : A — X, such that D(ab) = a - D(b) + D(a) - b,
(a,6 € A). For each z in X, the map D, : a— a-z—z-a, s a derivation and such
derivations are called inner. These notions are explained in more detail in [1] and
[15]).

There are many other characterisations of amenable Banach algebras, sce
[15], Chapter VII, Section 2 or [1], Section 43. However, the above is the origi-
nal definition and is the only characterisation which is required here. The class
of amenable Banach algebras is stable under several operations which construct
new algebras from old. (Although not under passing to subalgebras, for example,
£'(2), with convolution product, is amenable but £*(N) is not.) Two such stability
properties will be needed in the following. The first is that, if A is amenable and
© : A — B is a homomorphism with ©(.A4) dense in B, then B is also amenable.
This fact, which is in Proposition 5.3 in [17], follows immediately from the above
definition. The second is that, if A is amenable and I is a two-sided ideal in A
with a bounded approximate identity, then I is an amenable Banach algebra, see
[17], Proposition 5.1 and [12], Theorem 5.1. We shall also need the fact that each
amenable Banach algebra has a bounded approximate identity, see [17], Proposi-
tion 1.6.

The name of “amenability” for this cohomological property of Banach alge-
bras comes from the theory of locally compact groups. It is a theorem, due to
B.E. Johnson, that a locally compact group, G, is amenable if and only if the
Banach algebra L1(G) is amenable, see {17], Theorem 2.5, {1], Proposition 43.3 or
[15], Theorem VI.2.33. Amenability is very important for many aspects of group
theory and in particular for the study of representations. For example, if G is
amenable, then each bounded representation of G on a Hilbert space is equivalent
to a unitary representation, ([25]) see {10}, Theorem 3.4.1. Also, G is amenable if
and only if each of its irreducible, unitary-representations is weakly contained in
the regular representation on L?(G), ([16]) see [10], Theorem 3.5.2.

These theorems for amenable groups generalise basic results about finite
groups and thus show one aspect of amenability as a finiteness condition.
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Amenability of Banach algebras is not well understood in general but has
good characterisations in particular classes of Banach algebras other than the
group algebras. First, it follows easily from the structure theory of finite dimen-
sional algebras that such an algebra is amenable if and only if it is isomorphic to
a direct sum of full matrix algebras. Also, it is one of the deep theorems about
C~-algebras that a C*-algebra is amenable if and only if it is nuclear, see [5] and
[13]. This is another aspect of amenability as a finiteness condition. Finally, it is
a beautiful theorem of Sheinberg, see {23], that a uniform algebra is amenable if
and only if it is C(X).

These examples suggest that amenability of Ar could be important for the
analysis of the operator T. In the case when T is a finite rank operator we
can say exactly what amenability means. In that case Az is finite dimensional,
commutative and amenable and hence isomorphic to the direct sum of copies of
C. Therefore, for finite rank operators, amenability of Ar is equivalent to T being
diagonable. Perhaps amenability of Ay is equivalent to some good generalisation
of diagonability of T

There are no general theorems about amenable Banach algebras which allow
us to make some immediate conclusions about the structure of T, other than the
obvious remark that, since At has an approximate identity, 7’ cannot be nilpotent.
It is not known, for example, whether an amenable, commutative Banach algebra
can be radical or, if it is not C, an integral domain. Hence we cannot yet answer
the questions which are usually the first to be asked about operators. Indeed, in
their full generality, these questions about the structures of operators are almost as
difficult as the questions about amenable algebras because each singly generated,
amenable Banach algebra is of the form Ap where T is the generator of the algebra.
(This follows from the fact that each amenable Banach algebra has a bounded
approximate identity.) However it is possible to say more by considering operators
satisfying further conditions.

The following theorem extends the remarks about finite rank operators made
above. It is really a theorem about cornmutative subalgebras of ()} and so may
also be thought of as a relative of Sheinberg’s theorem.

THEOREM. Lel T be a compaci operalor on Hilbert space, H, and suppose
that Ar is amenable. Then T is similar to ¢ normal operator.

Proof. We first reduce to the case where T has trivial kernel. Since the
unit ball in B(H) is compact in the weak operator topology, it follows that the
bounded approximate identity in At converges, with respect to this topology, to
an idempotent operator, P, with range(P) = (ArH)™ and kernel(P) = kernel(T).
Hence H = (ArH)™ @ kernel(T). Clearly T is similar to a normal operator if the
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restriction of T to (ApH)~ is, and so it suffices to prove the result in the case
when kernel(T') = (0). Note that, in this case, we also have that range(7") is dense
in % and that, since T is compact, the Hilbert space H is separable.

There are three further steps in the proof. The first step is to show that T
has a complete set of eigenvectors, and this step shows incidentally that Ap is not
a radical algebra. The second step is to show that the set of eigenvectors is in
fact an unconditional basis for H. For the third step we appeal to the theorem,
due to Kothe and Lorch, that each unconditional basis for H is equivalent to an
orthonormal basis, see [18], Proposition 2.b.9. The operator implementing the
equivalence between bases implements the similarity between 7" and a normal
operator.

For the first step, let X be the space of all compact operators on X and A
the ideal of all nuclear, or trace class, operators. Then A may be identified with
dual space of K by

(K, N) = trace(KN), (K €K;NeN).
Let N be in /. Then, for each K and L in A7,
(K,LN — NL) = (KL — LK, N} =0

because Ay i1s commutative. Hence Dy : L — LN — NL, is a derivation from
Ar to N with range contained in A%, the annihilator of A7 in N. Now Af is
weak®-closed and is invariant under the Ap-module actions. Hence it is a dual
Ar-bimodule and, in fact, it is isomorphic to (X/Ar)". Since Ap is amenable,
Dy:A— .A% is inner and so there is some N’ in .A% such that Dy = Dy+. Then
N — N’ belongs to

Cr={MeN:ML=LM, L€ Ar}.

Since N was arbitrary, it follows that N' = Cr + A%.
Since, as we obviously may suppose, T is not zero, there is, by the Hahn-
Banach theorem, an operator N in A such that

trace(TN) = (T,N) # 0.

The argument in the last paragraph shows that there is Z in Cr such that
trace(T'Z) = trace(TN) # 0. Now the trace of a nuclear operator on Hilbert
space is the sum of its eigenvalues, see [8}, Theorem X1.9.19, and so 7'Z has a
non-zero eigenvalue. Since T commutes with Z, it follows that T has a non-zero
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eigenvalue, A say. Since T is compact, the functional calculus implies that Ar
contains a minimal, finite rank projection, P, whose range contains an eigenvector
corresponding to A.

For each minimal, finite rank projection, P, in Ay, the space ApP is an
ideal in Ap with identity P. Hence A7 P is a finite dimensional, amenable algebra
and is consequently isomorphic to a direct sum of copies of C. Since P is also a
minimal idempotent in Ap P, it follows that Az P is one dimensional and that P
is a projection onto an eigenspace of 7'

Now let P = {P1, Py, ...} be a family of minimal idempotents in Az. Then
the restriction of 7' to (7} kernel(P) is a compact operator on this Hilbert space.

€
Furthermore, the algebra generated by the restriction of T' is amenable because the

restriction map is a homomorphism from Ap having dense range in this algebra.
If () kernel(P) # (0), then the above argument shows that there is a minimal
PeP

idempotent in Az which does not belong to P.

The closed subspace, 7, of H generated by the ranges of the projections in
P is also invariant under T and so 7" induces a compact operator on the quotient
Hilbert space H/J. The algebra generated by this induced operator is amenable
and so, if J # M, the above argument shows once again that there is a minimal
idempotent in Ap which does not belong to P.

Therefore, if we now take P = {Pi, P5,...} to be the set of all minimal
idempotents in Ap, then

(1) () kemel(P) =(0) and J=H.
PeP

Hence T has a complete set of eigenvectors.

Next we show that these eigenvectors form an unconditional basis for . For
this we identify B(H) with the dual space of N by

(N,S) = trace(NS), (N eN; S€B(H)).
Define, for each S in B(H),
Smn = PnSP,, (m,n=123,...).

Then it follows from (1) that S is the zero operator if and only if S n = 0 for
each m and n.
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Put Dr = {SE€EBMH) : Smpn=0ifm#n, mn=123, .}and &r =
{S€B(H):Sun=0,n=1,23,...}. Then Dr and & are closed subspaces of
B(H) and, by the previous paragraph,

(2) Dr N Er = (0).

If S in B(H) satisfies ST = T'S, then SP, = P,S for each n and s0 S =
PSP, = SP, P, = 0if m # n. Hence we have

(3) (S € B(H) : ST = TS} C Dr.

Furthermore, since TP, = A\, P, = P,T, for some A, in C, P,NF, belongs to
Cr for each N in A and each n. Hence, if S in B(H) belongs to C3, then 0 =
(PaNP,,S) = (N,P,SP,) for each N in N and so P,SP, = 0 for each n. It
follows that

(4) Cy Cér.

Now, for each S in B(?{) define a derivation Ds : A7 — B(H) by Ds(L) =
LS — SL. Then the range of Ds is contained in the weak*-closed, Ap-submodule
C%. Therefore, since Az is amenable, there is 5 in C% such that Dg: = Dg.
We have then that § = §' 4 (S — §'), where S’ belongs to Cf and S — S5’ to
{S € B(H) : ST = TS}. It follows, by (2), (3) and (4), that

B(?‘i) =Dr @ &p.

Let @ : B(H) — Dr be the projection with kernel £&p. Then, by the open
mapping theorem, @ is bounded. Furthermore, for each S in B(H), the operator
Q(S) satisfies,

Spn ifm=n;

0 if m #n.

For each P, in P, choose an orthonormal basis for the range of P, and then

PnQ(S)P, = {

let 1,2y, 23, %4 ... be an enumeration of all these vectors so that the basis for the
range of P; is listed first, followed by the basis for the range of P; and so on. Let
e1,€3,€3, ¢4, ... be the Gram-Schmidt orthonormalisation of this sequence of basis
vectors.

FEach bounded sequence iy, g2, 43, . . . of complex numbers determines a mul-
tiplication operator, M, on H by M(en) = pinen and (| M || =sup{lp1|, lpal, 3], .. .}
Since ej,ez,e3,... is the Gram-Schmidt orthonormalisation of zi,zs,23...,
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Mmn = PnMPFP, = 0 whenever m > n, that is, {M,, »} is an upper triangu-
lar matrix. Furthermore, for each n, M, ,, is an operator on the range of P, and,
since the basis for this space, {z,,..., 2} say, was chosen to be already orthonor-
mal, M, n&; = 24 for » < ¢ < 5. Therefore we have

(8) QM)zy = pzy, t=1,2,3,....

For each positive integer r let M, be the multiplication operator determined
by the sequence py = 1, f 1 £ t € r and p; = 0if ¢ > r. Then, for each r,
lQ(M: )| < ||Ql| and, by (5),

2z, f 1€t r
0 otherwise.

Q)= = {

Since the set of eigenvectors {21, z2, z3, ...} spans a dense subspace of X, it follows
that rlglgo Q{M,)z = z, for each = in M and hence that z;, z2, 23, ... is a Schauder
basis for H. Reverting now to an arbitrary bounded sequence py, s, us, . .., the
operator Q(M) satisfies (5) and ||Q(M)]] < [|Q]]||M|]. It follows that the sequence
of eigenvectors is an unconditional basis for M.

As already indicated, each unconditional basis for H is equivalent to an
orthonormal basis and hence T is similar to a normal operator. §

SOME REMARKS ON THE USE OF AMENABILITY
IN THE PROOFS OF BANACH SPACE THEOREMS

The theorem of Kéthe and Lorch which is used at the end of the proof also involves
an application of amenability. To see this, let z1,z2,z3,... be an unconditional
basis for the Hilbert space H and let G be the abelian group which is the direct sum
of infinitely many copies of the multiplicative group {—1,1}. Denote the elements
of G as sequences £ = (e,€2,€3,...), where ¢, = £1 and equals ~1 only finitely
often. Then, since the basis is unconditional, the representation, p, of G on H
determined by p(€)z, = £,z, is bounded. Hence p is a bounded representation of
the amenable group G on H. Now the theorem of Sz.-Nagy, [10], Theorem 3.4.1,
implies that p is equivalent to a unitary representation, p’ say, and it follows that
21,3, T3, . .. 1s equivalent to the orthonormal basis of common eigenvectors of the
unitary operators p'(€). The proof of the Kdthe-Lorch theorem given in [18] also
introduces the bounded representation of the group G, without mentioning groups
explicitly, and then uses an averaging argument to deduce the result. In fact, this
averaging argument is just using the amenability of G and is proving a special case
of Sz.-Nagy’s theorem.
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There is another Banach space theorem concerning unconditional bases whose
proof is an amenability argument. If X and Y are Banach spaces with bases
{zn}32; and {yn}32, respectively, then each operator T : X — Y has a “matrix”,
{Tnn}, where Ty = (Tza, yh), {12, being the sequence biorthogonal to
{yn}3%,. I the bases are unconditional, then it may be shown that the diagonal
of this matrix also determines an operator from X to Y, that is, that z, — Ty n¥n
extends to a bounded linear operator. The proof of this fact given in [18], Propo-
sition 1.¢.8, uses multiplication of basis vectors by +1 followed by averaging and
is thus also using amenability of the group G which was defined in the previous

paragraph.
CAN THE HYPOTHESES ON T BE WEAKENED?

The proof of the theorem relies very heavily on T being a compact operator on
Hilbert space. It is an interesting question whether the hypothesis that T be
a compact operator can be weakened. An extension of the theorem to general
bounded operators on Hilbert space presumably could not use an eigenvalue and
eigenvector argument as in the above proof.

Now consider the case when T is a compact operator on some Banach space
other than a Hilbert space. The argument breaks down when we try to find an
eigenvector for T because, for nuclear operators on spaces other than Hilbert space,
it is not true in general that the trace is the sum of the eigenvalues. It is not so
for the space £,, p # 2, for example, see {18}, Theorem 2.d.3 and this is equivalent
to the existence of subspaces of £, which do not have the approximation property.
The possibility remains open therefore that there is a compact, quasinilpotent
operator on {5, where p # 2, such that 4y is amenable. This possibility suggests
that there could be a deep connection between the existence of radical, amenable
algebras of compact operators and the approximaiion property in general Banach

spaces.
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OTHER HOMOLOGICAL CONDITIONS

The definition of amenability given above is simply another way of stating that the
continuous cohomology groups H'(A, X*) vanish for each Banach .4-bimodule X,
see [15], Chapter 1.2. There are other homological properties of Banach algebras
which could also be relevant to operator theory.

One such condition is biprojectivity, where .4 is said to be biprojective if the
A-bimodule homomorphism,

7 ARA — A

determined by the product map #(a®b) = ab, has an A-bimodule right inverse, see
[20] and [21]. For algebras having a bounded approximate identity, biprojectivity
is & stronger condition than amenability, see Theorem VII.2.18 in {15].

Another homological property stronger than amenability is that all the con-
tinuous cohomology groups H'(A, X) should vanish. It was shown by Taylor ([26]),
that if A has the compact approximation property and satisfies this condition, then
A is finite dimensional. This condition is thus too strong to distinguish an interest-
ing class among the familiar classes of Banach algebras but does provide another
indication that amenability is a finiteness condition.

A homological condition on Banach algebra A which is not as strong as
amenability is that of being weakly amenable, that is, satisfying the condition
H'Y(A, A*) = (0), see [2] and [11]. P.C. Curtis has discovered an example of a
commutative, radical weakly amenable Banach algebra, see [6]. There are many
weakly amenable algebras which are not amenable and Curtis’ algebra appears to
be another such example. The algebras generated by weighted shifts and integral
operators are not weakly amenable, see [9].

AMENABILITY AND APPROXIMATION PROPERTIES

It has already been remarked that the fact that Hilbert space and all of its sub-
spaces have the approximation property is used several times in the proof of the
above theorem. Many other homological results for Banach algebras have involved
the approximation property. The theorem of Taylor mentioned before 1s one ex-
ample. The approximation property and compact approximation property are
also important in the work of Selivanov on cohomology of Banach algebras. In
particular, in [22] he gives some homological characterisations of the approxima-
tion property. For many of these results it remains an open question whether the
approximation property or the compact approximation property can be dispensed
with. ’
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Another indication of a strong connection between amenability and the ap-
proximation property occurs in the theory of C*-algebras. The work of Connes,
Haagerup and Choi and Effros, see [13], [5] and [4], implies that, if a C*-algebra
is amenable, then it has the approximation property. It was shown by Szankowski
((24]) that the C*-algebra B(H) does not have the approximation property and so
amenability does seem to be important.

Amenability might also be used to describe new approximation properties
for Banach spaces. In [12] the question of when the algebras of approximable
operators and of compact operators are amenable is studied. The results there
indicate that amenability of these algebras seems to be equivalent to “basis free”
versions of the notion of a shrinking, subsymmetric basis. In a similar way, the
existence of a commutative, amenable algebra, A, of compact operators on X
such that X = (AX)~ could be equivalent to an approximation property for X
between the commuting, bounded approximation property and the existence of a
symmetric basis. See [3] and [19] for some recent results on various approximation
properties.
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