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Abstract. In 1973 V. Lomonosov obtained a beautiful result on the ex-
istence of nontrivial invariant subspaces for compact-related operators on
Banach space. The key idea has become known as “Lomonosov’s lemma”.
Since then, generalizations have been obtained by various authors. In this
note we give more elementary proofs for the main theorems from [8] (and
[4]), including a “new” Lomonosov-type lemma. This allows us to generalize
earlier work in this area.
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Throughout this note X will be an arbitrary complex, infinite dimensional, Banach
space, and L(X ) will denote the algebra of all bounded linear operators on X . In
what follows we write K(X ) for the closed ideal of compact operators in L(X ) and
π for the quotient map of L(X ) onto L(X )/K(X ). The spectrum of an operator
T in L(X ) will be denoted as usual by σ(T ), the point spectrum (i.e. the set of
eigenvalues) of T by σp(T ), and the essential spectrum of T (i.e., the spectrum of
π(T )) by σe(T ). The essential norm of T (i.e., the norm of π(T )) will be denoted
by ‖T‖e, and the convex hull of a set S in a linear space by conh(S).

Recall that a subalgebraA of L(X ) is said to be transitive if the only invariant
subspaces of A are (0) and X . In 1973, V. Lomonosov ([7]) proved an elegant
and powerful result via the Schauder-Tychonoff fixed point theorem that had as
a consequence some spectacular progress on the existence of nontrivial invariant
and hyperinvariant subspaces for compact-related operators in L(X ). (The reader
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may consult [10] or [11] for a survey of these results.) This key theorem has come
to be called “Lomonosov’s lemma”, and goes as follows.

Theorem 1.1. ([7]) Let A be a transitive subalgebra of L(X ) and let K

be a nonzero operator in K(X ). Then there exists an operator A ∈ A such that
1 ∈ σp(AK).

More recently Lomonosov ([8]) obtained some stronger results than those in
[7] using a variety of different and sophisticated techniques, and Scott Brown ([4])
proved another “Lomonosov-type lemma” in the case when X is a Hilbert space.

In this paper, we first prove a “new” theorem (Theorem 1.2), which is a
modification and distillation of what was proved in [7] and [4]. Then, on the basis
of this, we prove a new “Lomonosov-type lemma” (Theorem 1.4), which is stronger
than Theorem 1.1 above. On the basis of these two results, we give proofs of the
main theorems from [8] (and [4]) which are somewhat more elementary than those
in [8]. In addition to Theorems 1.2 and 1.4, we also establish two additional results
(Theorems 1.9 and 1.10) which generalize earlier work in this area (cf. [3]).

Our first result is the following.

Theorem 1.2. Let C ⊂ L(X ) be a set and suppose there exist y0 ∈ X ∗ and
ρ0 > ‖y0‖ = 2 such that for every y in X ∗ satisfying ‖y − y0‖ 6 1, y0 belongs to
the norm closure of the set {C∗y : C ∈ conh(C), ‖C‖e 6 1/ρ0}. Then there exists
a convex combination C0 of elements of C such that 1 ∈ σp(C0) and ‖C0‖e 6 1/ρ0.
Consequently, ‖C∗

0‖e 6 1/ρ0, 1 is an isolated point in both σ(C0) and σ(C∗
0 ), the

operators C0 − 1 and C∗
0 − 1 are Fredholm operators of index zero, and the root

spaces in X and X ∗ corresponding to the eigenvalue 1 of C0 and C∗
0 are finite

dimensional.

Proof. Let D denote the closed ball of radius one centered at y0 in X ∗,
and observe that D is weak∗ compact. Fix ρ, ε > 0 such that 2 < ρ < ρ0 and
2/ρ + 2ε < 1. For each y ∈ D, let Cy ∈ conh(C) satisfy ‖C∗

yy − y0‖ < ε and
‖Cy‖e 6 1/ρ0. Write Cy = Ty + Ky with Ky compact such that ‖Ty‖ < 1/ρ.
The operator K∗

y : (D, w∗) → (X ∗, ‖ · ‖) is continuous, so the set Uy = {z ∈ D :
‖K∗

yz−K∗
yy‖ < ε} (being the inverse image of an open set in the metric topology

on X ∗) is weak∗ open in D, and y ∈ Uy. Thus {Uy}y∈D is a weak∗ open cover of
D, so has a finite subcover {Uy1 , . . . ,Uyn}. We observe next that C∗

y (Uy) ⊂ D for
every y ∈ D, since for every such y and for every z ∈ Uy,

‖C∗
yz − y0‖ 6 ‖C∗

yz − C∗
yy‖+ ‖C∗

yy − y0‖ 6 ‖C∗
yz − C∗

yy‖+ ε

6 ‖T ∗
y (z − y)‖+ ‖K∗

y (z − y)‖+ ε 6 2/ρ + ε + ε < 1.
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Now choose f1, . . . , fn weak∗ continuous functions from D to [0, 1] such that

the support of fi is contained in Uyi , i = 1, . . . , n, and
n∑

i=1

fi = 1 on D. Next we

define g : D → X ∗ by g(w) =
n∑

i=1

fi(w)C∗
yi

(w), w ∈ D. Since adjoint operators

acting on X ∗ are (X ∗, w∗) → (X ∗, w∗) continuous, g : (D, w∗) → (X ∗, w∗) is
continuous. We show that g(D) ⊂ D. To this end, let w ∈ D. Then

‖g(w)− y0‖ =
∥∥∥ n∑

i=1

fi(w)(C∗
yi

(w)− y0)
∥∥∥ 6

n∑
i=1

|fi(w)| ‖C∗
yi

(w)− y0‖.

But w belongs to some Uyi
(perhaps more than one), and for each such, ‖C∗

yi
(w)−

y0‖ 6 1, whereas for the others, fi(w) = 0, so ‖g(w)−y0‖ 6 1. Thus g maps D into
itself, so by the Schauder-Tychonoff fixed point theorem for locally convex spaces

([6], p. 456), g has a fixed point w0 ∈ D. Define C0 =
n∑

i=1

fi(w0)Cyi
. Then C0 is

a convex combination of (convex combinations of) elements of C, ‖C0‖e 6 1/ρ0 <

1/2, and C∗
0 (w0) = w0, which proves that 1 ∈ σp(C∗

0 ). Since the map T 7→ T ∗ is
known to decrease essential norms [1], ‖C∗

0‖e 6 1/ρ0 < 1/2 also. Thus the essential
spectral radii of C0 and C∗

0 are both less then 1/2, and consequently 1 belongs to
neither essential spectrum. Since 1 ∈ σ(C0) = σ(C∗

0 ), the other statements of the
theorem now are immediate consequences of the Fredholm theory.

The following lemma, while elementary, makes the proofs to follow somewhat
simpler.

Lemma 1.3. Suppose C ⊂ L(X ) [respectively, C ⊂ L(X ∗), C ⊂ L(X ∗∗)] is
a convex set and there exists a net {Cλ} in C converging to an operator C0 in
the weak operator topology and satisfying ‖Cλ‖e → 0. Then there exists another
net {Cµ} in C converging to C0 in the strong operator topology and satisfying
‖Cµ‖e → 0.

Proof. Let Γ be the directed set of strong operator topology open neigh-
borhoods of C0 in L(X ) [resp. L(X ∗), L(X ∗∗)], and consider the directed set
M = Γ × R+ where µ = (γ, r) ≥ µ′ = (γ′, r′) in M if and only if γ ⊂ γ′ and
(0 <)r 6 r′. Fix an element (γ0, r0) of M . To prove the lemma, it suffices to
exhibit Cµ0 in C such that Cµ0 ∈ γ0 and ‖Cµ0‖e < r0. Choose λ0 ∈ Λ such that
for all λ ≥ λ0, ‖Cλ‖e < r0. Consider the convex set C′ ⊂ C consisting of all convex
combinations of elements in the set {Cλ : λ ≥ λ0}. Clearly C0 belongs to the
closure in the weak operator topology of C′, and since C′ is convex, its closure
in the weak operator topology coincides with its closure in the strong operator
topology ([6], p. 477), so there exists Cµ0 ∈ C′ such that Cµ0 ∈ γ0. Furthermore,
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Cµ0 is a convex combination of operators each having essential norm less than r0,
so ‖Cµ0‖e < r0, and the lemma is proved.

Theorem 1.4. (New “Lomonosov Lemma”) Suppose A is a transitive subal-
gebra of L(X ) and {Bλ}λ∈Λ ⊂ L(X ) is a net of operators such that ‖Bλ‖e → 0 and
{B∗∗

λ } converges to B∗∗
0 6= 0 in the weak operator topology on L(X ∗∗). Then there

exist a positive integer n and subsets {A1, . . . , An} of A and {Bλ1 , . . . , Bλn
} of

the net {Bλ}λ∈Λ such that some combination C0 =
n∑

i=1

AiBλi
satisfies 1 ∈ σp(C0)

and ‖C0‖e < 1/2. Consequently the same conclusions about C0 that are stated in
Theorem 1.2 obtain.

Proof. According to Lemma 1.3, there exists a net {B∗∗
µ }µ∈M in L(X ∗∗) such

that B∗∗
µ → B∗∗

0 in the strong operator topology on L(X ∗∗), ‖Bµ‖e → 0, and each
Bµ is a convex combination of elements of {Bλ}λ∈Λ. It is easy to see that without
loss of generality we may suppose that ‖B0‖ = ‖B∗∗

0 ‖ = 1. We write Y = X ∗ (so
Y∗ = X ∗∗), choose ρ0 > 2 and define the set C∗ = {B∗

µA∗ ∈ L(Y) : A ∈ A, Bµ ∈
{Bµ}µ∈M , ‖ABµ‖e 6 1/ρ0}. Let x0 ∈ X be such that ‖x0‖ = 2 and ‖B0x0‖ > 3/2.
Set y0 = j(x0). If ỹ in Y∗ satisfies ‖ỹ − y0‖ 6 1, then ‖B∗∗

0 ỹ‖ > 1/2. Since
B∗∗

µ → B∗∗
0 in the strong operator topology and Bµ = Tµ + Kµ with ‖Tµ‖ → 0

and {Kµ} ⊂ K(X ), we have B∗∗
µ = T ∗∗

µ + K∗∗
µ with K∗∗

µ ∈ K(X ∗∗) satisfying
K∗∗

µ → B∗∗
0 in the strong operator topology. Thus ‖K∗∗

µ ỹ − B∗∗
0 ỹ‖ → 0. The

compacity of the Kµ’s implies that range K∗∗
µ ⊂ j(X ) ([6], p. 482), so K∗∗

µ ỹ ∈ j(X )
for every µ, and hence B∗∗

0 ỹ ∈ j(X ). Say B∗∗
0 ỹ = j(x̂). Now let ε > 0. Since

A is transitive, there exists A ∈ A such that ‖Ax̂ − x0‖ = ‖A∗∗B∗∗
0 ỹ − y0‖ < ε.

Since B∗∗
µ → B∗∗

0 in the strong operator topology, we may choose µ sufficiently
large that ‖A∗∗B∗∗

µ ỹ − y0‖ < ε and ‖ABµ‖e 6 1/ρ0. Thus ‖A∗∗B∗∗
µ ‖e 6 1/ρ0 and

the hypotheses of Theorem 1.2 are satisfied for C∗ ⊂ L(Y). Hence there exists a

convex combination C0 =
k∑

i=1

αiAiBµi
of elements of C such that 1 ∈ σp(C∗

0 ). By

the definition of C, ‖C0‖e 6
k∑

i=1

αi‖AiBµi
‖e 6 1/ρ0 < 1/2, and since each Bµi

is

a convex combination of elements of {Bλ}, the theorem follows as in the proof of
Theorem 1.2. (Along the way the complex coefficients have been eliminated taking
into account that A is an algebra.)

When X is reflexive, Theorem 1.4 becomes the following.

Corollary 1.5. If X is a reflexive Banach space, A is a transitive subal-
gebra of L(X ), and {Bλ}λ∈Λ ⊂ L(X ) is a net of operators such that ‖Bλ‖e → 0
and Bλ → B0 6= 0 in the weak operator topology on L(X ). Then the conclusion in
Theorem 1.4 remains valid.
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Our first priority is to show that, indeed, Theorem 1.1 is an easy consequence
of Theorem 1.4.

Proof of Theorem 1.1. Consider the constant sequence {Kn = K} in L(X ).
Obviously K∗∗

n ≡ K∗∗ 6= 0 and ‖Kn‖e ≡ 0. Thus Theorem 1.4 applies and there
exists a combination

C0 =
n∑

i=1

AiKi = ÃK

such that 1 ∈ σp(C0) = σp(ÃK) and Ã ∈ A.

The following may be said to be the main new result of [8], which generalized
earlier results in [5] and [9]. The proof to follow is due to the present authors.

Theorem 1.6. ([8]) Suppose B is a subalgebra of L(X ) such that B∗ =
{B∗ : B ∈ B} is transitive in L(X ∗). Suppose also that there exists a net {B∗

λ}
in B∗ that converges to a nonzero B0 in the weak operator topology on L(X ∗) and
satisfies ‖Bλ‖e → 0. Then B∗ is dense in L(X ∗) in the weak operator topology
(equivalently, the strong operator topology).

Proof. Without loss of generality we may suppose that B is closed in the
norm topology and that ‖B0‖ = 1. Choose ρ0 > 2 and y0 ∈ X ∗ such that
‖y0‖ = 2 and ‖B0y0‖ > 3/2. Then, for each y ∈ X ∗ satisfying ‖y − y0‖ 6 1,
B0y 6= 0, so fix such a y. Define C = B, let ε > 0, and choose By ∈ B such that
‖B∗

y(B0y)− y0‖ < ε. By Lemma 1.3 we may suppose that the net {B∗
λ} converges

to B0 in the strong operator topology on L(X ∗), and thus for λ sufficiently large,
‖B∗

yB∗
λy − y0‖ < ε and ‖BλBy‖e < 1/ρ0. Thus, the hypotheses of Theorem 1.2

are satisfied, and by that theorem there exists an operator C0 ∈ B such that
1 ∈ σp(C∗

0 ) and the root space corresponding to the eigenvalue 1 of C∗
0 is finite

dimensional. In this situation, a standard argument (which can be found in the
proof of [10], Theorem 6) shows that B∗ contains a nonzero idempotent whose
range is the above-mentioned root space for C∗

0 , and thus is dense in L(X ∗) in the
strong operator topology.

Corollary 1.7. ([8]) Suppose that A is a proper subalgebra of L(X ) that
is closed in the weak operator topology (equivalently, the strong operator topology).
Then there exist nonzero z0 ∈ X ∗∗ and y0 ∈ X ∗ such that

|〈z0, A
∗y0〉| 6 ‖A‖e, A ∈ A.

Proof. Consider first the possibility that for every y ∈ X ∗ \ {0}, the set

{A∗y : A ∈ A, ‖A‖e 6 1}
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is strongly (equivalently, weakly) dense in X ∗. Then, of course, A∗ is transitive,
and it is easy to see that the hypotheses of Theorem 1.2 are satisfied with C = A
and ρ0 = 3. Thus, by that theorem, there is an operator C0 ∈ A such that
1 ∈ σp(C∗

0 ) and ‖C0‖e 6 1/3. Then, just as in the proof of Theorem 1.6, one
shows that there exists a nonzero idempotent of finite rank in the (weak operator
topology) closure of the transitive algebraA∗, soA∗ is dense in L(X ∗) in the strong
operator topology. But this forces A to be dense in L(X ) in the strong operator
topology by the Hahn-Banach theorem, which yields a contradiction. Thus, there
must exist y0 6= 0 in X ∗ such that the norm-closure of the absolutely convex set

Cy0 = {A∗y0 : A ∈ A, ‖A‖e 6 1}

is not all of X ∗. Thus, by [2], Lemma 16.15, there exists z0 6= 0 in X ∗∗ such that
|〈z0, A

∗y0〉| 6 1 for all A ∈ A such that ‖A‖e 6 1. This shows that |〈z0, A
∗y0〉| 6

‖A‖e whenever ‖A‖e 6= 0. On the other hand, if A ∈ A ∩ K(X ), then

|〈z0, (1/r)A∗y0〉| 6 1

for all r ∈ (0, 1), which proves the corollary.

The following corollary of either Theorem 1.4 or 1.6 seems to be misstated
in [8].

Corollary 1.8. ([8]) Suppose T is a nonscalar operator in L(X ) and there
exists a net {Aλ}λ∈Λ of operators commuting with T such that ‖Aλ‖e → 0 and the
net {A∗

λ} converges to a nonzero operator in the weak operator topology. Then the
algebra ({T}′)∗ = {X∗ ∈ L(X ∗) : TX = XT} has a nontrivial invariant subspace.
Moreover, if T is a weakly compact operator (which is automatic if X is reflexive),
then T ∗ has a nontrivial hyperinvariant subspace.

The following new result is an improvement of the preceding corollary.

Theorem 1.9. If the statement of Corollary 1.8 is changed by replacing the
hypothesis that TAλ = AλT , λ ∈ Λ, by the weaker hypothesis that there exists a
complex number µ0 such that TAλ = µ0AλT , λ ∈ Λ, then the conclusion remains
valid.

Proof. Define the subspace M⊂ L(X ) by M = {A ∈ L(X ) : TA = µ0AT},
and let B0 6= 0 be the limit in the weak operator topology of the net {A∗

λ}. By
Lemma 1.3, there exists a net {B∗

ν} ⊂ M∗ which converges to B0 in the strong
operator topology and satisfies ‖Bν‖e → 0. Obviously B0T

∗ = µ0T
∗B0, and if

µ0 = 0 or T ∗B0 = 0, then the kernel of T ∗ is the desired nontrivial invariant
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subspace for ({T}′)∗. Thus we may suppose that B0T
∗ 6= 0 and µ0 6= 0. Without

loss of generality we may and do suppose that ‖B0T
∗‖ = 1. Define the convex set

C = {TA : A ∈M}, choose y0 ∈ X ∗ such that ‖y0‖ = 2 and ‖B0T
∗y0‖ > 3/2, and

let ρ0 > 2. Fix a vector y in X ∗ such that ‖y− y0‖ 6 1, and note that B0T
∗y 6= 0.

Suppose next that ({T}′)∗ is transitive, and let ε be an arbitrary positive number.
Then there exists an operator T1 commuting with T such that ‖T ∗

1 B0T
∗y−y0‖ < ε,

and since the net {B∗
ν} converges to B0 in the strong operator topology, we may

choose ν0 sufficiently large that ‖T ∗
1 B∗

ν0
T ∗y − y0‖ < ε and ‖TBν0T1‖e < 1/ρ0.

Since TBν0T1 ∈ C, we may apply Theorem 1.2 to (C, y0, ρ0) to obtain an operator
A0 in M such that 1 ∈ σp(TA0) and ‖TA0‖e 6 1/ρ0. Thus A0T = (1/µ0)TA0 has
(1/µ0) in its spectrum and since σ(TA0) ∪ {0} = σ(A0T ) ∪ {0}, by iterating we
see that µn

0 and (1/µ0)n belong to σ(TA0) for all positive integers n. Obviously
this is possible only if |µ0| = 1. Furthermore, one knows from Fredholm theory
that the numbers {µn

0} cannot all be distinct, since the essential spectral radius
of TA0 is less than 1/2. Thus there exists a positive integer n0 such that µn0

0 = 1.
But then the commutant of Tn0 contains M and thus contains the net {Bν}.
Hence by Corollary 1.8, the algebra ({Tn0}′)∗ has a nontrivial invariant subspace,
which contradicts the assumption that ({T}′)∗ is transitive. Thus the proof is
complete.

Our last result is a modest generalization of a theorem of Scott Brown ([3]).

Theorem 1.10. Let T ∈ L(X ), and for some µ, θ ∈ C with |µ| 6= 1, suppose
there exists a net {Aλ}λ∈Λ of operators in L(X ) such that ‖Aλ‖e → 0 and {A∗

λ}
converges to a nonzero operator in the weak operator topology. If there exists a
nonzero operator S ∈ L(X ) such that

ST = µTS and SAλ = θAλS, λ ∈ Λ,

then T ∗ has a nontrivial invariant subspace.

Proof. If θ = 0, then B0S
∗ = 0, and since B0 6= 0, the closure of the range

of S∗ is a proper nonzero subspace R ⊂ X ∗. Since T ∗(S∗X ∗) = µS∗T ∗X ∗ ⊂ R,
R is the desired invariant subspace for T ∗. Thus we may suppose that θ 6= 0, and
we fix N large enough so that |µNθ| < 1 if |µ| < 1 and 1/|µNθ| < 1 if |µ| > 1. Set
M = {A ∈ L(X ) : SA = θAS}. By Lemma 1.3, there exists a net {B∗

ν} ⊂ M∗

which converges to B0 6= 0 in the strong operator topology and satisfies ‖Bν‖e → 0.
Obviously, B0S

∗ = θS∗B0. If T ∗NB0 = 0, then the nontrivial kernel of T ∗ is a
nontrivial subspace for T ∗. Thus we may suppose that T ∗NB0 6= 0, and assume,
without loss of generality, that ‖T ∗NB0‖ = 1. Choose y0 ∈ X ∗ such that ‖y0‖ = 2
and ‖T ∗NB0y0‖ > 3/2, and let ρ0 > 2. Let C be the convex set generated by
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{Ap(T )TN : p is a polynomial, A ∈M}. Fix a vector y ∈ X ∗ such that ‖y0−y‖ 6

1 and note that T ∗NB0y 6= 0. Suppose next that T ∗ has no nontrivial subspaces,
i.e., the algebra {p(T ∗) : p is a polynomial} is transitive. Then there exists an
operator q(T ∗) for some polynomial q such that ‖q(T ∗)T

∗NB0y − y0‖ < ε. Since
the net {B∗

ν} converges to B0 in the strong operator topology, we may choose
ν0 sufficiently large that ‖q(T ∗)T ∗NB∗

ν0
y − y0‖ < ε and ‖q(T ∗)T

∗NB∗
ν‖e < 1/ρ0.

Since Bν0q(T )TN ∈ C, we may apply Theorem 1.2 to (C, y0, ρ0) to obtain an
operator T̂ = (A1p1(T ) + A2p2(T ) + · · · + Anpn(T ))TN ∈ C, with the Ai in M,
such that 1 ∈ σp(T̂ ), 1 ∈ σp(T̂ ∗) and ‖T̂‖e 6 1/ρ0. Fix 0 6= x ∈ X and 0 6= x∗ ∈ X ∗

such that T̂ x = x and T̂ ∗x∗ = x∗. Here we have two cases to consider. For every
m ∈ N,

Smx = SmT̂ x = (µNθ)m[(A1p1(µmT )+A2p2(µmT )+ · · ·+Anpn(µmT ))]TNSmx.

If |µ| < 1, then the sequence {‖[A1p1(µmT )+A2p2(µmT )+· · ·+Anpn(µmT )]TN‖}
is uniformly bounded in m, and as m → ∞, {(µNθ)m} tends to zero. Thus for
some m0 ∈ N, we must have Sm0x = 0. Therefore S has a nontrivial kernel, which
is invariant for T , which contradicts the assumption that T ∗ has no nontrivial
invariant subspace. On the other hand, for m ∈ N,

S∗mx∗ = S∗mT̂ ∗x∗

= (1/µNθ)mT ∗N [(p1((1/µ)mT ∗)A∗
1 + · · ·+ pn((1/µ)mT ∗)A∗

n)]S∗mx∗.

With an argument similar to that above, one shows that if |µ| > 1, then S∗ has a
nontrivial kernel which is invariant for T ∗, so the proof is complete.

Remark 1.11. One problem with this entire class of results, of course, is
that twenty-five years after [7] appeared, concrete applications are still hard to
come by.
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