CERTAIN STRUCTURE OF SUBDIAGONAL ALGEBRAS

GUOXING JI, TOMOYOSHI OHWADA and KICHI-SUKE SAITO

Communicated by William B. Arveson

Abstract. Let A be a maximal subdiagonal algebra of a von Neumann algebra M with respect to a faithful normal expectation Φ. Then we show that if φ is a faithful normal state of M such that $\varphi \circ \Phi = \varphi$, then A is σ_φ^t-invariant, where $\{\sigma_\varphi^t\}_{t \in \mathbb{R}}$ is the modular automorphism group associated with φ. As an application, we prove that every σ-weakly closed subdiagonal algebra of $B(H)$ is a nest algebra with an atomic nest.

Keywords: von Neumann algebra, subdiagonal algebra.

1. INTRODUCTION AND PRELIMINARIES

In [1], Arveson introduced the notion of subdiagonal algebras to study the analyticity in operator algebras. At first, we start by given the definition of subdiagonal algebras. Let M be a von Neumann algebra on a separable complex Hilbert space H, and let Φ be a faithful normal positive idempotent linear map from M onto a von Neumann subalgebra D of M. A σ-weakly closed subalgebra A of M, containing D, is called subdiagonal algebra in M with respect to Φ if

(i) $A \cap A^* = D$,

(ii) Φ is multiplicative on A, and

(iii) $A + A^*$ is σ-weakly dense in M.

The algebra D is called the diagonal of A. We say that A is a maximal subdiagonal algebra in M with respect to Φ in case A is not properly contained in any other subalgebra of M which is subdiagonal with respect to Φ.
Although subdiagonal algebras are not assumed to be \(\sigma \)-weakly closed in [1], the \(\sigma \)-weak closure of a subdiagonal algebra is again a subdiagonal algebra ([1], Remark 2.1.2). Thus we assume that our subdiagonal algebras are always \(\sigma \)-weakly closed.

In [1], Arveson asked whether all (\(\sigma \)-weakly closed) subdiagonal algebras are maximal subdiagonal algebras. In [3], Exel gave an affirmative answer to this problem in finite case. That is, Exel showed that if \(A \) is finite in the sense that there exists a faithful normal finite trace \(\tau \) on \(M \) such that \(\tau \circ \Phi = \tau \), then \(A \) is automatically maximal subdiagonal.

In general, let \(A \) be a subdiagonal algebra of \(M \) with respect to \(\Phi \). Then there exists a faithful normal state \(\varphi \) of \(M \) such that \(\varphi \circ \Phi = \varphi \) by the separability of \(H \).

First, we shall prove that, if \(A \) is maximal, then \(A \) is invariant under the modular automorphism group \(\{ \sigma^t_\varphi \}_{t \in \mathbb{R}} \) of \(\varphi \) (cf. [5]). Further, as an application, we shall show that every subdiagonal algebra \(A \) of \(B(H) \) is a nest algebra with an atomic nest.

2. \(\sigma^t_\varphi \)-INVARIANCE OF SUBDIAGONAL ALGEBRAS

Let \(M \) be a von Neumann algebra, acting on a separable Hilbert space \(H \), and let \(A \) be a subdiagonal algebra of \(M \) with respect to \(\Phi \). Put \(D = A \cap A^* \). Then there exists a faithful normal state \(\varphi \) on \(M \) such that \(\varphi \circ \Phi = \varphi \). Without loss of generality, we may assume that \(M \) has a cyclic and separating vector \(\xi_0 \) in \(H \) such that \(\varphi(T) = (T \xi_0, \xi_0) \) for any \(T \in M \).

Put \(A_0 = \{ X \in A : \Phi(X) = 0 \} \), and we define the closed subspaces \(H_1, H_2 \) and \(H_3 \) by \(H_1 = [A_0 \xi_0] \), \(H_2 = [D \xi_0] \) and \(H_3 = [A^*_0 \xi_0] \) respectively, where \([S] \) is the closed linear span of a subset \(S \) of \(H \). Let \(P_i \) be the orthogonal projection from \(H \) onto \(H_i \) for every \(i = 1, 2, 3 \). Let \(\mathfrak{A}_m \) be the set of all \(A \in M \) such that \(\Phi(A \mathfrak{A}_0) = \Phi(\mathfrak{A}_0 A) = 0 \). By [1], Theorem 2.2.1, we recall that \(\mathfrak{A}_m \) is a maximal subdiagonal algebra in \(M \) with respect to \(\Phi \) containing \(\mathfrak{A} \). Then we easily have the following lemma.

Lemma 2.1. Keep the notation as above. Then

(i) \(H = H_1 \oplus H_2 \oplus H_3 \);
(ii) \(D H_i \subseteq H_i \) (\(i = 1, 2, 3 \));
(iii) \(H_1 = [(\mathfrak{A}_m) \xi_0] \) and \(H_3 = [(\mathfrak{A}_m) \xi_0] \);
(iv) \((\mathfrak{A}_m)_0 (H_1 \oplus H_2) \subseteq H_1 \) and \((\mathfrak{A}_m)_0 (H_2 \oplus H_3) \subseteq H_3 \).

Considering the Hilbert space decomposition in (i), we have the following lemma.
Lemma 2.2. Keep the assumptions and the notation as above. Then

\[\mathcal{D} = \left\{ D \in \mathcal{M} : D = \begin{pmatrix} D_{11} & 0 & 0 \\ 0 & D_{22} & 0 \\ 0 & 0 & D_{33} \end{pmatrix} \right\} \]

and

\[(\mathfrak{A}_m)_0 = \left\{ X \in \mathcal{M} : X = \begin{pmatrix} X_{11} & X_{12} & X_{13} \\ 0 & 0 & X_{23} \\ 0 & 0 & X_{33} \end{pmatrix} \right\}. \]

Proof. Put

\[\mathfrak{B} = \left\{ D \in \mathcal{M} : D = \begin{pmatrix} D_{11} & 0 & 0 \\ 0 & D_{22} & 0 \\ 0 & 0 & D_{33} \end{pmatrix} \right\} \]

and

\[\mathfrak{C} = \left\{ X \in \mathcal{M} : X = \begin{pmatrix} X_{11} & X_{12} & X_{13} \\ 0 & 0 & X_{23} \\ 0 & 0 & X_{33} \end{pmatrix} \right\} \]

respectively. Then it is clear that \(\mathcal{D} \subseteq \mathfrak{B} \) and \((\mathfrak{A}_m)_0 \subseteq \mathfrak{C} \).

If \(D \in \mathfrak{B} \), then \(\Phi(D) \in \mathcal{D} \subseteq \mathfrak{B} \) and so \(\Phi(D) \) has the matrix form as follows:

\[\Phi(D) = \begin{pmatrix} V_{11} & 0 & 0 \\ 0 & V_{22} & 0 \\ 0 & 0 & V_{33} \end{pmatrix}. \]

Since \(\mathfrak{A}_0 + \mathcal{D} + \mathfrak{A}_0^* \) is \(\sigma \)-weakly dense in \(\mathcal{M} \), \(\mathfrak{A}_0 + \mathfrak{A}_0^* \) is \(\sigma \)-weakly dense in \(\text{Ker}(\Phi) \). Let \(P_2 \) be the orthogonal projection from \(\mathcal{H} \) onto \(\mathcal{H}_2 \). Then it is clear that \(P_2(X\xi_0) = \Phi(X)\xi_0 \), \(X \in \mathcal{M} \). Thus \(P_2XP_2 = 0 \) for every \(X \in \text{Ker}(\Phi) \). Since \(D - \Phi(D) \in \text{Ker}(\Phi) \), we have \(D_{22} - V_{22} = P_2(D - \Phi(D))P_2 = 0 \). Hence we have

\[(D - \Phi(D))\xi_0 = (D_{22} - V_{22})\xi_0 = 0. \]

Since \(\xi_0 \) is a separating vector for \(\mathcal{M} \) and \(\xi_0 \in \mathcal{H}_2 \), we have \(D = \Phi(D) \in \mathcal{D} \) and so \(\mathcal{D} = \mathfrak{B} \).

On the other hand, take any \(X \in \mathfrak{C} \). Since \(\Phi(X) \in \mathcal{D} \), \(\Phi(X) \) is of the form

\[\Phi(X) = \begin{pmatrix} V_{11} & 0 & 0 \\ 0 & V_{22} & 0 \\ 0 & 0 & V_{33} \end{pmatrix}. \]

Then we similarly have \(P_2(\Phi(X) - X)P_2 = V_{22} = 0 \). Thus \(\Phi(X) = 0 \).

It is trivial that \(\mathfrak{C} \) is a \(\mathcal{D} \)-bimodule and \((\mathfrak{A}_m)_0 \subseteq \mathfrak{C} \). Hence it is easy to check that \(\mathcal{D} + \mathfrak{C} \) is a subdiagonal algebra of \(\mathcal{M} \) with respect to \(\Phi \), containing \(\mathfrak{A}_m \). By the maximality of \(\mathfrak{A}_m \), we have \(\mathfrak{A}_m = \mathcal{D} + \mathfrak{C} \). This implies that \((\mathfrak{A}_m)_0 = \mathfrak{C} \). This completes the proof. \(\blacksquare \)
From Tomita-Takesaki theory, we define conjugate-linear operators \(S_0 \) and \(F_0 \), with dense domains \(\{ \mathcal{M}\xi_0 \} \) and \(\{ \mathcal{M}'\xi_0 \} \) respectively by

\[
S_0 A \xi_0 = A^* \xi_0 \quad \text{and} \quad F_0 B \xi_0 = B^* \xi_0 \quad (A \in \mathcal{M}, \ B \in \mathcal{M}').
\]

By [5], Lemma 9.2.1, the operator \(S_0 \) is preclosed, and the adjoint \(F \) is an extension of \(F_0 \). Further, if \(S \) is the closure of \(S_0 \), then \(S^* = F \). Let \(\mathcal{D}(S) \) be the domain of \(S \), and let \(G(S) \) be the graph of \(S \).

Lemma 2.3. Keep the notation as above. Then the closed operator \(S \) has the following matrix decomposition with respect to Lemma 2.1 (i):

\[
S = \begin{pmatrix}
0 & 0 & S_3 \\
0 & S_2 & 0 \\
S_1 & 0 & 0
\end{pmatrix}
\]

where for \(i = 1, 2, 3 \), \(S_i \) is a closed operator with domain \(\mathfrak{F}_i \) in \(\mathcal{H}_i \) such that \(S_1 \mathfrak{F}_1 = \mathfrak{F}_3 \), \(S_2 \mathfrak{F}_2 = \mathfrak{F}_2 \) and \(S_3 \mathfrak{F}_3 = \mathfrak{F}_1 \).

Proof. Since \(\{ \mathfrak{A}_0 \xi_0 \} \oplus \{ \mathcal{D} \xi_0 \} \oplus \{ \mathfrak{A}_0^* \xi_0 \} \subseteq \mathcal{D}(S) \), we can define a preclosed operator \(V_0 \) by

\[
V_0(A + D + B^*)\xi_0 = (A^* + D^* + B)\xi_0
\]

for \(A, B \in \mathfrak{A}_0 \) and \(D \in \mathcal{D} \). Since \(S_0 \) is an extension of \(V_0 \), \(S \) is an extension of the closure \(V \) of \(V_0 \). Since \(G(S) \) is the norm closure of \(\{ X\xi_0 \oplus X^*\xi_0 : X \in \mathcal{M} \} \) and \(\mathfrak{A}_0 + \mathcal{D} + \mathfrak{A}_0^* \) is \(\sigma \)-weakly dense in \(\mathcal{M} \), it is easy to prove that \(S = V \).

Let \(\zeta \oplus S\zeta \in G(S) \). Since \(S \) is the closure of \(V_0 \), there exist \(\{ A_n, B_n \}_{n=1}^{\infty} \) in \(\mathfrak{A}_0 \) and \(\{ D_n \}_{n=1}^{\infty} \) in \(\mathcal{D} \) such that

\[
\lim_{n \to \infty} \left(\|(A_n + D_n + B_n^*)\xi_0 - \zeta\|^2 + \|(A_n^* + D_n^* + B_n)\xi_0 - S\zeta\|^2 \right) = 0.
\]

Then, we have

\[
\lim_{n \to \infty} \left(\|A_n\xi_0 - P_1\zeta\|^2 + \|D_n\xi_0 - P_2\zeta\|^2 + \|B_n^*\xi_0 - P_3\zeta\|^2 \right)
+ \|A_n^*\xi_0 - P_1 S\zeta\|^2 + \|D_n^*\xi_0 - P_2 S\zeta\|^2 + \|B_n\xi_0 - P_3 S\zeta\|^2 = 0,
\]

where \(P_i \) is the projection from \(\mathcal{H} \) onto \(\mathcal{H}_i \) for \(i = 1, 2, 3 \). This implies that \(P_i \zeta \oplus SP_i \zeta \in G(S) \) and \(P_i \mathcal{D}(S) \subset \mathcal{D}(S) \) for \(i = 1, 2, 3 \). Put \(\mathfrak{F}_i = P_i \mathcal{D}(S) \). Since \(S\mathfrak{F}_1 = \mathfrak{F}_3, S\mathfrak{F}_2 = \mathfrak{F}_2 \) and \(S\mathfrak{F}_3 = \mathfrak{F}_1 \), we have the desired matrix form of \(S \) with respect to Lemma 2.1 (i). This completes the proof.
Put $\Delta = S^* S$. We recall that the modular automorphism group $\{\sigma^\varphi_t\}_{t \in \mathbb{R}}$ of \mathcal{M} associated with φ has the following form:

$$\sigma^\varphi_t(X) = \Delta^{it} X \Delta^{-it} \quad (\forall t \in \mathbb{R}, X \in \mathcal{M}).$$

Then we have the following theorem.

Theorem 2.4. Let \mathfrak{A} be a maximal subdiagonal algebra of \mathcal{M} with respect to Φ and let φ is a faithful normal state of \mathcal{M} such that $\varphi \circ \Phi = \varphi$. Then \mathfrak{A} is σ^φ_t-invariant, that is $\sigma^\varphi_t(\mathfrak{A}) = \mathfrak{A}$.

Proof. From Lemma 2.3, the adjoint S^* of S has the matrix form

$$S^* = \begin{pmatrix} 0 & 0 & S_1^* \\ 0 & S_2^* & 0 \\ S_3^* & 0 & 0 \end{pmatrix}$$

where S_i^* is the adjoint operator of S_i with domain \mathfrak{A}_i^* $(i = 1, 2, 3)$. Then the modular operator Δ has the matrix form

$$\Delta = \begin{pmatrix} S_1^* S_1 & 0 & 0 \\ 0 & S_2^* S_2 & 0 \\ 0 & 0 & S_3^* S_3 \end{pmatrix}.$$

By Lemmas 2.2 and 2.3, it is easy to prove that, for every $t \in \mathbb{R}$,

$$\sigma^\varphi_t(\mathfrak{D}) = \mathfrak{D} \quad \text{and} \quad \sigma^\varphi_t(\mathfrak{A}_0) = \mathfrak{A}_0 \quad (t \in \mathbb{R}).$$

Thus we have the theorem. \blacksquare

Let \mathcal{M}^φ be the centralizer of \mathcal{M} associated with φ, that is, $\mathcal{M}^\varphi = \{ A \in \mathcal{M} : \varphi(AB) = \varphi(BA), \forall B \in \mathcal{M} \}$. Recall that \mathcal{M}^φ is the fixed point algebra of \mathcal{M} with respect to $\{\sigma^\varphi_t\}_{t \in \mathbb{R}}$ and there exists a faithful normal expectation \mathcal{E} from \mathcal{M} onto \mathcal{M}^φ (cf. [6], Theorem 1.2). We remark that \mathcal{M}^φ is a finite von Neumann algebra.

Corollary 2.5. Keep the notation and assumptions as above. Then $\mathcal{E}(\mathfrak{A})$ is a maximal finite subdiagonal algebra of \mathcal{M}^φ with respect to $\Phi|_{\mathcal{M}^\varphi}$.

Proof. Let $X \in \mathcal{M}$. By [6], Theorem 1.2, $\mathcal{E}(X)$ is in the σ-weak closure of convex hull of $\{\sigma^\varphi_t(X) : t \in \mathbb{R}\}$. Since \mathfrak{A} is σ^φ_t-invariant by Theorem 2.4, we have $\mathcal{E}(\mathfrak{A}_0) \subset \mathfrak{A}_0$ and $\mathcal{E}(\mathfrak{D}) \subset \mathfrak{D}$. Then we easily prove that $\mathcal{E}(\mathfrak{A})$ is a subdiagonal algebra of \mathcal{M}^φ with respect to $\Phi|_{\mathcal{M}^\varphi}$. By [5], Proposition 9.2.14, $\varphi|_{\mathcal{M}^\varphi}$ is a faithful normal trace on \mathcal{M}^φ. Thus $\mathcal{E}(\mathfrak{A})$ is a finite subdiagonal algebra of \mathcal{M}^φ. By [3], Theorem 7, $\mathcal{E}(\mathfrak{A})$ is a maximal finite subdiagonal algebra of \mathcal{M}^φ. This completes the proof. \blacksquare
Finally, we remark about the question in [1], Remark 2.2.3, whether every subdiagonal algebra must necessarily be maximal subdiagonal. In [3], Exel showed that every finite subdiagonal algebra is maximal subdiagonal. By Theorem 2.4, we have following two questions.

Question 2.6. Is there a subdiagonal algebra which is not σ_{φ}^{t}-invariant for some faithful normal state φ on M such that $\varphi \circ \Phi = \varphi$?

Question 2.7. If A is a σ_{φ}^{t}-invariant subdiagonal algebra of M for every faithful normal state φ on M such that $\varphi \circ \Phi = \varphi$, is A maximal subdiagonal?

3. SUBDIAGONAL ALGEBRAS OF $B(\mathcal{H})$

Let \mathcal{N} be a nest, that is, \mathcal{N} is a chain of closed subspaces of \mathcal{H} containing $\{0\}$ and \mathcal{H} which is closed under intersection and closed span. Then the nest algebra $\text{alg}\mathcal{N}$ is the set of all operators T in $B(\mathcal{H})$ such that $TN \subseteq N$ for every $N \in \mathcal{N}$. The intersection $\mathfrak{D} = \text{alg}\mathcal{N} \cap (\text{alg}\mathcal{N})^{*}$ is the diagonal of $\text{alg}\mathcal{N}$. We recall that there exists a faithful normal expectation from $B(\mathcal{H})$ onto \mathfrak{D} if and only if \mathcal{N} is atomic (cf. [2], Theorem 8.6). In this case, $\text{alg}\mathcal{N}$ is a subdiagonal algebra of $B(\mathcal{H})$ with respect to the expectation. In this section, we consider the converse, that is, if \mathfrak{A} is a subdiagonal algebra of $B(\mathcal{H})$ with respect to a faithful normal expectation Φ, then \mathfrak{A} is a nest algebra with an atomic nest.

Our main theorem in this section is the following.

Theorem 3.1. Let \mathfrak{A} be a subdiagonal algebra of $B(\mathcal{H})$ with respect to a faithful normal expectation Φ. Then there exists an atomic nest \mathcal{N} such that $\mathfrak{A} = \text{alg}\mathcal{N}$.

The proof of Theorem 3.1 requires a few preliminary results.

Let \mathfrak{A} be a subdiagonal algebra of $B(\mathcal{H})$ with respect to a faithful normal expectation Φ. Since \mathcal{H} is separable, there exists a faithful normal state φ on $B(\mathcal{H})$ such that $\varphi \circ \Phi = \varphi$. Let ρ be the canonical trace of $B(\mathcal{H})$. By [5], Lemma 9.2.19, there is a positive contraction K in $B(\mathcal{H})$ such that $I - K$ is a trace-class operator and

$$\rho((I - K)A) = \varphi(KA) = \varphi(AK) \quad (A \in B(\mathcal{H})).$$

Moreover, both K and $I - K$ are injective. Put $F = K^{-1}(I - K)$. Then by [5], Lemma 9.2.20, the modular automorphism group $\{\sigma_{\varphi}^{t}\}_{t \in \mathbb{R}}$ of $B(\mathcal{H})$ associated with φ is written as

$$\sigma_{\varphi}^{t}(X) = F^{it}XF^{-it} \quad (X \in B(\mathcal{H}), \ t \in \mathbb{R}).$$
Define the holomorphic function f with radius r. Certain structure of subdiagonal algebras...

Let $B(\mathcal{H})^\varphi$ be the centralizer of φ of $B(\mathcal{H})$. Since the centralizer $B(\mathcal{H})^\varphi$ is the fixed point algebra of $\{\sigma_t^\varphi\}_{t \in \mathbb{R}}$ (cf. [5], p. 697), we can show that $B(\mathcal{H})^\varphi$ is the commutant of $\{F\}$. Since $I - K$ is a trace class positive operator, we can write $I - K = \sum_{n=1}^{\infty} \lambda_n P_n$, where $\{\lambda_n\}_{n=1}^{\infty}$ are the distinct eigenvalues of $I - K$ and for every n, P_n is the spectral projection of $I - K$ corresponding to λ_n. Since $F = K^{-1}(I - K) = \sum_{n=1}^{\infty} \lambda_n (1 - \lambda_n)^{-1} P_n$, we can decompose

$$B(\mathcal{H})^\varphi = \sum_{n=1}^{\infty} M_{k_n},$$

where k_n is the dimension of $P_n^* \mathcal{H}$, and M_{k_n} is the set of all $k_n \times k_n$ matrices on $P_n^* \mathcal{H}$.

As in Section 2, there exists a faithful normal expectation E from $B(\mathcal{H})$ onto $B(\mathcal{H})^\varphi$. Then we have the following proposition.

Proposition 3.2. Keep the notation and the assumptions as above. Then there exists a family $\{Q_n\}_{n=1}^{\infty}$ of mutually orthogonal rank one projections in the diagonal \mathcal{D} of \mathfrak{A} such that $\sum_{n=1}^{\infty} Q_n = I$.

Proof. As in Section 2, let \mathfrak{A}_m be the maximal subdiagonal algebra with respect to Φ of $B(H)$ containing \mathfrak{A}. Let P_n be as above. At first, we shall show that $P_n \in \mathcal{E}(\mathfrak{D}) \subset \mathfrak{D}$. We consider an invertible operator $X = 2P_n \oplus (I - P_n)$ on $\mathcal{H} = P_n^* \mathcal{H} \oplus P_n^\perp \mathcal{H}$. By Corollary 2.5, $\mathcal{E}(\mathfrak{A}_m)$ is a finite maximal subdiagonal algebra of $B(\mathcal{H})^\varphi$ with diagonal $\mathcal{E}(\mathfrak{D})$. Hence, by [1], Theorem 4.4.1, there exist a unitary operator U in $B(\mathcal{H})^\varphi$ and an invertible operator A in $\mathcal{E}(\mathfrak{A}_m) \cap \mathcal{E}(\mathfrak{A}_m)^{-1}$ such that $X = UA$. Since P_n is a central projection of $B(\mathcal{H})^\varphi$, we can decompose $U = U_1 \oplus U_2$ and $A = A_1 \oplus A_2$. It is clear that $A_1 = 2U_1^* \oplus A_2$ and $A_2 = U_2^* \oplus U_2$. So we have that $\sigma(A) = 2\sigma(U_1^*) \cup \sigma(U_2^*)$. It is also clear that $\sigma(U_1^*)(\subset \mathbb{T})$ is a finite subset of \mathbb{T} and $\sigma(U_2^*) \subseteq \mathbb{T}$, where \mathbb{T} is the unit circle. If $\sigma(U_2^*) \neq \mathbb{T}$, then we know that $\mathbb{C} \setminus \sigma(A)$ is connected. If $\sigma(U_2^*) = \mathbb{T}$, then the only bounded component of $\mathbb{C} \setminus \sigma(A)$ is the open disc \mathbb{D}. Thus we can choose a neighborhood Ω of $\sigma(A)$ such that

1. $\Omega = \Omega_1 \cup \Omega_2$, $\overline{\Omega_1} \cap \overline{\Omega_2} = \emptyset$,
2. $\sigma(A_1) \subset \Omega_1$, $\sigma(A_2) \subset \Omega_2$, and
3. the only bounded component of $\mathbb{C} \setminus \Omega$ is a closed disc $\{\lambda \in \mathbb{C} : |\lambda| \leq r\}$ with radius r less than one.

Define the holomorphic function f on Ω by

$$f(z) = \begin{cases} 1, & z \in \Omega_1 \\ 0, & z \in \Omega_2. \end{cases}$$
By [8], Theorem 13.9 there is a sequence \(\{R_i\} \) of rational functions with poles at 0, such that \(R_i \to f \) uniformly on compact subsets of \(\Omega \). Since both \(A \) and \(A^{-1} \) are in \(\mathcal{E}(\mathfrak{A}_m) \), we have that \(P_n(=f(A)) \in \mathcal{E}(\mathfrak{A}_m) \), and so \(P_n \in \mathcal{E}(\mathcal{D}) \). By Corollary 2.5, \(P_n \in \mathcal{D} \). Since \(P_n \mathcal{E}(\mathfrak{A}_m) P_n \) is a subdiagonal algebra of \(M_{k_n} \), by [4], Theorem 2.1, \(P_n \mathcal{E}(\mathfrak{A}_m) P_n \) is a nest subalgebra of \(M_{k_n} \) with a finite nest. So \(P_n \mathcal{E}(\mathfrak{A}_m) P_n \) contains a family of mutually orthogonal rank one projections whose sum is \(P_n \). This completes the proof.

Lemma 3.3. Keep the assumptions as above and also assume that \(\mathfrak{A} \neq \mathcal{B}(\mathcal{H}) \).

Then there exists a nontrivial \(\mathfrak{A} \)-invariant subspace of \(\mathcal{H} \).

Proof. By Proposition 3.2, we know that \(\mathcal{D}' \) is abelian. Hence, by Theorems 6.2.1 and 6.2.2 in [1], we have \(\rho \circ \Phi = \rho \), where \(\rho \) is the canonical trace of \(\mathcal{B}(\mathcal{H}) \). By Proposition 3.2, there is a rank one projection \(e \otimes e \in \mathcal{D} \) such that \(\{\mathfrak{A}_0 e\} \neq \{0\} \), where \(e \otimes e(x) = (x,e) e, \forall x \in \mathcal{H} \). Put \(\mathfrak{M} = [\mathfrak{A}_0 e] \), then \(\mathfrak{M} \) is \(\mathfrak{A} \)-invariant. If \(T \in \mathfrak{A}_0 \), then

\[
(Te,e) = \rho(T(e \otimes e)) = \rho \circ \Phi(T(e \otimes e)) = 0.
\]

Hence, \(\mathfrak{M} \) is nontrivial. This completes the proof.

Proof of Theorem 3.1. By Lemma 3.3 and Zorn’s lemma, there exists a maximal nest \(\mathcal{N} \) of \(\mathfrak{A} \)-invariant subspaces of \(\mathcal{H} \). Since \(\mathcal{N} \subset \mathcal{D}' \) and \(\mathcal{D}' \) is atomic, the nest \(\mathcal{N} \) is atomic. Let \(\{E_\lambda\}_{\lambda \in \Lambda} \) be the set of all atoms of \(\mathcal{N} \). By the maximality of \(\mathcal{N} \) and Lemma 3.3, we have \(E_\lambda \mathcal{B}(\mathcal{H}) E_\lambda \subset \mathcal{D} \). This implies that \(\mathcal{N}' = \mathcal{D} \) and so \(\Phi(T) = \sum_{\lambda \in \Lambda} E_\lambda TE_\lambda \) for every \(T \in \mathcal{B}(\mathcal{H}) \). It is clear that \(\mathfrak{A} \subset \text{alg} \mathcal{N} \).

Conversely, if \(T \in \text{alg} \mathcal{N} \), then there exist nets \(A_\lambda, B_\mu \in \mathfrak{A} \) such that \(A_\lambda + B_\mu \to T \) \(\sigma \)-weakly. For \(\lambda, \mu \in \Lambda \), there exist \(P_\lambda, P_\mu \in \mathcal{N} \) such that \(E_\lambda = P_\lambda \circ P_\lambda \) and \(E_\mu = P_\mu \circ P_\mu \) respectively. We define an order on \(\Lambda \) by

\[
\lambda < \mu \iff P_\lambda < P_\mu.
\]

If \(\lambda > \mu \), then \(E_\lambda TE_\mu = 0 \) because \(T \in \text{alg} \mathcal{N} \). If \(\lambda = \mu \), then \(E_\lambda TE_\lambda \in \mathcal{D} \subset \mathfrak{A} \).

Since \(E_\lambda B_\mu^* E_\mu = 0 \) in case that \(\lambda < \mu \), we have \(E_\lambda TE_\mu \in \mathfrak{A} \). Therefore \(T = \sum_{\lambda \leq \mu} E_\lambda TE_\mu \in \mathfrak{A} \). This completes the proof.

In [9], Theorem 2, the third author and Watatani proved that if \(\mathcal{D} \) is a subfactor of a finite dimensional factor \(\mathcal{M} \), then there exist no maximal subdiagonal algebras of \(\mathcal{M} \) with respect to the canonical conditional expectation from \(\mathcal{M} \) onto \(\mathcal{D} \) unless \(\mathcal{D} = \mathcal{M} \). The following corollary is in case that \(\mathcal{M} = \mathcal{B}(\mathcal{H}) \).
Corollary 3.4. If \mathcal{D} is a subfactor of $\mathcal{B}(\mathcal{H})$, then there exist no maximal subdiagonal algebras with diagonal \mathcal{D} unless $\mathcal{D} = \mathcal{B}(\mathcal{H})$.

Acknowledgements. This work was supported in part by a Grand-in-Aid for Scientific Research from the Japanese Ministry of Education. The authors would like to thank the referee for the valuable suggestions.

REFERENCES

GUOXING JI
Department of Mathematical Science
Graduate School of Sci. and Technology
Niigata University
Niigata, 950-21
JAPAN
E-mail: ji@dmis.gs.niigata-u.ac.jp

TOMOYOSHI OHWADA
Department of Mathematical Science
Graduate School of Sci. and Technology
Niigata University
Niigata, 950-21
JAPAN
E-mail: ohwada@dmis.gs.niigata-u.ac.jp

KICHI-SUKE SAITO
Department of Mathematics
Faculty of Science
Niigata University
Niigata, 950-21
JAPAN
E-mail: saito@math.sc.niigata-u.ac.jp

Received October 9, 1996; revised May 15, 1997.