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SHARP BOUNDS ON HEAT KERNELS
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ABSTRACT. We consider uniformly elliptic operators of order 2m in diver-
gence form with measurable coefficients acting on domains in RY. The cor-
responding heat kernel is known to satisfy bounds of the type.

|K(t,z,y)] < oyt~ NaEm exp{—ca|z — y|m/(Bm-1y=1/Cm=1) 4 cat}

provided N < 2m. We use quadratic form techniques, semigroup theory and
Sobolev inequalities to establish explicit sharp estimates for the constant cp
in terms of the ellipticity ratio of the operator.
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1. INTRODUCTION

In [2] Davies established Gaussian heat kernel bounds for a class of higher order
elliptic operators with measurable coefficients acting on L?(RV). He considered
uniformly elliptic operators of order 2m of the general form

(1.1) Hf(z)= ) (~1)/D*{aqap(x) D" f(x)}
- jefgm

iBlEm

and proved that under certain conditions the kernel K(¢, z, y) of the corresponding
parabolic equation satisfies an off-diagonal estimate of the form

_ r — y|2m/(@m-1)
(1.2) K (t, 2, 4)] < eyt~ exp {—cz ‘ tly/l(zm—l) + Cst} .
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Our aim in this paper is to obtain precise quantitative bounds on the constants ¢,
and ¢3 above in terms of the ellipticity ratio and dimension when the coefficients
are measurable. This problem has been well studied in the case m = 1. Davies ([4])
was the first to obtain the optimal constant c; = 1/4 for uniformly elliptic second
order operators with real measurable coefficients, using a Riemannian distance
defined in terms of the operator coefficients instead of the Euclidean distance. This
result has since been extended in various directions by many different authors and
the theory has reached a high level of sophistication. See [5], [9], {11] for three
accounts of that theory.

In the case of higher order operators however, no such bounds on c; seem to
exist, even if local regularity assumptions on the coefficients are made ([9], p. 441,
[7)). Tintarev ([10]) has obtained precise short time asymptotics in the smooth
coefficient case, but they are only valid when the spatial variables z and y are
sufficiently close; our bounds are valid for all z,y and ¢ > 0. We show that the
constant cz can be taken to be arbitrarily small if the bottom of the L? spectrum
of H is zero, and that one can put cs = 0 if H is homogeneous. Our main result,
Theorem 4.5, provides an explicit lower bound on ¢z of the stated type. When
we apply our method to the simplest case, H = (—A)™, we obtain a value for ¢z
which is sharp. See Theorem 4.3.

We also consider the difference between short time and long time heat kernel
bounds. While the higher order terms dominate for short times, the lower order
ones determine the long time estimates; see Proposition 5.1. The long time be-
haviour can change dramatically according to whether the lower order part takes
negative values or not. Further information on the term cat and long time esti-
mates of heat kernels can be found in [3].

The method which we follow in this paper is superficially similar to that in
[4). We still make the assumptions (2.3) and (2.7), which were the key estimates
of [2]. However we identify the constant k) introduced in Lemma 2.1 below as the
crucial quantity involved in the problem, and re-express as many as possible of
the estimates of [2] in terms of that constant. We do this at an abstract level for
possible future applications. The value of the results depends both upon obtaining
the most efficient possible estimates in terms of k) and upon being able to find
sharp estimates for k) in particular circumstances. We progress towards this in two
steps. In Section 4 we give a general form for &, which is valid for all homogeneous
operators of order 2m acting on L?(RN). We then evaluate kj precisely for the
particular case H = (—A)™, and use this information to obtain the main theorems
of the paper. The fact that the final estimate which we obtain for H = (—A)™ is
sharp, clearly indicates the effectiveness of our approach.
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2. PRELIMINARY RESULTS

If o is a multi-index and z a vector, we use the standard notation D and
z® for the partial differential operator 8y ---d3" and the number z7* . -2}
correspondingly.

Let © C RY be a Euclidean domain. We shall be considering differential
operators on L?(Q) of order 2m that are comparable to (—A)™ not in the quadratic
form sense but in the stronger sense of comparable coefficients. More precisely,
let {aqp()}a|,151<m be the uniformly bounded (self-adjoint) complex measurable
coefficient matrix of the operator H given by (1.1). We assume that there exists
a positive real constant g 2 1 such that

(2.1) z ao.aﬁfo‘f_ﬁ <€ Z aorp(x)faéﬁ Sp E aO,aﬁ&aEﬂ,
forfemm {orf=m Jo|=m
[#l=m 18|=m lAl=m

forallz € Qand £ € @ C, where the non-negative constant coefficient matrix
lal=m

Ap = {ag,ap} is such that

(=A)Y"f,g) = / > a0,epD*fDFgdx
& ffi

for all functions f,g € C*(Q). In the following we denote by ¢ or ¢; various
constants depending upon m, N and

(2.2) v = sup{||aaplico I led, 18] < m}

as well as the constant b introduced below.

We point out that it may be the case that zero is an eigenvalue of the matrix
Ag; see the example below. Under the above assumptions the operator H is defined
to be the self-adjoint operator associated to the closed and symmetric form Q with
domain W™*(Q) given by

QN "/ Z aap(z)D* f(z)D? f(z) dz.

o] Em
2 jpigm

We shall call such operators superelliptic. Adding a sufficiently large constant to
the operator we may assume that @ is positive, and the fact that it is closed is
then a consequence of the inequality

(2.3) (=)™ 21113 < QUF) < e(l(=AY™2HIIE + 1IF13)
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which is valid for some ¢ > 0 and all f € C(Q).

A superelliptic operator is called homogeneous if it is of the special form

Hf(z) = z (=)' D* {aqp(z) DP f(z)}.

pl=m
It should be noted that for a given superelliptic operator H the representation
(1.1) is not unique and that different coefficient matrices can induce the same
operator. For example, considering the operator A% on R?, one can write the
expressions
A = 8,0, + 03,03, + 81,05, + 83,01

as well as
A% = 01,87, + 83,03, + 207,0%,

which relate to the matrices
110 100
( 1 1 0 ) and ( 010 )
0 00 0 0 2

The results in this section apply to any operators satisfying the conditions
(2.3), (2.7) and (2.10). In addition to the superelliptic operators defined above
we refer to Section 10 of [2] for another class of “elliptic” operators of order 2m
satisfying these conditions. We also note that the only use of the second inequality
in (2.3) is to ensure that the domain of Q is Wg*(R2), and that all our results can
be re-expressed in a slightly more general context; see Proposition 5.2 below.

Following [2], we define the class £, = £.(2) to consist of all bounded
real-valued smooth functions ¢ satisfying ||Velle € 1 and ||D%p|le < b for all
multi-indices o with 2 < |o| € m, where the positive real number b is fixed

correspondingly.

throughout the paper.

For ¢ € £m and ) € R the operator acting by multiplication by e*? is then a
bounded operator on W(',’"z(ﬂ). We define the twisted, complex-valued form Qx¢
with domain W5"(Q) by

(24) Qltp(fr g) = Q(e'\vfa e—z\‘Pg),

so that

(2.5) Qrelf) = [ > aap(x){e™ ¢ D*e* f}{e}* DPe ¥ f} da.

0 a'ﬁ
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We also denote the associated operator by Hj, so that
(2-6) Hyp = e 2 He'v.
The form Qay — Q is of order 2m — 1, and it is shown in Lemma 2 of [2] that

(2.7) 1@20(F) — QAN < eQ(F) + Mle)IIfI3

for all 0 < € € 1 and f € WJ™?(R2), where 7x(e) is a polynomial of degree 2m
as a function of A € R. This is proved by writing an explicit expression for the
difference Qa,(f) — Q(f) for f € CZ(RY) and then using estimates of the form

(2.8) A DYFIE < el VEHI £ 4 ce=PIRAZ+20) 1113

which are proved by means of the Fourier transform. See [2] for the proofs of the
above statements. We shall see that although ¢ can be taken to be arbitrarily
small, what is important is what happens when ¢ is close to one; rather than (2.7)
we shall use the weaker

(2.9) Q2o (f) = QAL < Q) + 13,

valid for all 1/2 < € € 1 and f € W' X(Q).
Before proceeding we note that different ¢ € £, may satisfy (2.10) below for
different constants k ,. However, (2.9) implies the crude bound

sup £, < -+00.
PEE M

In the rest of this section we shall write simply k» instead of k» , and reintroduce
the notation ky , in Proposition 2.5. One has anyway sup k\, < +oo for all

PEEM
AeR.

LEMMA 2.1. Let kp = ky , be such that

(2.10) Re Quo(f) = —kallfll

for some ¢ € Em and all f € W?(Q). Then
(i) {le~et|| € %2t and
(i) [{Hage=aet]] € Syelrinben
forall» >1and e > 0.

Proof. Since v, is a polynomial of degree 2m there exists ¢ > 0 such that
7a € ¢(A?™ + 1) for all A € R. By looking first at (—A)™ and then at the general
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case, one also sees that there exists ¢/ such that ky > ¢/(A*™ — 1) for all A € R.
We deduce that there exist constants ¢; and ¢y such that

(2.11) Ya S crika+c2

for all A € R. Now, let f € L? and set f; = e~ H2¢?f. Then f; € Dom(H),) for all
t>0and

4 :
a"ft”% = —{Hxefr, fi} = {fr, Hap f2}
< 2R £,
which implies (i).
Now, it follows from (2.9) that

1
(2.12) ReQao(f) 2 5QU) - mIflI5;
so for 0 € 7€ 1 we have

Re Qayu(f) = (1 — n)Re Qayp(f) + nRe Qay(f)

2.13 -
19 > 152000 - (1= mmll A1 - ksl

and hence

Re {Q() — @ro (1} < 22207 + 11~ nms + kIR
Now, let f € L?() and 6 € (—7/2,7/2) be fixed and for p > 0 set

fo = exp{~Haype} f.

We then have

Sl = 20050 Q(f,) + 2Re [(@ ~ @r)5)]
= —2cos 0 Q(f,) + 2 cosf Re [Q(f,) — Qap(f,)] + 2sin 6 Im [Qx(fo)]
< ~2c0s8 Q(f,) + 2cos€{£¥~@(f,,)

1 =y + mallFIE} + 25in 01 5QUA) + il 1}

={(n—1)cos +sin |0} Q(f,)+
+ {2cos 6[(1 — m)ya + nka) + 2sin [0lva} 1 F,11Z-

Defining & € (0, 7/2) by
tana=1-—19
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it follows that for |#] < o we have
(n—1)cosf@ +sin|d] < 0

and
2c0s0[(1 — n)ya + nka) + 2sin {8]vs < 41— 9)ya + 2ky.

Using (2.11) we conclude that

d
a;llfpllg < {4(1 = n)(erkr + e2) + 2ka Y| Foll5-
Solving the differential inequality yields

172112 < exp {2(1 — n)(erka + e2) + Ea} 1| £}z,

that is,
le=2e*[} < exp {[2(1 = n)(eska + c2) + ka]lzl)

for all |8] € a.

Now, let
(2.14) an = 2(1 = n)(cikx + ¢2) + ka
cos o
50 that

oo < 1

if |8] € @. Tt is a known result ([1], p. 64) that this implies
(g 7 de™brni < £
for all ¢ > 0. Hence, for any é > 0 we have

- c
Ap€ | < —e™ Ame€
IHage™ ] € Zemnt 4 7y getnt
[4 4

N

_E..e‘rl,'lt + Eﬁe(l""s)‘n\-frt
ot i
c’;:ae(l+6)r,\,.,t.

N

But it follows from (2.14) that given » > 1 and € > 0 we can find 7 close
enough to one and & close enough to zero so that

(1+ 5)7‘)\,,7 L rky +e.

This proves (ii). K-
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HypoTHESIS 2.2. At this point a condition on the order 2m of the operator
is necessary; we assume from now on that 2m > N.
We shall need the following lemma from [2):

LEMMA 2.3. If2m > N then f € W% (Q) implies f € L®() and

(213) 1l < cllC=2)™/2 Y37 17113~

Ht

Moreover, e~ % s ullraconiractive and

(2-16) lle™ " flloo < cat ™4™ e\ £l

foralle >0,t>0 and f € L.

Proof. The first estimate is proved in Lemma 16 of [2] for the case = R¥;
it then follows for general Q by using the inclusion Wi™(Q) ¢ W™2(R"). The
second then follows as in Lemma 17 of [2].

LEMMA 2.4. The semigroup exp(—H),t) is vliraconiractive and

"e-H,\,t"oo,z < C,-,,_-i—N‘Iéme(rk"'H)t

foralir>1ande> 0.
Proof. Let f € L? and set f; = e~ *>#!f. Using the estimates of the last
lemma we have for ¢ > 0
filleo < ccQUN et filly™*"
< e {ReQ@uo(f) + Ml A} et Al
< ce {Erpfllallfillz + (erka + )l I} et £ull5™*m

N,
e R N e e e T

F/aN

Nf4m
= M fo, IRy (et} B ]

Given any ' > 1 and €' > 0 one can find r close enough to one and ¢ close enough
to zero so that the last term is smaller than
NGB £,

Crl'sl

as required. W

The starting point for our main theorems will be the following
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PROPOSITION 2.5. For any r > 1 and £ > 0 there ezists a constant ¢, . such
that

(2.17) K (t,2,9)| € er,et ™2™ exp {M(p(2) - 9(¥)) + (ke + €)1},
forall A€ R and all p € &,,.
Proof. Lemma 3 implies that the kernel K, (t,z,y) of e"H ! satisfies
[Kag (b 2, 9)| < eret™ ™ exp{(rky o + )t}
But it follows from (2.6) that
Kaplt,z,y) = e MO K (¢, 2, y)ere ),
hence

(2.18) K (t,2,9)| € er,et ™2™ exp {A(p(2) — ¢()) + (rkxp + €)t}

as required. &

3. LINEAR 'S

Up to this point we have taken the function ¢ to lie in &,,. This choice guarantees
that the map f — e**f is a bounded automorphism of Wi™?(Q2). Since it is
also an automorphism of L?(Q), it induces a canonical functional calculus for the
operator H,, by the equation

(3.1) F(Hxp) = e f(H)e™.

In order to obtain sharp constants below in the case @ = RV, it is necessary to
consider functions ¢ that are linear. Since such functions are not bounded some
extra arguments are needed; these arguments are unnecessary if the domain §2 is
bounded.

Let @ C RY be unbounded and let

p(z)=a-z

where a is a vector of unit length. We cannot use (2.4) to define @), since
multiplication by e** does not leave WJ* ’2(9) invariant. We can however compute
the RHS of (2.5) formally, and a simple calculation yields

62 Q)= [ o) T ¢nchn Q" (e Dk D" Faz
[¢] avp ’Yli§1=g{
Ya2to2=
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where
oo et
18T gl

The RHS of (3.2) is well defined for f € Wy 2(Q) and we use this formula to
define the (closed) form Q,,. Note that the functional calculus (3.1) is no longer
valid. However, we still have the following

ProposITION 3.1. Assume 2m > N and lel k) be such that

Re Qxo(F) 2 —kal|fI12

for some linear function ¢ and all f € W™*(Q). Then

1Kt 2,9)| € cret ™M™ exp {A((z) — (¥)) + (rkx + )t}
Jorallr > 1 and e > 0.

Proof. Let (Q,) be an increasing sequence of bounded domains such that
U, = Q. For each n we denote by H,, the operator on L%(,) induced by H
and satisfying Dirichlet boundary conditions. So H,, is the operator associated to
the form @, obtained by restricting @ to Wé"'z(ﬂ,,). For our given linear ¢ the
twisted form Q, i, has already been defined, and we set

“‘kl,n = inf ReQA.,,(f)

where the infimum is taken over all functions f € C®(Q,) with ||f]l2 = 1. It is
immediate that the sequence (k) is increasing and that

limky , < kx

(with an actual equality holding if k) is chosen optimally). Since ¢ is bounded on
each O, we can apply our earlier results to the operators H,, and conclude that

|Ka(t, 2, 9)] < cr et 2™ exp {Ap(z) ~ ©(¥)) + (Tkan + )t}

forallr>1,e>0,t >0and z,y€ Q.
Now the sequence @, is a decreasing sequence and Q,(f) — Q(f) for all
f € C®(R). This implies [5], p. 8 that

(Ho+1)" = (H+1)7!
strongly (where (Hy + 1)~! is now a pseudo-resolvent) and from this follows that

e-—H..t Ht

—e”



SHARP ROUNDS ON HEAT KERNELS 189

strongly, where, again, e~#»! is interpreted as being zero on L%(Q \ Q,) so that

its kernel is
K,"(t, z, y) = XQ, (I)Kﬂ(t’ z, y)xnm (y)
For f,g € C°(Q) we then have

| [ Kt.o.0)1@)00) o

aQOx
= (™™ f,g) =lim [{e="*f, g)| = li,gnl / Ko (8,2, y)f(2)g(y) dedy
Qn X0
< limnsup eyt~ / exp {A(p(z) — @(¥)) + (rkrn + &)t} | f(2)g(y)| dedy
Sy X0y
o™ [ exp {Ap(a) — p(0) + (ks + )} ()a(w)] dad.

axa
Since f and g are arbitrary, this implies that
K (8, 2,)| € et ™2™ exp {Mep(z) = (¥)) + (rkr +€)t}
as required. 1§

From now on we shall restrict our attention to operators acting on the whole
of RV and to functions ¢ belonging to the set

&in=:{z—a-z]acRY, |a| < 1}.

4. HOMOGENEOUS OPERATORS

In this section we shall consider the case of homogeneous operators and we shall
only consider functions ¢ € £in. In this case every term in (3.2) has |y + 6| =
|v2 + 82| = m and thus it follows from (2.8) that the function y,(¢) in (2.7) can
be taken to be of the special form

(4.1) ae) = 7(e)A?™.
Similarly, the estimate (2.10) can be taken to be of the form
(4.2) Re Qap(f) = —k2™ || f13.

The determination of the smallest constant k& for which (4.2) holds is non-
trivial and is studied for various particular situations below. We have the following
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LEMMA 4.1. Let 2m > N and lei H be a homogeneous operator salisfying
(4.2) for all functions ¢ € Eip. We then have

, B { 9m—1 _ B lz _ y12m/(2m—1)
N/2 ‘ 1i/(2m-1
Kt z,9)| € ert ™M™ exp {" Sy -(2km) =1/ Cm-1) $17(2m=1)

forallr > 1.
Proof. From Proposition 3.1 we have
[K(t, 2, 9)| < er, et ™2™ exp {Me(2) = (¥)) + (rkA*™ + €)t}
for all ¢ € &n. Optimizing over all such ¢ yields
IK(t,z,y)] € cret ™ N2 exp { =Mz — y| + (rEX>™ + £)t}

and optimizing over A by putting

yo (=)™
2mrkt
yields
(4.3) / )
_ 2m_1‘ . _ x__yizm 2m=1
|K(t,2,9)| < cret Ny2m exp{— Y (2km) 1 l)l tl/‘(Zm—l) tetp.

Using a scaling argument we eliminate the term et: Let § > 0 be fixed, let U be
the unitary operator given by

Uf(z) = 6V 2 f(6z)

and set.
H =§™y-1Hy.

Then {a,p(6~"z)} is a coefficient matrix for H' and the heat kernel K'(¢,z,y) is
related to K{(t,z,y) by

K(t,z,y) = 6V K'(82™t, 6z, by).
Applying (4.3) to K'(t,z,y) we get
K (¢, z,9)| € e 8N (62m)~N2m

_ _ 2m/(2m-1)
exp{—2m L (9km)=1m-1 @1z — V1) +£62”‘t}

2mr (§2mi)1/(2m=1)
_ Y%n —1 _ _ E;B . y|2m/(2m-—l)
- Nj2 1/(2 1 -~ 2
_cr,:t / "‘exp {_ ?mrr (ka) f(2m )—m— + 8™t .

The result now follows by letting § — 0. &
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Powers of the Laplacian

A special case of homogenecus operators that can be treated in more detail
is the case where H = (—A)™.

LEmMMma 4.2, Lel

‘ . —-(2m-1)
(4.4) km = (sm T 2)

We have

ReQap(f) 2 —km A>™ || 7113
Jorallp € &y and all f € W""z(RN).

Proof. Since Dom(H),,) is a form core for @, it is enough to prove that

Re (Haof, f) = —kmA2™|| FII2

for all f € Dom(H,,). For any multi-indices a, # and vy we set

_(atocton) L, (B+)!
o= T ant T YT T
so that
A™Mfy= D caD* ()
| =m
= Z Co Z c;,,Y(D'VeA“’)Dﬁf
laj=m  B+y=2a
and hence

&M (=AY f = (-1 Y (6T D) DP f
= (-3 (M) DPf

where ' = 3 ¢ca 3 ¢y In the Fourier space this acts by multiplication
lejl=m  B4+y=2a
by the complex-valued polynomial

PE) = (-1 3 (Aa)(i€)?
= (=)™ Y calha+if)™

ja|=m
= (—l)m{()un + i£1)2 + -+ (AaN + if}v)z}m
= (€? — )\* + 2iAa - &)™
=: XM B(¢/)
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where P(€) = (€2 +2ia-£—1)™. The minimum of Re P(¢) is attained when ¢ = pa
for an appropriate 4 € R, and for such a £ we get

(4.5) P(€) = A" (u+1)™™.
Writing u +i = re'’ where r > 0 and 0 < < 7 we have r? = sin~2 0 so that
Re (4 +1)®™ = (sin 8) 2™ cos 2m#.

The result follows by minimizing the above with respect to 8. 1
The restriction on N in the following theorem is almost surely not necessary.

THEOREM 4.3. Let 2m > N and

om = (2m — 1)(2ﬁ)'2m/(2m'1)sin (4m7r_ 2).

The heat kernel K(t,z,y) of (—A)™ satisfies the bound

_ o|2mf(2m-1)
(4.6) |K(t,z,y)| < it~ NP exp{—amlz——y—l——}

rtl/(2m-1)
forallr > 1.
Proof. Follows from Proposition 2.5 and Lemma 2.1. 1

REMARK 4.4. The constant o,, is optimal for all m and N. First, we have
o1 = 1/4, which is known to be optimal. Moreover, in one dimension one can use
the tools of asymptotic analysis to find the large z asymptotics of

Sm(z) = K(1,2,0) = / eisE=€™" g

and one sees that o,, is optimal. For example, for m = 2 the method of steepest
descent ([6], [8]) yields

4.7 S2(z) ~ Q1L/63=1/271/25=2/3 ¢og (21/333/21:4/3 g) o2 ast?
16

as £ — +0c0. Since K(t,z,y) = t~1/45,(t~/4(z —y)), (4.7) and a simple argument
also show that one cannot put r = 1 in (4.6). Tintarev ([10]) has obtained short
time asymptotics for general superelliptic operators with smooth coefficients. His
results are more precise than ours, but are only valid for z and y sufficiently close
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and { sufficiently small. Of course, all such methods fail completely if one considers
operators with measurable coefficients.

Variable coefficients
Let H be superelliptic and homogeneous of order 2m where 2m > N. So H
has a representation

Hf(z)= Y (-1)I*D*{aas(z) D f(z)}

lorj=m

18f=m
where the measurable self-adjoint matrix A(z) = {aqps(z)} is such that
(4.8) Ao € A(z) € pAg

for some constant 4 2> 1 and all 2 € RN, where Ay is a constant matrix representing
the operator (—A)™. This of course implies

(4.9) Ho < H < pH,

in the quadratic form sense.

THEOREM 4.5. Assume 2m > N. The kernel K(t,z,y) satisfies the estimate

Ix _ ,y|2m/(2m-—1)
rtl/(2m-1) }

K (60,91 < et exp { —p(,m)
for all v > 1, where
Py m) = (2m — 1)(2m) =2/ Gm=D Em=1) {4 oy — 1)um)=H/Gm=D
and ky, is given by (4.4). In particular
Py m) = o — O(u = 1)

as py — 1.

Proof. Let ¢ € &in and f € W™? be fixed. We define the square-integrable
vector valued function

{v).,a}lal-_-m = {e‘.A(PDaeAwf(x)}laI:m:

so that by (2.5)
@xe(f) = _/A(:c)v,\(w) cv_x(z)dz



194 G. BARBATIS AND E.B. Davies

where the dot denotes the standard inner product in € C. Writing p(z) = a-z

lal=m
we have
e~ Dt f = Z cfrxé(e’*“’D*e'\‘P)DGf
Y+b=a
= Y. d(xa) (D),
T+é=a
and hence we can write
v =vf +7,

vox = v} — vy

where

a= D ¢s(a7D%,
Y+i=a
|yl even

Vyo = E ¢, s(Aa)D°f.
Y+é=o
Il odd
Thus

Qrp(f) = /Av,\ ~v_)dz

= ./A(v,\"' +vy) - (vf — vy)dz.

Hence from (4.8) we have
ReQao(f) = [(A} o — A5 05)de
>/on;'-v:’\'dx—p/on; vy dz

=Re Qo xp(f) — (4~ 1)/on; vy dz
> Re Qoap(f) — co(u = Dllvy {13

where the constant ¢ is independent of ¢ and u.
The vector vy only contains derivatives of order < m, and it follows from
(2.8) that
llox 113 < eQo(f) + e =™A2"|1£]3
for all € > 0 and all f € W™2(RV).
Using the lower bound that we obtained in Lemma 4.2 for Re Qg », together
with (2.13) and (4.1) we have for 0 < 9 < 1

Re Qup(f) > {752 —colu—1)e Qo) — {1 n) + k(=)™ } 227 (3
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and taking
-7

£ = ——
260([1 - 1)
we get

Re Qag(f) = ~ {e(1 = ) + nkm + c(p— 1)™(1 = ) "™} X2 £
Choosing 5 € (0,1) so that

1—71=E—_—1

7
we conclude that

(4.10) Re Qap(f) 2 —p~" {km + c(u — D™} ™| 113
The result now follows by applying Lemma 4.1. &

5. NON-HOMOGENEOUS OPERATORS

Up to this point we have only considered homogeneous (in the form sense) opera-
tors. A common property of the bounds this far obtained is that they all involve a
single term in the exponent, of the general form c|z — y|?™/(2m=1) /41/(2m~1) This
property is destroyed if one considers non-homogeneous operators.

We shall look at a simple example. Let m; > my and let

H=H,+ Hy=: (—A)™ + (=A)™2.
Note that the heat kernel of H is now of the special form K(t,z,y) = Ki(z — )
and one has

(5.1) Ki=Ky1% Kay

where K;(z — y), ¢ = 1,2 is the heat kernel of H;. This however depends on
the fact that the operators H; have constant coefficients. Rather than using (5.1),
we prefer to use the method discussed earlier, which can also be applied in the
variable coefficient case. See also the note below.

The off-diagonal behaviour of the heat kernel depends on the ratio |z — y|/#:
if the ratio is large (small times) then H; is the dominant component; if it is very
small, then Hs is dominant. More precisely, let

L,(u) = Axrelt'; { =M+ r(ky A2™ 4 kpA?™2)}
be the Legendre transform of the function
Ao (kg A2 4 kpX2ma),

which can be computed numerically. We have the following
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PROPOSITION 5.1. Let 2my; > N. For any r > 1 we have

IK(t, z,v)| < crt'N"z"“exp{tL,(Itt ')}

In particular, setting p = (2my — 2my)/(2my — 1) we have
(i) for large |z — y|/t

-»
tL (I-‘t . I) = =, |z — ylzmll(Zm:—l)t-I/@ml—l) (1 —c ([:ﬂ ;‘ yl) ) ’

and

(i1} for small |z — y|/t,

iL ("’ t ”') = =yl — yfFmal (== /ama=1) (1 e (‘” z y‘)”) .

Proof. We have from Lemma 4.2

Re Quap(f) > —km X2™(f13, i=1,2
and hence
ReQ’W’(f) 2 - (kmz Az + kms)‘zm’) ”f”%

Hence, by Lemma 2.5 we obtain a pointwise bound on the kernel of the corre-

sponding semigroup
(5.2) Kt z,9)| € et~ M2 exp(ra, ), allr>1,
where

Arx = =25 = y| + r(km, A2™ + km, AP,

and the first assertion follows by taking the infimum over A.
As for the two asymptotic estimates, the first one follows from (5.2) by
choosing
A = [@2makm,) "o — gle2) O™

while the dual choice proves the second. §
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The same arguments can be used to obtained similar bounds when one con-
siders the sum of general homogeneous operators with variable coefficients. The
expression in the exponential will then involve some extra terms, namely the lower
bounds on Re @), that were obtained in the proof of Theorem 4.5. We do not
pursue the details.

As one would expect, adding a non-negative potential to an operator does
not pose any problems for heat kernel estimates. Let Hg be a general superelliptic
operator (not necessarily homogeneous). Given a non-negative potential V €
LL _(R"), one can define H = Hg+V to be the operator associated to the (closed)

loc

form @ defined by

Dom(Q) = { £ € Dom(Qs) | / VIf?dz < +oo}

and

AN = Qo)+ [VirPdz, e Dom(Q).

Although Dom(Q) does not necessarily coincide with Wm™2 the theory still applies.
Estimate (2.7) is valid since Qxp, — Q@ = Qo rp — Qo, and although the second
inequality in (2.3) no longer holds, one easily checks that this is not a problem
and that the proofs of Lemmas 2.1-2.4 are still valid. Hence we have

PROPOSITION 5.2. Any heat kernel bound obiained for Ho by means of
Proposition 2.5 is also valid for H.

Proof. By hypothesis, we have an estimate on Qo », of the form

Re Qo xo(f) = —kallfll3-

Hence

Re@rolf) = ReQapn() + [ VIfPPdz > —IfI

and the result follows from Proposition 2.5. 1
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