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ABSTRACT. In this paper we find the norm and the asymptotic behavior of
singular values of the Cauchy transform on a bounded domain.
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1. INTRODUCTION

Let D C C be a bounded domain. Denote by L*(D) the space of complex valued
functions in D for which the norm

1= ( fircer asce)®
D

is finite. Here the dA(€) = dzdy, £ = = + iy. The Cauchy integral operator
C : L?(D) — L%(D) is defined by

Cf(z )——1/;&5sz

It is well known that C is a bounded operator on L%(D). If D is the unit disc,
J.M. Anderson and A. Hinkkanen proved in [1] that ||C|| = 2/« where « is the
smallest positive zero of the Bessel function

Jolz) = Z ((k'l) (5)"
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In [2], Anderson, Khavison and Lomosov determined all the eigenvalues and
eigenvectors, of the operators C*C and L, where L is defined on L%*(D) (D is the

unit disc ) )
L) = 57 [ In g 1€ 44C6).
D

They also determined the eigenvalues and eigenvectors of the operator
Ni@) = g [l =" 1) dy
(n - 2)0},,_1 A

(wn-1 denotes the surface area of the unit sphere S"~! in R™) acting on L?(D),
where D is the ball in R". In the case of an arbitrary domain D, estimates from
below of the norms of C, L, N are also given [2] but there are no precise estimates
from above. Qur Theorem 2.1 gives the exact value of the norm of C' in an arbitrary
simply connected domain in C.

In [3], Arazy and Khavinson gave estimates from above and below of the
singular values of the operator C in an arbitrary bounded domain in C. They
also founded estimates for the singular values of the operators CP, PCP and LP,
when P is the Bergman projector, and showed that these are two times nicer than
the corresponding estimates for C or L. Our Theorem 2.6 gives an expression for
the exact asymptotic behaviour of the singular values of the operator C in the
terms of geometric properties of the domain D.

The exact asymptotic behaviour of the singular values of PC and LP and
their dependence on the length of 8D will be presented in a forthcoming paper.

Let T be a compact operator on Hilbert space . The singular values of
the operator T are the eigenvalues of the operator (T*T)3. The eigenvalues of
the operator (T T)%, arranged in the decreasing order and repeated according to
their multiplicity, form a sequence s1(T"), s2(T), ... tending to zero. Denote by C,
the Schatten-von Neumann class of operators. Let A(T) be the singular value
distribution function

M@= 3 1, t>0

3. (T)2t
Denote by [K(z,y)dy the integral operator on L%(D) with the kernel K(-,-).
D

By a, ~ b,, n — oo and f(z) ~ g(z), £ — 0 we denote the fact that

lim a—”:l and lim-f(—z)z .
n—oo 0, =0 g(m)
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2. RESULTS

THEOREM 2.1. If D C C is ¢ bounded domain with piecewise C! boundary,
then

2
Cll=—
el on
where Ay is the smallest eigenvalue of the following boundary problem
-Au = Au
2.1) {
«|0D = 0.

In what follows we need some lemmas.

LEMMA 2.2. Let f € L?(D) and

- 1 . .
— —iuz; ~lvzy
flz)= 27r/e Fu,v) dudv.
D
Then for0 < a € 1/2
@)l

|z|2&
2

dz < ,\;a/mzn?dx
D

where Ay is the smallest eigenvalue of the boundary problem (2.1). (Here x =
(xli xz), le =V x% + 1:2')

Proof. Let ¢ € C§°(D) (infinitely many differentiable function with the com-
pact support lying in D). Then —Agp = F~|z|?Fp. Here F is the Fourier trans-
form, i.e.

1 .
F =@(z)= — [e " p(t)dt.
o) = (0) = 5~ [ =)
B2

Therefore we have

(2.2) (=Ap, @)Ly = (F~ 2|’ Fp, 0)L2(D).

Let {un}32, be the orthonormal base of L2(D) consisting of eigenfunctions of the
Laplace operator —A with the boundary condition 4|80 = 0 corresponding to the
eigenvalues 0 < A; < Ay < A3 £ - - - respectively. Since

(=8p,9) = > Aallp ua)l* 2 Mllell,

n=1



236 MiLuTin R. DosTaNIG
then from (2.2) it follows

Mle,0) < (F7zPFep,0) Ve e CP(D).
Let Ao and B be linear operators on L%(D) defined on the domains
D(40) = C3°(D)
and
D(B) = {p € LY(D): j|x|‘*|a|2dx < oo}
R2
by
Avp = F7lz|?Fp  (p € D(A))
Bp=F~Yz[’Fe (v € D(B)).
The operator Ag is symetric and hence closable. The operator B is selfadjoint. It

can be casily proved that Ay = B, where Ay is closure of Aq. Let ¢ € D(B). Then
there exists a sequence ¢, € C§°(D) such that

lp — @nllzapy = 0 and  Agpn — App = Byp.
From (2.2) it follows
)\1((071,',0") S (F—llzlesoﬂ:(Pﬂ}'
Putting n — oo we obtain

(e, 9) < (Bp,p) Vo €D(B)

and therefore
B4+A2XA+XA (onD(B)), (A>0);

hence
(B+A'<(a+ 070
Since -
B~® = s‘“ﬂ“" / AT*(A+B)"'dr for0<a<l ([8]),
0

we get

o

(5, = 2L [a-e(0+ B) 1, o
(2.3) -
sinamw o - -
<2 [ u 4 07 0 Wy = Aoy

Q
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Substituting B~* = F~1|z|~22F in (2.3) we obtain

(P72l F S, flrap) € 27 fllza ),

ie.,

|7 ()12

AT 1) dz. 1
/

LEMMA 2.3. Let ©,(8) = Vi— (38"1: 1%“;) € = r+iy. Then the following

equalilies hold:
@ J On (€)Bm (€) dA(E) = bnm;
(ii) C*On = —A=un, (C* is the adjoint operator of C);
(iii) Cun = 7?):("'611 + k) where kn(2) = & [ 228 g¢.

2 -z
"igp ¢

Proof. The relation (i) is obtained directly applying Green formula (having
in mind that —Au, = Atts, un|0D = 0 and [ un(€)um () dA(E) = bpm)-
8D

(ii) By Cauchy-Green formula

f(Z)=—2m g“) aE - c(gg)

(which holds for f € C(D) N CY(D)) we get

Since 525(9,1 = %“fﬂ, we obtain

C*0n = -

(iii) By Cauchy-Green formula

) = == 2m Ef(g) s+c(g®

we get
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Proof of Theorem 2.1. Let ¢,y € C§°(D). By direct calculation we get
2)9(z
(o Wusoy = £ [H2HED %) 44

C

because (1) = 1 in the sense of distributions theory and

13(2)] |9(2)| 18(2)1? [(2)I2
|(cga,¢)|<2c il as < / 2l 4 c/—lzl dA

2
< '\/—}—l”sallmw) - [lellza()
(acording to Lemma 2.2, case o = 1/2). Then for f,g € L*(D) the inequality

I(Cf, ) < Wllf” (|9l holds and so ||C|| € By Lemma 2.3 it follows C*6; =
_771"1 Hence
2 2 . "

So |IC]| = 7271 (The inequality ||C|} > 721-1 is also proved in [2] (Proposition 5.1,
p. 402) by different argument.) @
REMARK 2.4. If D = {2 : |2] < 1} then A\) = &?, where « is the smallest

positive zero of Bessel function Jy. According to Theorem 2.1 we get ||C|] = 2/a.
This result it obtained in [1].

REMARK 2.5. If D is bounded domain in C and D lies in the disc of radius
R, than

(2.4) ICl <

TCI:

5T where |D| is area of domain D

\V’?l:u

By Faber-Krahn inequality ([7]) we get A;
and by Theorem 2.1 we obtain
|D|

T

ICll < <
which is a better estimate than (2.4).

Now consider a generatization of the Cauchy operator.
Let m € C(D) be a complex continuous function on D and let 4 be the
measure defined by

dp(e) = m(€) dA(E).
Consider the operator A : L3(D) — LZ(D) defined by

Af(z) = ff €) 4u6).

It is well known that C is a compact operator, hence the operator A is also compact.
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THEOREM 2.6. If D is a bounded Jordan measurable domain in C, then

sn(A) ~ ( [1m©F 44©) ey,
D
CONSEQUENCE 2.7. A € C, & p > 2. (This corollary is contained in 3].)

REMARK 2.8. If m = 1 then A = C and from Theorem 2.6 it fol]ows that
Sp ~ \/?L%L-. Since Ap ~ %1']‘—, by Weyl theorem ({6]) we have 5,(C) ~

Observe that from Theorem 2.1 it follows 5,(C) = 7— For the other sin-
gular values we usually have s, # 72,\—", but still the asymptotic relation

2
s5a(C) = \/A—n(l +o(1))

holds. We mention that when D is unit disc we have s, = A= (see [2], Theo-

rem 2.2), although the eigenfunctions and their multiplicities are slightly different.
Before the proof of Theorem 2.6 we need a number of lemmas.
LEMMA 2.9. If D is bounded domain with piccewise C* boundary then

C= Z (- up) - (=On + k)

n>1

where kn(2) = 2m f e—"(ﬂdf

Proof. From Lemma 2.3 it follows

2
m(ﬁen + kn).

Since {u,}2%, is an orthonormal basis of Z?{D) then we have

Cuy =

Z(f, un) - un, (f € L*(D)))

and therefore

Cf= (frun)Cun = W(f,un)( —On +ka).
n=1 n=1 n

Let C =5 2 - Up)Ohn.
! n§17:\_n-( )
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Now we prove that if D = [0, 7]? then C — C; is a Hilbert-Schmidt operator.
The eigenfunctions and the eigenvalues of the boundary problem
—Au=du
ul0D=0 D=1[0,7]x][0,n]

are tmp = Zsinnzsinmy and pim, = m? 4+ n?. In this case the operator C' — Cy
has the kernel R(£, z), where

2 —5—— sin nu sin mu(n cos nz sin my — imsin nz cos my)
e =~ m‘tn
where £ = u+1iv and z = z + iy. The series

o

E —— sin nusin mu(n cos nz sin my — imsin nz cos my)
m2 + n?

m,ﬁil
is convergent in distributional sense.

LEMMA 2.10. [ [|R(¢,2)[?dA(€)dA(z) < co.
DD

Proof. Since

2. cosma 1 T 2 cosh an
—_— et —lein | —2 5
.nz-_-l’"2+"2 2n2+2n(e +e—27m_1) (=27 < & < 27),

applying simple transformations, we obtain

1 1 8 [r < T
- = By s i — e nlv-vl _; 7 i — y)e—nle-ul
R(¢, z) py +3 (8 ﬂE=lsm n(u—z)e ig ﬂ§=lsm n{v —y)e )

+ some function from L*(D x D).

Since
st sin b
E “sinnb = 0,beR
n=1e S = S cosha—2coshs ¢~ 1 °€

from the previous equation it follows

_ 1.1 1 sin(u — )
R(¢,2) = m€—2z + 7 2 cosh(v — y) — 2 cos(u — z)
7 2 cosh(z — u) — 2 cos(v — y)

+ some function from L%(D x D).
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Since the function

sin b b
2cosha —2coslh a2+ b?

(a,b) —

is bounded in a neighborhood of the point (0,0), from {2.5) it follows
11 1 Cu—2 1 v—y
R(E,z) = Té—=z + T(u—22+(v—y)?2 7w(u—2)+@-y)?
+ some function from L*(D x D).

So, B
11 1 €~%
BN AT =r

ie, ReLXDx D). 1

Lemma 2.11. If D = [0,7?], then for the operator C : L*(D) — L2(D),
defined by

+ some function from L*(D x D)

cr@) =-1 [ EL aae),
B

the relation 5,(C) ~ /T holds.
Proof. According to Lemma 2.10, C' — C is a Hilbert-Schmidt operator and
(2.6) lim n¥s,(C - Cy) = 0.
11—+ 00

On the other hand, we have 5, (C1) = 2//A,, where ), are the eigenvalues of the
following boundary problem

— Au= Au

wdD =0 D=[0,7]x][0,x].
The Weyl Theorem gives A, ~ 22, So from Ky Fan Theorem ([5]) and (2.6) it

follows
fm
Sn (G) o ; . |

Observe that, by substitution, from Lemma 2.11 we get

@7) s,.(..L .%@)N o]

T £—1z ™
D

where D is an arbitrary square with the sides parallel to the coordinate axes and
| D} denotes its area.
The following two lemmas are direct consequences of Lemma 1 and 2 from [4].
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LEMMA 2.12. If T and T" are compact operators and
T=T+T", tlitgg'_t"’./wf;;(i"') =C(T") and so(T")=o(n"%), v>0

then there ezisis the limit 1i:51+ tYNY(T) and it is equal 1o C(T").
Tt

LEMMA 2.13. Let T be compact operator and suppose that for everye > 0
there erists a decomposition T = T +TY where T!, T are compact operators such
that:

(i) There ezists Efgﬁ YN(T)) = C(T7), C(T!) being a bounded function in
the neighborhood of € = 0;

(i) Tim sa(T")n% <,

Then there ezists 1i1§1+ C(T}) = C(T) and
&—

lim £144(T) = C(T).

Proof of Theorem 2.6. Consider first the case when D = [0,#])%. Divide the
square D) in N squares D; and denote by &; the center of I;. Let ¢ > 0. Since
m € C(D) then for N large enough the inequality [m(€) — m(&;)] < ¢ holds for
every £ € D;. Then

(2.8) <e

N
) (m(€) ~ m(&))xp, (€)
i=1

for every £ € D. (xs(-) is characteristic function of the set S.) The operator

A=l [ mEdAE)

T -~z
D
can be represented in the form
A=By+Hy+ En

where By, Hy, En are linear operators on L%(D) defined respectively by

1/ 1
BNfz—;I)/sz

N
[ (m(£) - m(éj))x::,-(f)] f(€) dA(E)

N | )
Hyf = Y miE o, (2) [ - T FO)4A©
i=1 Dy
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and

—

Enf="y_ m(&)xp:(z) /

X
5l D;

q

Since
[ e
£ — 2|2

it

for i # j, we conclude that Ep is a Hilbert-Schmidt operator and hence
(2.9) sn(ENn) = o{n~3).

From (2.7) and (2.8) it follows

[

sn(BN) S C - —

n

where the constant C' does not depend on n and ¢. From (2.9) and the property
of singular values of the sum of two operators we obtain

(2.10) im n3s,(By + En) < C' ¢
n—oo

where C’ does not depend on € and N.
Define the operators C¥ : L?(D;) — L*(D;), j = 1,2,---,N by

1 f(€)
N
¢/ s =~ [mien L ance).
D;
The operator Hy is a direct sum of the operators CN, (/=1,2,...,N) and hence

N
N(HN) =) N(CF).
i=t
From (2.7) (consequence of Lemma 2.11), it follows

n(@) ~ Im(&)ly/ 22 n - oo

and therefore

M) ~ ime) P ¢ or.
So

N
. 9 1 NEITS
(2.11) Jim 2Ne(Hy) = ;;lm(e,)l |1D;1.
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From (2.10) and (2.11), by Lemma 2.13, we obtain

1 N
Jip, CNA) = Jim 2SS mEPDs| =  fim@ a46),
i= b
So
(212) KA~ = [Im@) aae) ¢ 0.
b

Putting t = 5,(A) we obtain ns3(A) ~ L [[m(£)[* dA(), i.e
D

sulA) ~ (a4 [Im©)P d4(6)) "

D

and Theorem 2.6 is proved in the case when D is a square.

LEMMaA 2.14. Lei D = U K; where K; are the squares wilh the property

KINnK? =0 (i#]) (K is the tnterzor of the square K;), and m is a continuous
complcx function on D. Then for the operator A; : L2(D) — L*(D) defined by

Auf(z) = / 107 aae)

the following asympiotic formula holds
1 ,
NAn) ~ =5 [Im(@)P aate) - ot
D

Proof. Let P; : L%(D) — L¥(D), P; f(#) = xx,(#}f(2). Then

ZPAlP + z PiA1P;.

£
=1

The operator P;Ay P are the Hilbert-Schmidt ones; hence

nlLl'glonzs,,(ZPAlP) = (.

i#j

By Lemma 2.12 we obtain

Jlim 24 (4;) = lim t"’N}(ZPA P) =) lim A(PiAs P).
i=1

i=1
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Since by (2.12)
1
: 2 X 2\ — 2
lim e A4(PiAL ;) = 7r/|m| dA

we have

llmt Ne(A) = /Im]2 dA.

LEMMA 2.15. If Q;,Qs C R? are bounded measurable sets, Q3 C Qy and
B : L(S4) — L(S%), i = 1,2, are the linear operators defined by

Bif(s) = —— / % dA(E)
@

then
Ni(B1) € N(By).

Proof. We have By = PiByP; where P : L2 () — L*(Q;) and P; :
L*(Q2) — L?(Qy) are defined by P f = flQ1 and Pyf(z) = f(z) for z €
and Pf(z) =0 for z € Q3 \ ;. From B; = P, B, P; we have sn(B1) € sa(B2).
The statement of lemma follows. &

Proof of Theorem 2.6 in the general case. Let D be a bounded Jordan
measurable domain in C. Let Dy CDC DN where Dy and Dy are finite unions
of the squares of equal side length such that

|Dy| - D]

where |W| denote the area of W. Let i be a continuous extension of the function
m in some neighborhood of the set D. Let Ay and Ay be the linear operators on
L*(Dn) and L%(Dy) respectively defined by

A f() = -2 / mOIE) 40

i) = ) / M(E)f(f) aAG).

According to Lemma 2.15 we have

Ni(An) < M(A) < Mi(An),
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le.,
t2M(An) € PN(A) S PMi(AN).
So
(2.13) lim ?My(An) < lim t?N(4) < lim 2 Mo(4) < lim t* Ne(AN)-
t—0 t—0 — —

Since by Lemma 2.14

. , )
lim *Ni(Ax) = lim Ay (Ax) = ;/Im(E)PdA(g)

D
A 1 [ .
T £ A () = lim s (4) = — [ [ 4A(e),
D~
then from (2.13) it follows
2 [ im©F aa(e) < limAs(4) < T eN(A) <+ [ 1(E)P AA)
™ t—0 t—0 T

Dw Dy

From the last relation for N — oo we obtain

(2.14) lim e A(4) = 7 [ Im(©)F 44(©)

D

Putting t = sp(A) in (2.14) we get nsZ(A) ~ L [|m(£)|? dA(¢), i.e.,
b

N1

sn(4) ~ (xn)# ( [Im() a4(6)) "
D

Theorem 2.6 is proved. 1

REFERENCES

1. J.M. ANDERSON, A. HINKKANEN, The Cauchy transform on bounded domain, Proc.
Amer. Math. Soc. 107(1989), 179-185.

2. J.M. ANDERSON, D. KBAVINSON, V. LOoMONOSOV, Spectral properties of some in-
tegral operators arising in potential theory, Quart. J. Math. Ozford Ser. (2),
(1992), 387—407.

3. J. ArRazy, D. KHAVINSON, Spectral estimates of Cauchy’s transform in L*(Q), In-
tegral Equation Operator Theory 15(1992), 901-919.



THE PROPERTIES OF THE CAUCHY TRANSFORM 247

4. M.S. BIRMAN, M.Z. SOLOMIAK, Asymptotic behavior of the spectrum of weakly
polar integral aperators, Math. USSR-Izv. 4(1970), 1151-1168.

5. I.C. GOHBERG, M.G. KREIN, Introduction to the Theory of Linear Nonselfadjoint
Operators, in Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Provi-
dence, R.I. 1969.

6. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1966.

7. I.LR. KUTTLER, V.G. SIGILITO, Eigenvalues of the Laplacian in two dimensions,
SIAM Rev. 26(1984), 163-193.

MILUTIN DOSTANIC
Institute for Applied Mathematics
and Electronics
Kneza Milosa 37
Beograd
YUGOSLAVIA

Received February 13, 1995; revised May 30, 1995 and February 7, 1996.



