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Abstract. It is proved that the lattice of closed, two-sided ideals in a C∗-
algebra classifies the class of unital C∗-algebras which are inductive limits
of sequences of finite direct sums of C

`
[0, 1]

´
⊗O2 and have totally ordered

lattice of ideals, up to ∗-isomorphism.
Furthermore, it is proved that if the lattice of ideals of a separable,

unital C∗-algebra is totally ordered, then it is compact metrizable and has
an isolated maximum in the order topology. Conversely, each totally ordered
space (containing at least two points) which is compact metrizable and has
an isolated maximum in the order topology appears as the lattice of ideals of
a C∗-algebra which is an inductive limit of a sequence of finite direct sums
of C

`
[0, 1]

´
⊗O2.
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0. INTRODUCTION

Consider the class of unital C∗-algebras which can be realized as inductive limits
of sequences of finite direct sums of C

(
[0, 1]

)
⊗O2, where O2 is the Cuntz algebra

with two generators, i.e. the universal C∗-algebra generated by two isometries, s1
and s2, satisfying the relation s1s∗1 + s2s

∗
2 = 1. This C∗-algebra was introduced in

[3] where it was also proved to be simple. It follows by continuity of K0 and K1 and
[4], Theorem 2.3 that a C∗-algebra in the above class must have trivial K-theory.
It also follows that any closed two-sided ideal in such a C∗-algebra must have
trivial K-theory. Furthermore, by definition, C∗-algebras in this class can have no
tracial states. This indicates that this class of C∗-algebras could be classified up
to ∗-isomorphism by the lattice of ideals (i.e. the set of closed, two-sided ideals
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ordered by inclusion). The purpose of this paper is to prove that this is the case
for C∗-algebras in the above class which have totally ordered lattice of ideals.

The following properties of O2 will be used frequently in this paper. Any
pair of non-zero projections in O2 are unitarily equivalent. This implies that the
unit of O2 can be split into any finite number of mutually orthogonal projections,
that if e is any non-zero projection in O2, then O2 is isomorphic to eO2e and,
finally, that Mn(O2) is isomorphic to O2 for all n ∈ N.

1. THE LATTICE OF IDEALS

1.1. Let A be a C∗-algebra. Denote by I(A) the set of closed two-sided ideals in
A. It is a distributive lattice when ordered by inclusion. The infimum of two ideals
I1 and I2 is their intersection and the supremum is {a1+a2 | a1 ∈ I1 and a2 ∈ I2}.
Furthermore I(A) is a complete lattice, i.e. it has the property that any family
of ideals has an infimum (their intersection) and a supremum (the intersection of
the ideals which contain all ideals in the family). In the following proposition a
topology is put on I(A), however it should be emphasised that in the classification
Theorem 5.1.1 the invariant will be I(A) considered as an ordered set.

Proposition 1.1.1. (i) If A is a C∗-algebra, then I(A) is a compact Haus-
dorff space when given the weak topology induced by the maps â : I(A) → R+

defined by â(I) = ‖a + I‖, a ∈ A. If A is unital, then A is an isolated point in
I(A) and if A is assumed to be separable, then I(A) is metrizable.

(ii) If ϕ : A → B is ∗-homomorphism between C∗-algebras, then the induced
map ϕ̂ : I(B) → I(A) defined by ϕ̂(I) = ϕ−1(I) is continuous and infimum
preserving.

Proof. For part (i) only compactness will be proved. Let Iλ be a universal
net in I(A) and let a ∈ A. Since â(Iλ) is a universal net in [0, ‖a‖], which is
compact, it follows that â(Iλ) is convergent. Put I = {a ∈ A | lim â(Iλ) = 0}.
Then I is a closed, two-sided ideal in A. Define a map, γ : A → R+, by setting
γ(a) = lim â(Iλ). This is a C∗-semi-norm on A and γ−1(0) = I. Hence γ induces
a C∗-norm on A/I. Then by uniqueness of the C∗-norm â(I) = γ(a) = lim â(Iλ).
This proves that I(A) is compact.

To prove (ii) it is enough to show that if a ∈ A, then â ◦ ϕ̂ is continuous.
Let I be a closed two-sided ideal in B. Let πI : B → B/I and π

ϕ̂(I)
: A → A/ϕ̂(I)

be the quotient maps. Since ϕ̂(I) is the kernel of the map πI ◦ ϕ, it follows
from the first isomorphism theorem that there exists an injective ∗-homomorphism
ψ : A/ϕ̂(I)→ B/I such that ψ ◦ π

ϕ̂(I)
= πI ◦ ϕ. Hence ‖a+ ϕ̂(I)‖ = ‖ϕ(a) + I‖.

This proves that â ◦ ϕ̂ = ϕ̂(a) so that â ◦ ϕ̂ is continuous.
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Hence taking A to I(A) and ϕ to ϕ̂ defines a contravariant functor from the
category where the objects are C∗-algebras and the morphisms are ∗-homomor-
phisms, to the category where the objects are distributive lattices (with the ad-
ditional property that any family of elements has an infimum and a supremum)
which are also compact Hausdorff spaces and the morphisms are infimum preserv-
ing continuous maps. Note that if ϕ is onto, then ϕ̂ preserves supremum of finite
sets.

In the remaining part of this section the topology on I(A) introduced in
Proposition 1.1.1 is described in some special cases. First for inductive limit C∗-
algebras where it is also proved that the functor defined above is well-behaved
with respect to taking inductive limits.

Proposition 1.1.2. Let (An, ϕn : An → An+1)∞n=1 be a sequence of C∗-
algebras and ∗-homomorphisms with inductive limit A. Let µn : An → A be the
natural ∗-homomorphism. Then:

(i) the weak topology on the set of closed, two-sided ideals in A defined in
Proposition 1.1.1 coincides with the weak topology induced by the maps µ̂n (here
I(An) is given the topology from Proposition 1.1.1);

(ii) I(A) is an inverse limit of the sequence (I(An), ϕ̂n : I(An+1) →
I(An))∞n=1 in the category described above.

Proof. Since I(A) is compact when given the weak topology from Proposition
1.1.1 and Hausdorff when given the weak topology induced by the µ̂n’s, it is enough
to show that the identity map between these two spaces is continuous. This will
follow if µ̂n is continuous and this is the case by Proposition 1.1.1 (ii). This
proves (i).

Assume that L is a lattice in the category introduced above and that πn :
L → I(An), n ∈ N, are continuous and infimum preserving maps such that πn =
ϕ̂n ◦πn+1 for all n ∈ N. Define a map Γ : L → I(A) by sending x ∈ L to the ideal
in A determined by the sequence of ideals (πn(x))∞n=1. Clearly, µ̂n ◦Γ = πn and Γ
is the only map with this property. It is also continuous and infimum preserving.

Next it is proved that, in a special case, there is a particularly nice metric
which induces the topology defined in Proposition 1.1.1.

Proposition 1.1.3. Let I1, I2, . . . , In be a finite family of mutually disjoint
closed intervals contained in [0, 1], each containing more than one point. Let dH
be the Hausdorff metric on the set of non-empty, closed subsets of [0, 1]. Extend



226 Jakob Mortensen

it to set of all closed subsets of [0, 1] by defining dH(∅, F ) = dH(F, ∅) = 1 (any
number bigger than 1/2 could be used here) and dH(∅, ∅) = 0. Put

A = C
( n⋃
j=1

Ij ,O2

)
.

Let I and J be closed two-sided ideals in A with corresponding closed subsets F

and G of
n⋃
j=1

Ij. Define a metric d on I(A) by setting

d(I, J) = dH(F,G).

This metric has the following properties:
(i) it induces the topology on I(A) defined in Proposition 1.1.1;
(ii) if I, J ∈ I(A) \ {A}, then d(I, J) 6 1;
(iii) if I ∈ I(A) \ {A}, then d(I,A) = 1;
(iv) if I, J and K are closed two-sided ideals in A and I ⊆ J ⊆ K, then

d(J,K) 6 d(I,K) and d(I, J) 6 d(I,K).

Proof. The statements (ii), (iii) and (iv) follow directly from the definition
of d.

Since the set of closed subsets of
n⋃
j=1

Ij equipped with the metric dH is com-

pact and I(A) is Hausdorff, it is enough to show that the bijective map, which

maps a closed subset, F , to the corresponding ideal, IF =
{
f ∈ C

( n⋃
j=1

Ij ,O2

) ∣∣∣ f |F
= 0

}
, is continuous. This is the case since the map F 7→ ‖a + IF ‖ is continuous

for all a ∈ A.

Remark 1.1.4. Let A =
n⊕
i=1

(C[0, 1]) ⊗O2. If I1, I2, . . . , In is any choice of

mutually disjoint closed intervals contained in [0, 1], each containing more than

one point, then A is ∗-isomorphic to C
( n⋃
i=1

Ii,O2

)
. Hence there is a metric

(depending on the choice of the intervals) on I(A) with the properties stated in
the proposition.

Finally it is proved that if I(A) is totally ordered, then the order topology
coincides with the topology defined in Proposition 1.1.1.

Proposition 1.1.5. Let A be a C∗-algebra and assume that I(A) is totally
ordered. Denote by (I(A), τ) the set of closed two-sided ideals in A equipped with
the order topology. Then the identity map, id : I(A)→ (I(A), τ), is a homeomor-
phism. Hence the the weak topology defined in Proposition 1.1.1 coincides with the
order topology.
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Proof. Since I(A) is compact and (I(A), τ) is Hausdorff, it is enough to
show that id is continuous. Assume that I1 ⊂ I ⊂ I2 are three ideals in A. Put
B = I2/I1 and J = I/I1. Then J is an ideal in B. Let π : B → B/J be the
quotient map. Since J 6= {0}, it follows that there exists b ∈ B \ J such that

0 6= ‖π(b)‖ < ‖b‖.

The map Γ : I2/I → B/J , defined by Γ(a + I) = π(a + I1), is a ∗-isomorphism.
Hence there exists a ∈ I2 such that Γ(a+ I) = π(b) 6= 0. It follows that a ∈ I2 \ I
and that

0 < ‖a+ I‖ = ‖Γ(a+ I)‖ = ‖π(b)‖ < ‖b‖ = ‖a+ I1‖.

Hence â−1(]0, â(I1)[ ) is an open set in I(A) contained in ]I1, I2[ and it contains I.
Using similar methods it can be proved that the sets of the form [0, I[ and

]I,A] are also open sets. This proves that id is continuous.

Corollary 1.1.6. If A is separable C∗-algebra and I(A) is totally ordered,
then I(A) is order isomorphic to a compact subset of the real line.

Proof. Since any totally ordered space, which is compact and metrizable in
the order topology, is order isomorphic to a compact subset of the real line, this
follows from Propositions 1.1.1 and 1.1.5.

1.2. This section gives a converse to the last corollary using building blocks of

the form
n⊕
i=1

(C[0, 1]) ⊗ O2. Let K be a compact subset of R containing at least

three points and having an isolated maximum. Put K ′ = K \ {maxK}. Then K ′

is compact and contains at least two points. Set

K ′
n =

{
s ∈ R

∣∣∣ minK ′ 6 s 6 maxK ′ and ∃ t ∈ K ′ : |s− t| 6 1
n

}
.

Then K ′
n is a disjoint union of a finite number of intervals all containing more

than one point, K ′
n+1 ⊆ K ′

n and K ′ =
∞⋂
n=1

K ′
n. Put

An = C(K ′
n,M2n−1(O2))(∼= C(K ′

n,O2)).

Let (qn)∞n=1 be a dense sequence in K ′ with the property that any tail of the
sequence is also dense in K ′ (i.e. each isolated point in K ′ appears an infinite
number of times in the sequence). Define a continuous function, λn : K ′

n+1 →
K ′
n+1(⊆ K ′

n), by setting

λn(t) =
{
qn t 6 qn,
t t > qn.
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Define a unital ∗-homomorphism,

ϕn : An → An+1,

by

ϕn(f)(t) =
(
f(t) 0
0 f ◦ λn(t)

)
where t ∈ K ′

n+1. Put
A = lim

−→
(An, ϕn),

and let µn : An → A, n ∈ N, be the natural ∗-homomorphisms.

Theorem 1.2.1. The C∗-algebra A constructed above is a non-simple C∗-
algebra with the following properties:

(i) If I is an ideal in A, I 6= A, then there exists a unique t ∈ K ′ such that
for all n ∈ N the ideal µ̂n(I) corresponds to the closed set [t,∞[∩K ′. Conversely,
for any t ∈ K ′ the sequence

(
[t,∞[∩K ′)∞n=1 determines an ideal in A. Hence

mapping the ideal determined by the sequence
(
[t,∞[∩K ′)∞n=1 to t and A to maxK

defines an order isomorphism between I(A) and K.
(ii) If I(A) is identified with K and I(An) is identified with the set of closed

subsets of K ′
n, then the natural map πn : I(A)→ I(An) is given by

πn(t) =
{

[t,∞[∩K ′ t < maxK;
∅ t = maxK.

In particular πn is continuous and descending.
(iii) The connecting maps ϕ̂n : I(An+1) → I(An) are contractions with

respect to the metrics induced by the Hausdorff metric on the set of non-empty,
closed subsets of [minK ′,maxK ′] (see Proposition 1.1.3).

Proof. Let I be an ideal in A which is not A itself. Put In = µ̂n(I) and let Fn
be the non-empty closed subset of K ′

n corresponding to In. Since ϕ̂n(In+1) = In

it follows that
Fn = Fn+1 ∪ λn(Fn+1).

Hence Fn+1 must be contained in Fn so that minFn 6 minFn+1. On the other
hand, since λn(t) > t for all t ∈ K ′

n+1 it follows that minFn+1 6 minFn. This
proves that minFn = minFm for all n andm in N. Let t be this common minimum.

Now fix N ∈ N. By construction of the connecting ∗-homomorphism

FN = FN+1 ∪ ({qN} ∩ [t,∞[ ).
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Iterating this, it follows that for all j ∈ N

FN = FN+j ∪ ({qN , qN+1, . . . , qN+j−1} ∩ [t,∞[ ).

Hence FN ⊆ K ′
N+j for all j ∈ N so that FN ⊆ K ′. This proves that FN ⊆

[t,∞[∩K ′.
If s ∈ [t,∞[∩K ′, s > t, then by the choice of the sequence (qn)∞n=1 it has

a subsequence contained in [t,∞[∩K ′ with limit s and such that all elements in
the subsequence have index larger than N . By the above, all elements in the
subsequence belong to FN . Since FN is closed, s must be contained in FN . Hence
FN = [t,∞[∩K ′.

Let t ∈ K ′. Since(
[t,∞[∩K ′) ∪ λn

(
[t,∞[∩K ′) = [t,∞[∩K ′,

the sequence
(
[t,∞[∩K ′)∞n=1 defines an ideal in A. The statement about the

order isomorphism now follows. This proves (i), and (ii) follows directly from
(i). The statement (iii) follows from the observation that if s, t ∈ K ′

n+1, then
|λn(s)− λn(t)| 6 |s− t|.

The following theorem summarizes the results in Corollary 1.1.6 and Theo-
rem 1.2.1 and takes into account the fact that a simple C∗-algebra can be obtained
as a limit of these building blocks.

Theorem 1.2.2. If A is unital C∗-algebra which is an inductive limit of a
sequence of finite direct sums of C

(
[0, 1]

)
⊗ O2 and I(A) is totally ordered, then

I(A) is compact metrizable and has an isolated maximum in the order topology.
Conversely, each such totally ordered space containing at least two points appears
as the lattice of ideals of such a C∗-algebra.

Remark 1.2.3. Let A be a C∗-algebra which can be realized as an inductive
limit of a sequence of finite direct sums of O2. It follows from Proposition 1.1.2 (i)
that I(A) is totally disconnected, hence the class of C∗-algebras considered in the
classification Theorem 5.1.1 can not be obtained in this way. It can be proved that
every totally ordered set which is totally disconnected compact metrizable and has
an isolated maximum in the order topology appears as the lattice of ideals of a
unital C∗-algebra which is an inductive limit of a sequence of finite direct sums of
O2.

1.3. Let A be a C∗-algebra which is an inductive limit of a sequence An, n ∈ N,
of C∗-algebras. In this section the natural map πn : I(A)→ I(An) is studied. It
is proved that in a special case it has certain properties if n is large enough.
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Lemma 1.3.1. Suppose that I and J are ideals in a C∗-algebra, A, such that
I ⊆ J and aIa = aJa for some positive a ∈ A which generates J as an ideal. Then
I = J .

Proof. Let b be a positive element in J and let ε > 0. Since b1/4 ∈ J and J

is the ideal generated by a it follows that for every δ > 0 there are finitely many
elements, xi and yi, in A such that∥∥∥b1/4 −∑

i

xiayi

∥∥∥ < δ.

Put c =
∑
i

b1/8xiayib
1/8. Then ‖b1/2 − c‖ 6 ‖b1/8‖2

∥∥∥b1/4 −∑
i

xiayi

∥∥∥ and

‖b− cc∗‖ 6 ‖b1/2‖ ‖b1/2 − c‖+ 3‖c‖ ‖b1/2 − c‖
6 ‖b1/2‖ ‖b1/2 − c‖+ 3(‖c− b1/2‖+ ‖b1/2‖)‖b1/2 − c‖.

By choosing δ small enough it then follows that ‖b− cc∗‖ < ε. Furthermore

cc∗ =
∑
j

∑
i

b1/8xiayib
1/4y∗j ax

∗
jb

1/8

and since

ayib
1/4y∗j a ∈ aJa = aIa ⊆ I,

it follows that cc∗ ∈ I.

The rest of this section contains the proof of the following proposition.

Proposition 1.3.2. For all n ∈ N let

An =
kn⊕
j=1

An,j

where An,j = C
(
[0, 1]

)
⊗ O2. Let ϕn : An → An+1 be a unital ∗-homomorphism

and put

A = lim
−→

(An, ϕn).

Let µn : An → A be the natural ∗-homomorphism. Assume that I(A) is totally
ordered.

Let I1 ⊂ I2 ⊂ · · · ⊂ Ik ⊂ J be ideals in A such that I1, I2, . . . , Ik all belong
to the same component of I(A) and J belongs to some other component. Then
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there is n ∈ N such that for all m > n the following holds: there are indices

j1, j2, . . . , jlm ∈ {1, 2, . . . , km} so that

pm,ji µ̂m(J)pm,ji = Am,ji

for all i (where pm,ji is the projection onto the ji’th summand of Am),

pm,ji µ̂m(Il)pm,ji ⊂ Am,ji

for all i and l and so that if pm = pm,j1 + pm,j2 + · · ·+ pm,jlm , then

pmµ̂m(I1)pm ⊂ · · · ⊂ pmµ̂m(Ik)pm.

For all n ∈ N and all j ∈ {1, 2, . . . , kn} put

Kn,j = {I ∈ I(A) | µ̂n(I) ∩ An,j = An,j}.

Since An,j is a unital C∗-algebra, it follows from Proposition 1.1.1 that {An,j} is

a clopen set in I(An,j). Let ιn,j : An,j → An be the natural inclusion. Then Kn,j

is the pre-image of {An,j} under the continuous map ι̂n,j ◦ µ̂n. Hence Kn,j is a

clopen set in I(A). Put

Jn,j = minKn,j ,

then Kn,j = {I ∈ I(A) | Jn,j ⊆ I}. Fix in the following n ∈ N and j ∈
{1, 2, . . . , kn}.

Lemma 1.3.3. If m > n, then there exists i ∈ {1, 2, . . . , km} such that Jm,i =

Jn,j.

Proof. Let F be the pre-image of {An,j} under the continuous map ι̂n,j◦ϕ̂m,n.
Then F is clopen and since µn = µm ◦ ϕm,n it follows that the pre-image of F

under µ̂m is Kn,j .

Since F is clopen in I(Am) it follows that the pre-image of F under µ̂m can

be written as a finite intersection,
⋂
Fl, where each Fl is either Km,i or K{

m,i for

some i. Since
⋂
Fl = Kn,j it follows that at least one of the Fl’s must have the

form Km,i for some i. By the above description of the Km,i’s it follows that the

minimum of
⋂
Fl must be attained on such an Fl.
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For all m > n put
pm =

∑
pm,i

where pm,i is the projection onto the i’th summand in Am and the summation is
over the set {i | Am,i ⊆ µ̂m(Jn,j)}. By the previous lemma this set is non-empty.
Let Im be the ideal generated by the projection µm(pm) in A. From the definition
of pm it follows that µm(pm) ∈ Jn,j so that Im ⊆ Jn,j . Use the above lemma to
choose Km,i such that Jm,i = Jn,j . Then note that µ̂m(Im) is an ideal in Am
containing pm. Hence Im belongs to Km,i. By the minimality of Jn,j , Jn,j ⊆ Im,
so Jn,j = Im for all m > n.

Lemma 1.3.4. If n 6 k < m, then ϕm,k(pk) 6 pm.

Proof. Put F = {i | ϕm,k(pk)pm,i 6= 0}. Since ϕm,k(pk)pm,i 6 pm,i it follows
that

ϕm,k(pk) =
km∑
i=1

ϕm,k(pk)pm,i =
∑
F

ϕm,k(pk)pm,i 6
∑
F

pm,i.

Hence it is enough to prove that F is contained in {i | Am,i ⊆ µ̂m(Jn,j)}. By
the above, Jn,j is the ideal generated by the projection µm(ϕm,k(pk)). This im-
plies that the ideal generated by ϕm,k(pk) in Am is contained in µ̂m(Jn,j). If
ϕm,k(pk)pm,i 6= 0, then this projection is equivalent to pm,i (all non-zero projec-
tions inAm,i are equivalent). Hence in this case the cut down of the ideal generated
by ϕm,k(pk)pm,i, by the projection pm,i, is Am,i i.e. Am,i ⊆ µ̂m(Jn,j).

Now let I1 ⊆ I2 ⊂ J be ideals in A. Assume that I1 and I2 belong to the
same connected component of I(A) and that J belongs to some other component
of I(A). Then there exists n ∈ N such that for all m > n there exists j ∈
{1, 2, . . . , km} (depending on m) so that J ∈ Km,j while I1, I2 /∈ Km,j (this uses
that if I and J belong to different components of I(A), then eventually µ̂m(I) and
µ̂m(J) belong to different components of I(Am)). Hence I1 ⊆ I2 ⊂ Jn,j and, as
proved above, Jn,j = Im for all m > n.

Lemma 1.3.5. If I1 ⊂ I2 (⊂ Jn,j ⊆ J), then there exists k ∈ N, k > n, such
that for m > k,

pmµ̂m(I1)pm ⊂ pmµ̂m(I2)pm.

Proof. If not, then there is a sequence n 6 m1 < m2 < · · ·, such that

pmi
µ̂mi

(I1)pmi
= pmi

µ̂mi
(I2)pmi

.

By Lemma 1.3.4, ϕmi,n(pn) 6 pmi
so that

ϕmi,n(pn)pmi µ̂mi(I1)pmiϕmi,n(pn) = ϕmi,n(pn)µ̂mi(I1)ϕmi,n(pn)
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and the same with I1 replaced by I2. Hence for all i,

µn(pn)µmi(µ̂mi(I1))µn(pn) = µn(pn)µmi(µ̂mi(I2))µn(pn)

so that

µn(pn)
( ∞⋃
i=1

µmi
(µ̂mi

(I1))
)
µn(pn) = µn(pn)

( ∞⋃
i=1

µmi
(µ̂mi

(I2))
)
µn(pn).

This implies that

µn(pn)I1µn(pn) = µn(pn)I2µn(pn).

By Lemma 1.3.1 this implies that I1 = I2 which is a contradiction.

Proposition 1.3.2 now follows.

2. THE UNIQUENESS THEOREM

2.1. This section is devoted to proving that if h1 and h2 are self-adjoint elements
in C

(
[0, 1],O2

)
with spectra contained in [0, 1] such that sph1(t) and sph2(t) are

close with respect to the Hausdorff metric for all t ∈ [0, 1], then there is a unitary
u in C

(
[0, 1],O2

)
such that uh1u

∗ is close to h2. In fact something slightly more
general will be proved.

Lemma 2.1.1. Let I1, I2, . . . , In and J1, J2, . . . , Jm be two families of mutu-
ally disjoint, closed and bounded sub-intervals of R each containing more than one
point. Let ε > 0. Let d be the Hausdorff metric on the set of closed non-empty

subsets of
m⋃
j=1

Jj. If π is a continuous function from
n⋃
i=1

Ii into the set of closed,

non-empty subsets of
m⋃
j=1

Jj, then there exist continuous functions λ1, λ2, . . . , λN

from
n⋃
i=1

Ii into
m⋃
j=1

Jj, such that

λ1(t) < λ2(t) < · · · < λN (t)

and

d(π(t), {λ1(t), λ2(t), . . . , λN (t)}) < ε

for all t ∈
n⋃
i=1

Ii.
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Proof. Assume first that π is a continuous map from [0, 1] into the set of
non-empty closed subsets of [0, 1]. Since π is uniformly continuous, there is a
δ > 0 such that

|s− t| < δ ⇒ d(π(s), π(t)) <
ε

2
for all s, t ∈ [0, 1]. Choose 0 = t0 < t1 < · · · < tn = 1 such that |ti+1− ti| < δ. For
each i ∈ {0, 1, . . . , n} choose a finite subset Fi of π(ti) which is ε/2-dense in π(ti).

Let F be the set of piecewise, linear functions such that if λ ∈ F , then
λ(ti) ∈ Fi and |λ(ti)− λ(ti+1)| < ε for i = 0, 1, . . . , n− 1.

If r ∈ Fi, then by the choice of δ there is s ∈ π(ti+1) so that |r − s| < ε/2.
By the choice of Fi+1 there is t ∈ Fi+1 such that |s − t| < ε/2, i.e. |r − t| < ε.
This proves that Fi = {λ(ti) | λ ∈ F}. Since each Fi is finite, F is finite. It is not
hard to check that this family of functions has the property that

d(π(t), {λ(t) | λ ∈ F}) < ε

for all t ∈ [0, 1]. The lemma now follows in this special case.
Let i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}. Define a continuous map πi,j

from Ii into the set of closed subsets of Jj by setting

πi,j(t) = π(t) ∩ Jj .

Since π is continuous, either πi,j(t) = ∅ or πi,j(t) 6= ∅ for all t ∈ Ii. In the last
case use the above to choose a finite family of continuous functions from Ii into
Jj with the desired properties. In this way, some finite families of functions are
defined on Ii for i = 1, 2, . . . , n. It can be assumed that these families have the
same number of elements. Note that for each i there is j ∈ {1, 2, . . .m} such that
πi,j(t) 6= ∅ for all t ∈ Ii.

If h is a self-adjoint element in C
(
[0, 1],O2

)
with spectrum contained in [0, 1],

then the lemma states that the map t 7→ sph(t) can be approximated by a map
determined by a finite family of continuous functions from [0, 1] into [0, 1].

Recall that a C∗-algebra is said to have real rank zero (this was defined in
[2]) if the set of self-adjoint elements with finite spectrum is dense in the set of
self-adjoint elements. By [11], O2 has real rank zero. Using this, the following
lemma can be obtained:

Lemma 2.1.2. Let h be a self-adjoint element in O2 and let F be a finite
subset of R. Then for every δ > 0 there is a self-adjoint element, h′, in O2 with
spectrum F and ‖h− h′‖ < d(F, sph) + δ, where d is the Hausdorff metric.

The next lemma is a corollary of [1], Lemma 7.1 stated for O2.



Classification of certain non-simple C∗-algebras 235

Lemma 2.1.3. For every ε > 0 there is a δ > 0 with the following property:
If u is a unitary in O2, h is a self-adjoint element in O2 with spectrum contained
in [0, 1] and

‖uh− hu‖ < δ,

then there is a continuous path of unitaries ut, t ∈ [0, 1], in O2 such that u0 = 1,
u1 = u and

‖uth− hut‖ < ε

for all t ∈ [0, 1].

Proposition 2.1.4. Let I1, I2, . . . , In be mutually disjoint closed and
bounded intervals contained in R and each containing more than one point. For
every ε > 0 there is a δ > 0 with the following property: If h is a self-adjoint

element in C
( n⋃
i=1

Ii,O2

)
with spectrum contained in [0, 1] and λ1, λ2, . . . , λN are

continuous functions from
n⋃
i=1

Ii into [0, 1] such that

d(sph(t), {λ1(t), λ2(t), . . . , λN (t)}) < δ

for all t ∈
n⋃
i=1

Ii, then there are mutually orthogonal projections e1, e2, . . . , eN with

sum 1 in C
( n⋃
i=1

Ii,O2

)
such that

∥∥∥h(t)− N∑
j=1

λj(t)ej(t)
∥∥∥ < ε

for all t ∈
n⋃
i=1

Ii.

Proof. It is enough to consider the case where n = 1 and the interval is [0, 1].
Let ε > 0 and let δ′ > 0 be the number corresponding to ε/3 in Lemma 2.1.3. Put

δ = min
{δ′

4
,
ε

6

}
.

Assume that h is a self-adjoint element in C
(
[0, 1],O2

)
with spectrum contained

in [0, 1] and that λ1, λ2, . . . , λN are continuous functions from [0, 1] into [0, 1] such
that

d(sph(t), {λ1(t), λ2(t), . . . , λN (t)}) < δ

for all t ∈ [0, 1].
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Choose a partition 0 = t0 < t1 < · · · < tn = 1 of [0, 1] with the following
properties:

|λj(s)− λj(t)| < min
{ δ′

4N
,
ε

3N

}
and ‖h(s)− h(t)‖ < δ

for all s, t ∈ [ti, ti+1], i = 0, 1, . . . , n−1 and j = 1, 2, . . . , N . By Lemma 2.1.2 there
is a self-adjoint element h′(ti) in O2 such that

‖h(ti)− h′(ti)‖ < δ

and

sph′(ti) = {λ1(ti), λ2(ti), . . . , λN (ti)}.

Then h′(ti) can be written

h′(ti) =
N∑
j=1

λj(ti)eij

where ei1, e
i
2, . . . , e

i
N is a family of mutually orthogonal projections in O2 with

sum 1. Find a unitary ui in O2 such that

ei+1
j = uieij(u

i)∗

for j = 1, 2, . . . , N . Then

‖h′(ti)− uih′(ti)(ui)∗‖ 6 ‖h′(ti)−h(ti)‖+ ‖h(ti)−h(ti+1)‖+ ‖h(ti+1)−h′(ti+1)‖

+
∥∥∥ N∑
j=1

(λj(ti+1)−λj(ti))ei+1
j

∥∥∥ < δ′.

Hence, by Lemma 2.1.3, there is a continuous path of unitaries uit, t ∈ [ti, ti+1], in
O2 such that uiti = 1, uiti+1

= ui and

‖h′(ti)− uith′(ti)(uit)∗‖ <
ε

3

for all t ∈ [ti, ti+1]. Putting ej(t) = uite
i
j(u

i
t)
∗ for t ∈ [ti, ti+1] we define a projection

ej in C
(
[0, 1],O2

)
. Set

h′(t) =
N∑
j=1

λ(t)ej(t).
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If t ∈ [ti, ti+1], then

‖h(t)− h′(t)‖ 6 ‖h(t)− h(ti)‖+ ‖h(ti)− h′(ti)‖+ ‖h′(ti)− uith′(ti)(uit)∗‖
+ ‖uith′(ti)(uit)∗ − h′(t)‖

<
ε

6
+
ε

6
+
ε

3
+

N∑
j=1

|λj(ti)− λj(t)| < ε.

It follows from Lemma 2.1.1 and Proposition 2.1.4 that if ε > 0 and h

is a self-adjoint element in C
(
[0, 1],O2

)
with spectrum contained in [0, 1], then

there is a finite family of continuous functions λ1, λ2, . . . , λN from [0, 1] into
[0, 1] and mutually orthogonal projections e1, e2, . . . , eN in C

(
[0, 1],O2

)
such that∥∥∥h(t)− N∑

j=1

λj(t)ej(t)
∥∥∥ < ε for all t ∈ [0, 1].

Theorem 2.1.5. Let I1, I2, . . . , In be mutually disjoint closed and bounded
sub-intervals of R each containing more than one point. Let d be the Hausdorff
metric on the set of non-empty, closed subsets of [0, 1]. For every ε > 0 there
is a δ > 0 with the following property: If h1 and h2 are self-adjoint elements in

C
( n⋃
i=1

Ii,O2

)
with spectra in [0, 1] and

d(sph1(t), sph2(t)) < δ

for all t in
n⋃
i=1

Ii, then there is a unitary u in C
( n⋃
i=1

Ii,O2

)
such that

‖uh1u
∗ − h2‖ < ε.

Proof. Again it is enough to consider the case with only one interval which
can be assumed to be [0, 1]. Let δ′ > 0 be the number corresponding to ε/2 in
Proposition 2.1.4. Assume that h1 and h2 are self-adjoint elements in C

(
[0, 1],O2

)
such that

d(sph1(t), sph2(t)) <
δ′

2

for all t in [0, 1].
Use Lemma 2.1.1 to find continuous functions λ1, λ2, . . . , λN from [0, 1] into

[0, 1] such that

d(sph1(t), {λ1(t), λ2(t), . . . , λN (t)}) < δ′

2

for all t ∈ [0, 1]. Then

d(sph2(t), {λ1(t), λ2(t), . . . , λN (t)}) < δ′
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for all t ∈ [0, 1]. By Proposition 2.1.4 there are two families of mutually orthogonal
projections e1, e2, . . . , eN and f1, f2, . . . , fN in C

(
[0, 1],O2

)
with sum 1 such that

∥∥∥h1(t)−
N∑
j=1

λj(t)ej(t)
∥∥∥ < ε

2

and ∥∥∥h2(t)−
N∑
j=1

λj(t)fj(t)
∥∥∥ < ε

2

for all t ∈ [0, 1]. There is a unitary u in C
(
[0, 1],O2

)
such that ej = ufju

∗ for
j = 1, 2, . . . , N . Then

‖u(t)h2(t)u(t)∗ − h1(t)‖ 6
∥∥∥u(t)h2(t)u(t)∗ − u(t)

( N∑
j=1

λj(t)fj(t)
)
u(t)∗

∥∥∥
+

∥∥∥ N∑
j=1

λj(t)ej(t)− h1(t)
∥∥∥ < ε.

2.2. Let ϕ,ψ : A → B be unital ∗-homomorphisms between unital C∗-algebras.
Then ϕ and ψ are said to be approximately unitarily equivalent if for all ε > 0 and
all finite subsets F of A there is a unitary u in B such that

‖uϕ(x)u∗ − ψ(x)‖ < ε

for all x ∈ F .
In the following unital ∗-homomorphisms between C∗-algebras which are

finite direct sums of C
(
[0, 1]

)
⊗ O2 will be studied. From [7], Theorem 5.1 it

is known that any pair of unital ∗-homomorphisms from O2 into
n⊕
i=1

C([0, 1]) ⊗

O2 are approximately unitarily equivalent. Reducing to the case with only one
interval and using that Rørdam’s proof is constructive, the following lemma can
be obtained by repeating the proof in [7] with some extra bookkeeping.

Lemma 2.2.1. For every ε > 0 there is a δ > 0 with the following property:
let s1 and s2 be the canonical generators of O2 and let I1, I2, . . . , In be mutually
disjoint closed and bounded intervals all containing more than one point. If ϕ and

ψ are two unital ∗-homomorphisms from O2 into C
( n⋃
i=1

Ii,O2

)
, h is a self-adjoint

element in C
( n⋃
i=1

Ii,O2

)
with spectrum contained in [0, 1],

‖[ϕ(sj), h]‖ < δ
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and
‖[ψ(sj), h]‖ < δ

for j = 1, 2, then there exists a unitary u in C
( n⋃
i=1

Ii,O2

)
such that

‖uϕ(sj)u∗ − ψ(sj)‖ < ε

for j = 1, 2 and
‖uhu∗ − h‖ < ε.

The proof of the following lemma consists of applying the previous lemma
to the restrictions of ϕ and ψ to O2 and the self-adjoint element ψ(h ⊗ 1). The
details are left to the reader.

Lemma 2.2.2. Let I1, I2, . . . , In be mutually disjoint closed and bounded in-
tervals contained in [0, 1] each containing more than one point and let h be the

canonical generator of C
( n⋃
i=1

Ii

)
(in particular the spectrum of h is contained in

[0, 1]). Let s1 and s2 be the canonical generators of O2. For every ε > 0 there is a
δ > 0 with the following property: let J1, J2, . . . , Jm be another family of mutually
disjoint closed and bounded intervals each containing more than one point. If ϕ

and ψ are two unital ∗-homomorphisms from C
( n⋃
i=1

Ii

)
⊗O2 into C

( m⋃
j=1

Jj

)
⊗O2

such that
‖ϕ(h⊗ 1)− ψ(h⊗ 1)‖ < δ,

then there exists a unitary u in C
( m⋃
j=1

Jj

)
⊗O2 such that

‖uϕ(1⊗ sl)u∗ − ψ(1⊗ sl)‖ < ε

for l = 1, 2 and
‖uφ(h⊗ 1)u∗ − ψ(h⊗ 1)‖ < ε.

The following theorem is the uniqueness theorem.

Theorem 2.2.3. Let I1, I2, . . . , In be a family of mutually disjoint closed
intervals contained in [0, 1] each containing more than one point. For all ε > 0

and all finite subsets F of C
( n⋃
i=1

Ii

)
⊗O2, there exists a δ > 0 with the following

property: if J1, J2, . . . , Jm is another family of mutually disjoint closed intervals
all contained in [0, 1] and each containing more than one point, d is the Hausdorff
metric on the set of closed, non-empty subsets of [0, 1], h is the canonical generator
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of C
( n⋃
i=1

Ii

)
(in particular h⊗1 ∈ C

( n⋃
i=1

Ii

)
⊗O2 has spectrum contained in [0, 1])

and

ϕ,ψ : C
( n⋃
i=1

Ii

)
⊗O2 → C

( m⋃
j=1

Jj

)
⊗O2

are unital ∗-homomorphisms with

d(spϕ(h⊗ 1)(t), spψ(h⊗ 1)(t)) < δ

for all t ∈
m⋃
j=1

Jj, then there is a unitary u in C
( m⋃
j=1

Jj

)
⊗O2 such that

‖uϕ(x)u∗ − ψ(x)‖ < ε

for all x ∈ F .

Proof. Let s1 and s2 be the canonical generators of O2. Since F is finite and

h⊗1, 1⊗ s1 and 1⊗ s2 generate C
( n⋃
i=1

Ii

)
⊗O2 it is enough to prove the theorem

with F = {h ⊗ 1, 1 ⊗ s1, 1 ⊗ s2}. Let δ′ > 0 be the number corresponding to ε

in Lemma 2.2.2. Then let δ be the number corresponding to taking ε equal to δ′

in Theorem 2.1.5. Assume that ϕ and ψ are two unital ∗-homomorphisms from

C
( n⋃
i=1

Ii

)
⊗O2 into C

( m⋃
j=1

Jj

)
⊗O2 with

d(spϕ(h⊗ 1)(t), spψ(h⊗ 1)(t)) < δ

for all t ∈
m⋃
j=1

Jj . By Theorem 2.1.5, there is a unitary v in C
( m⋃
j=1

Jj

)
⊗O2 such

that

‖vϕ(h⊗ 1)v∗ − ψ(h⊗ 1)‖ < δ′.

Then by Lemma 2.2.2 there is a unitary w in C
( m⋃
j=1

Jj

)
⊗O2 such that

‖wvϕ(1⊗ sl)v∗w∗ − ψ(1⊗ sl)‖ < ε

for l = 1, 2 and such that

‖wvϕ(h⊗ 1)v∗w∗ − ψ(h⊗ 1)‖ < ε.

Hence u = wv is the desired unitary.
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Let ϕ and h be as in the theorem and recall that if I is an ideal in C
( m⋃
j=1

Jj

)
⊗

O2, then ϕ̂(I) denotes the ideal ϕ−1(I) in C
( n⋃
i=1

Ii

)
⊗ O2. If F is a closed

subset of either
n⋃
i=1

Ii or
m⋃
j=1

Jj , then let IF denote the corresponding ideal in

either C
( n⋃
i=1

Ii

)
⊗ O2 or C

( m⋃
j=1

Jj

)
⊗ O2. If f ∈ C

( n⋃
i=1

Ii

)
= C(sph), then

f ⊗ 1 = f(h⊗ 1) ∈ ϕ̂(I{t}) if and only if f |spϕ(h⊗1)(t) = 0. Hence

ϕ̂(I{t}) =
{
f ∈ C

( n⋃
i=1

Ii

) ∣∣∣ f ⊗ 1 ∈ ϕ̂(I{t})
}
⊗O2 = Ispϕ(h⊗1)(t)

and it follows that

ϕ̂(IF )= ϕ̂
(
I⋃

t∈F

{t}

)
= ϕ̂

( ⋂
t∈F

I{t}

)
=

⋂
t∈F

ϕ̂(I{t})=
⋂
t∈F

Ispϕ(h⊗1)(t) =I⋃
t∈F

spϕ(h⊗1)(t)

(since the map t 7→ spϕ(h⊗ 1)(t) is continuous and F is compact, the set⋃
t∈F

spϕ(h⊗ 1)(t) is automatically closed). From these observations the follow-

ing corollary can be obtained. It will be used in the proof of the classification
theorem.

Corollary 2.2.4. Let I1, I2, . . . , In be a family of mutually disjoint closed
intervals all contained in [0, 1] and each containing more than one point. For all

ε > 0 and all finite subsets F of C
( n⋃
i=1

Ii,O2

)
, there is a δ > 0 with the following

property: if J1, J2, . . . , Jm is another family of mutually disjoint closed intervals all

contained in [0, 1], d is the metric on I
(
C

( n⋃
i=1

Ii,O2

))
coming from Proposition

1.1.3 and

ϕ,ψ : C
( n⋃
i=1

Ii,O2

)
→ C

( m⋃
j=1

Jj ,O2

)
are unital ∗-homomorphisms with

d(ϕ̂(I), ψ̂(I)) < δ

for all ideals I in C
( m⋃
j=1

Jj ,O2

)
, then there exists a unitary u in C

( m⋃
j=1

Jj ,O2

)
such that

‖uϕ(x)u∗ − ψ(x)‖ < ε

for all x ∈ F .

Remark 2.2.5. A consequence of the above is the following. Two unital
∗-homomorphisms ϕ and ψ between two finite direct sums of C

(
[0, 1]

)
⊗ O2 are

approximately unitarily equivalent if and only if ϕ̂ = ψ̂.
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3. THE EXISTENCE THEOREM

3.1. This section contains the existence theorem.

Lemma 3.1.1. Let I1, I2, . . . , In and J1, J2, . . . , Jm be two families of mu-
tually disjoint closed intervals contained in [0, 1] such that each of the intervals

contain more than one point. If π is a continuous map from
n⋃
i=1

Ii into the set of

non-empty closed subsets of
m⋃
j=1

Jj equipped with the Hausdorff metric, then there

is a self-adjoint element h ∈ C
( n⋃
i=1

Ii,O2

)
such that

sph(t) = π(t)

for all t in
n⋃
i=1

Ii and such that O2 can be embedded into the commutant of h via

a unital ∗-homomorphism.

Proof. Since O2 is isomorphic to O2 ⊗ O2 (see [8]), it is enough to find a
self-adjoint element h such that

sph(t) = π(t)

for all t in
n⋃
i=1

Ii.

Let d be the Hausdorff metric on the set of non-empty closed subsets of [0, 1].
For all r in N use Lemma 2.1.1 to find continuous functions λr1, λ

r
2, . . . , λ

r
kr

from
n⋃
i=1

Ii into
m⋃
j=1

Jj such that λr1(t) < λr2(t) < · · · < λrkr
(t) and

d(π(t), {λr1(t), λr2(t), . . . , λrkr
(t)}) < 2−r

for all t in
n⋃
i=1

Ii. Then choose non-zero orthogonal projections er1, e
r
2, . . . , e

r
kr

with

sum 1 in C
( n⋃
i=1

Ii,O2

)
. Define hr in C

( n⋃
i=1

Ii,O2

)
by setting

hr(t) =
kr∑
j=1

λrj(t)e
r
j(t).

Then (sphr(t))∞n=1 is uniformly Cauchy in the set of non-empty, closed subsets of
m⋃
j=1

Jj .
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Take ε = 2−1 in Theorem 2.1.5 and let δ1 > 0 be the corresponding δ. Find
r1 in N such that

k, l > r1 ⇒ d(sphk(t), sphl(t)) < δ1

for all t in
n⋃
i=1

Ii. Next take ε = 2−2 in Theorem 2.1.5 to get δ2 > 0. Find r2 in N

such that r2 > r1 and

k, l > r2 ⇒ d(sphk(t), sphl(t)) < δ2

for all t in
n⋃
i=1

Ii. Continue by induction to find δj and rj for all j in N.

By Theorem 2.1.5 there are unitaries uj in C
( n⋃
i=1

Ii,O2

)
such that

‖hrj − u∗jhrj+1uj‖ < 2−j .

Put h′r1 = hr1 and h′rj
= u∗1u

∗
2 · · ·u∗j−1hrj

uj−1uj−2 · · ·u1 for j > 2. Then

sph′rj
(t) = sphrj (t)

for all t in
n⋃
i=1

Ii and ‖h′rj
− h′rj+1

‖ < 2−j . It follows that (h′rj
)∞j=1 is Cauchy. Let

h be the limit of this sequence, then sph(t) = π(t) for all t in
n⋃
i=1

Ii.

The following is the existence theorem.

Theorem 3.1.2. Let I1, I2, . . . , In and J1, J2, . . . , Jm be two families of mu-
tually disjoint, closed intervals contained in [0, 1] each of the intervals containing
more than one point. Let Dn (respectively Dm) be the set of non-empty closed

subsets of
n⋃
i=1

Ii (respectively
m⋃
j=1

Jj) equipped with the Hausdorff metric.

Let Λ : Dn → Dm be a continuous map such that

Λ(F ∪G) = Λ(F ) ∪ Λ(G)

for all F,G ∈ Dn. Then there is a unital ∗-homomorphism

ϕ : C
( m⋃
j=1

Jj ,O2

)
→ C

( n⋃
i=1

Ii,O2

)

with the following property: if IF is a closed, two-sided ideal in C
( n⋃
i=1

Ii,O2

)
with

corresponding closed subset F in Dn, then

ϕ̂(IF ) = IΛ(F ),
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i.e. the closed two-sided ideal ϕ̂(IF ) corresponds to the closed set Λ(F ) in Dm.

Furthermore, if Λ
( n⋃
i=1

Ii

)
=

m⋃
j=1

Jj, then any unital ∗-homomorphism which in-

duces Λ in the above sense is injective.

Proof. Define π :
n⋃
i=1

Ii → Dm by setting π(t) = Λ({t}). Then π is continu-

ous. By Lemma 3.1.1, there is a self-adjoint element h′ in C
( n⋃
i=1

Ii,O2

)
such that

sph′(t) = π(t) and O2 can be embedded into the commutant of h′ via a unital
∗-homomorphism. Then, using that Λ is continuous and preserves finite union, it
follows that

Λ(F ) =
⋃
t∈F

π(t) =
⋃
t∈F

sph′(t)

(the right hand side is automatically closed). Let s1 and s2 be the canonical

generators of O2 and let h be the canonical generator of C
( m⋃
j=1

Jj

)
. Then h⊗ 1,

1 ⊗ s1 and 1 ⊗ s2 generates C
( m⋃
j=1

Jj

)
⊗ O2 (∼= C

( m⋃
j=1

Jj ,O2

)
). By the above,

there is a self-adjoint element h′ in C
( n⋃
i=1

Ii,O2

)
and a copy of O2 commuting

with h′ such that

Λ(F ) =
⋃
t∈F

sph′(t).

Mapping h ⊗ 1 to h′ and 1 ⊗ s1 and 1 ⊗ s2 to the canonical generators of the
copy of O2 commuting with h′ defines a unital ∗-homomorphism ϕ. Since ϕ̂(IF ) =

I⋃
t∈F

spϕ(h⊗1)(t) it follows that ϕ has the desired property. The condition Λ
( n⋃
i=1

Ii

)
=

m⋃
j=1

Jj translates to the statement that ϕ−1(0) = {0}, i.e. that ϕ is injective.

4. INTERTWINING THE INVARIANT

Throughout this section the following conventions will be used. If K is a compact
subset of R, then D(K) will denote the set of non-empty closed subsets of K
equipped with the Hausdorff metric which will be denoted d. If K and L are
non-empty compact subsets of R, then a map Λ : D(K) → D(L) will be called
liftable if it is continuous and

Λ(F ∪G) = Λ(F ) ∪ Λ(G)
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for all F,G ∈ D(K). This condition should be compared with the condition in the
Existence Theorem 3.1.2.

4.1. Given non-empty closed subsets F1, F2, . . . , FN and G1, G2, . . . , GN of [0, 1],
one can ask if there is a continuous function f from [0, 1] into [0, 1] such that
f(Fi) = Gi for i = 1, 2, . . . , N . In the following it is proved that under certain
conditions such a function exists. The proof of the next lemma is left to the reader.

Lemma 4.1.1. Let π : [0, 1] → D
(
[0, 1]

)
be a continuous and descending

map. For each t ∈ π(0) there is a continuous function γt : [0, 1]→ [0, 1] such that
γt(0) = t and γt(s) ∈ π(s) for all s ∈ [0, 1].

Proposition 4.1.2. Let t0, t1, . . . , tn be points in [0, 1] such that 0 = t0 <

t1 < · · · < tn = 1 and let F0, F1, . . . , Fn be non-empty closed subsets of [0, 1].
Assume that:

(i) Fn ⊂ Fn−1 ⊂ · · · ⊂ F0;
(ii) there is a continuous and descending function π : [0, 1]→ D

(
[0, 1]

)
which

starts in F0, passes through the Fj’s and ends in Fn.
Then there exists a continuous function f : [0, 1] → [0, 1] such that f(Fj) =

[tj , 1].

Proof. If F is a closed subset of [0, 1] and t ∈ [0, 1], then put

dist (F, t) = inf{|s− t|
∣∣ s ∈ F}.

Choose xj ∈ Fj \ Fj+1 for j = 0, 1, . . . , n − 1. Define continuous functions fj :
[0, 1]→ [0, tj+1 − tj ], j = 0, 1, . . . , n− 1, by

fj(t) =
dist ({x0, x1, . . . , xj}, t)

dist ({x0, x1, . . . , xj}, t) + dist (Fj+1, t)
(tj+1 − tj).

By the choice of the xj ’s and assumption (i), the denominator is never 0. Since
fj(x0) = fj(x1) = · · · = fj(xj) = 0 and fj(t) = tj+1− tj whenever t ∈ Fi for some
i strictly larger than j, it follows that the image of [0, 1] under fj is [0, tj+1 − tj ].

Put f =
n−1∑
j=0

fj ; then f is continuous and the image of f is contained in [0, 1] since

f(t) =
n−1∑
j=0

fj(t) 6
n−1∑
j=0

(tj+1 − tj) = 1.

If t ∈ Fn, then

f(t) =
n−1∑
j=0

(tj+1 − tj) = 1.
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This proves that the image of Fn under f is {tn}.
Let i ∈ {0, 1, . . . , n− 1}. Then f(F0) ⊆ [0, 1] and if i > 0 and t ∈ Fi, then

f(t) =
n−1∑
j=0

fj(t) =
i−1∑
j=0

(tj+1 − tj) +
n−1∑
j=i

fj(t) >
i−1∑
j=0

(tj+1 − tj) = ti.

This proves that f(Fi) is contained in [ti, 1]. To show that f(Fi) is all of [ti, 1]
choose s ∈ [0, 1], s < 1, such that π(s) = Fi. Now Lemma 4.1.1 gives a continuous
function, γxi

: [s, 1] → [0, 1], such that γxi
(s) = xi and γxi

(t) ∈ π(t) for all t ∈
[s, 1]. In particular γxi(1) ∈ Fn. Note that γxi(t) ∈ Fi for all t ∈ [s, 1]. Consider
the continuous function f ◦ γxi

: [s, 1] → [0, 1]. Since Fi ⊂ Fi−1 ⊂ · · · ⊂ F0, it
follows that

f ◦ γxi(t) =
n−1∑
j=0

fj(γxi(t)) = ti +
n−1∑
j=i

fj(γxi(t)).

By construction fi(xi) = fi+1(xi) = · · · = fn−1(xi) = 0 so that f ◦ γxi
(s) = ti.

Since γxi(1) ∈ Fn it follows that f ◦γxi(1) = 1. Hence the image of f ◦γxi is [ti, 1]
and since the image of γxi

is contained in Fi, it follows that the image of Fi under
f is [ti, 1].

Applying the proposition on each of the intervals I1, I2, . . . , Im the following
corollary is obtained.

Corollary 4.1.3. Let I1, I2, . . . , Im be a finite family of mutually disjoint
closed and bounded sub-intervals of R such that each of them contain more than
one point. Let 0 = t0 < t1 < · · · < tn = 1 be points in [0, 1] and let F0, F1, . . . , Fn

be non-empty closed subsets of
m⋃
j=1

Ij. Assume that:

(i) Fi ∩ Ij 6= ∅ for all i and j;
(ii) Fn ⊂ Fn−1 ⊂ · · · ⊂ F0;

(iii) there is a continuous, descending function, π : [0, 1]→ D
( m⋃
j=1

Ij

)
, which

starts in F0, passes through the Fj’s and ends in Fn.

Then there is a continuous function, f :
m⋃
j=1

Ij → [0, 1] such that f(Fj) =

[tj , 1].

4.2. Let K be a compact subset of R containing at least two points and let ε > 0.
Find a finite subset G of K containing at least two points such that G is ε/6-dense
in K and has the property that if t ∈ K \ G, then there are t1 and t2 in G such
that t1 < t < t2 and max{t− t1, t2 − t} < ε/6.
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Assume that I1, I2, . . . , Im is a finite family of mutually disjoint closed and
bounded sub-intervals of R so that each of them contains more than one point,
and assume that

π : K → D
( m⋃
j=1

Ij

)
is a continuous, descending map with the following properties:

(i) If s, t ∈ G, s 6= t, then π(s) 6= π(t);
(ii) If C is a connected component of K and C ∩ G = {s1, s2, . . . , sr},

si < si+1, and sr < maxG, then there exist j1, j2, . . . , jk ∈ {1, 2, . . . ,m} (both k

and the indices depending on the component C and on the points s1, s2, . . . , sr)
such that

π(si) ∩ Ijl 6= ∅

for all i and l,
π(s) ∩ Ijl = ∅

for all l and all s ∈ G with s > sr, and

π(sr) ∩
( k⋃
l=1

Ijl

)
⊂ · · · ⊂ π(s1) ∩

( k⋃
l=1

Ijl

)
.

Theorem 4.2.1. There is a liftable map

Λ : D
( m⋃
j=1

Ij

)
→ D(K),

such that
d
(
Λ ◦ π(t), {s ∈ K | s > t}

)
< ε

for all t ∈ K, where d is the Hausdorff metric.

Remark 4.2.2. For all n ∈ N, put

Kn =
{
s ∈ R

∣∣∣ ∃ t ∈ K : |s− t| 6 1
n

and minK 6 s 6 maxK
}
.

Then Kn is the disjoint union of finitely many intervals Kn+1 ⊆ Kn and K =
∞⋂
n=1

Kn. Let πn : K → D(Kn) be the continuous and descending map defined by

πn(t) = {s ∈ K | s > t} (hence πn maps into D(K) which is contained in D(Kn)).
In the theorem, K should be thought of as the set of ideals in a C∗-algebra (without
the C∗-algebra itself) of the form

A = lim
−→

( lm⊕
j=1

C
(
[0, 1]

)
⊗O2, ψm

)
.
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The form of πn should be compared with that of the natural map in Theorem 1.2.1.

The theorem then states that there is a liftable map Λ : D
( m⋃
j=1

Ij

)
→ D(Kn), such

that d(Λ ◦ π(t), πn(t)) < ε for all t ∈ K. By Theorem 3.1.2, Λ can be “lifted” to

a unital ∗-homomorphism from C(Kn,O2) into C
( m⋃
j=1

Ij ,O2

)
. It follows from

Proposition 1.3.2 that the natural map from I(A) to I(Am) will satisfy the re-
quirements put on π in the theorem (for a large enough m which will depend on
the choice of G).

Example 4.2.3. Let K = {0, 1} and let π : K → D
(
[0, 1]

)
be the continuous

and descending map defined by π(0) = [0, 1] and π(1) = F , where F is any proper
non-empty closed subset of [0, 1]. Since D

(
[0, 1]

)
is connected (it is contractible)

any continuous function from D
(
[0, 1]

)
into D(K) must be constant. This proves

that the condition on the map π in the theorem is needed.

Proof. Let n ∈ N. Write G = {t0, t1, . . . , tN} where ti < ti+1. Find i1 as
large as possible such that t0, t1, . . . , ti1 belong to the same component C of K.
There are now three cases to be considered i1 = 0, 0 < i1 < N , and i1 = N .

If i1 = 0, then by the assumptions there is an interval Ij such that π(t0)∩Ij 6=
∅ and π(ti) ∩ Ij = ∅ for all i > 0. Choose a finite subset F of {s ∈ K | s > t0}
which is ε/6 -dense in this set. Define for s ∈ F a function fs : Ij → Kn by putting
fs(t) = s for all t ∈ Ij . Then

⋃
s∈F

fs(π(t0) ∩ Ij) is ε/6 -dense in {s ∈ K | s > t0}.

If 0 < i1 < N , then by the assumptions there are indices j1, j2, . . . , jk
in {1, 2, . . . ,m} (depending on C and the points s1, s2, . . . , sr) such that π(t0),
π(t1), . . . , π(ti1) all have non-empty intersections with all of the Ijl ’s while

π(ti1+1) ∩
( k⋃
l=1

Ijl

)
= ∅

and such that

π(ti1) ∩
( k⋃
l=1

Ijl

)
⊂ · · · ⊂ π(t0) ∩

( k⋃
l=1

Ijl

)
.

Use Corollary 4.1.3 to find a continuous function

f :
k⋃
l=1

Ijl → [t0, ti1 ]

such that the image of π(ti) ∩
( k⋃
l=1

Ijl

)
under this function is [ti, ti1 ] (which is

contained in K) for all i 6 i1. Next choose a finite set F of {s ∈ K | s >
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ti1} which is ε/6 -dense in this set. Define for all s ∈ F a continuous function

fs :
k⋃
l=1

Ijl → Kn by setting fs(t) = s for all t ∈
k⋃
l=1

Ijl . Then the union of the

images of π(ti) ∩
( k⋃
l=1

Ijl

)
under these functions is ε/6 -dense in {s ∈ K | s > ti}

for all i 6 i1.

If i1 = N , then there are indices j1, j2, . . . , jk in {1, 2, . . . ,m} such that

π(ti) ∩ Ijl 6= ∅

for all i and l and such that

π(tn) ∩
( k⋃
l=1

Ijl

)
⊂ · · · ⊂ π(t0) ∩

( k⋃
l=1

Ijl

)
.

Use Corollary 4.1.3 to find a continuous function

f :
k⋃
l=1

Ijl → [t0, tN ]

such that the image of π(ti) ∩
( k⋃
l=1

Ijl

)
under f is [ti, tN ]. Note that this interval

is ε/6 -dense in {s ∈ K | s > ti}.
Next if i1 < N , then choose i2 > i1 as large as possible such that ti1+1,

ti1+2, . . . , ti2 belong to the same component of K. Again there are three cases to

be considered i2 = i1 + 1, i1 + 1 < i2 < N , and i2 = N . Find, in the same way

as above, a finite family of continuous functions defined on some of the intervals

I1, I2, . . . , Im such that they have the following property: if J1, J2, . . . , Jv are the

intervals on which the functions are defined and i ∈ {i1 + 1, i1 + 2, . . . , i2}, then

the union of the images of π(ti) ∩
( v⋃
j=1

Jj

)
under these functions is ε/6 -dense in

{s ∈ K | s > ti}. Next i3 is determined, and so on until G is exhausted.

If f is one of the finitely many continuous functions defined above, then

extend it to
m⋃
j=1

Ij by defining it to take the value maxK on the intervals where it

is not already defined. This gives finitely many continuous functions f1, f2, . . . , fM
such that

d
( M⋃
j=1

fj(π(t)), {s ∈ K | s > t}
)
<
ε

6
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for all t ∈ G. Define Λ : D
( m⋃
j=1

I lj

)
→ D(Kn) by setting

Λ(F ) =
M⋃
j=1

fj(F ).

Then Λ is liftable and

d(Λ ◦ π(t), {s ∈ K | s > t}) < ε

6

for all t ∈ G.
If t ∈ K \ G, then by the choice of G there is i ∈ {0, 1, . . . , n − 1} such

that ti < t < ti+1 and max{t − ti, ti+1 − t} < ε/6. Then, writing γ(t) for the set
{s ∈ K | s > t},

d(γ(t),Λ ◦ π(t)) 6 d(γ(t), γ(ti)) + d(γ(ti),Λ ◦ π(ti)) + d(Λ ◦ π(ti),Λ ◦ π(t)).

Since Λ ◦ π(ti+1) ⊆ Λ ◦ π(t) ⊆ Λ ◦ π(ti), it follows that the last term is less than
d(Λ ◦ π(ti),Λ ◦ π(ti+1)). Hence

d(γ(t),Λ ◦ π(t)) 6 d(γ(t), γ(ti)) + d(γ(ti),Λ ◦ π(ti)) + d(Λ ◦ π(ti), γ(ti))

+ d(γ(ti), γ(t)) + d(γ(t), γ(ti+1)) + d(γ(ti+1),Λ ◦ π(ti+1)) < ε,

where the fact that d(γ(t′), γ(t)) = |t′−t| and the above estimate of d(γ(t),Λ◦π(t))
on the set G have been used.

4.3. This section gives the proof of the following theorem which is analogous to
Theorem 4.2.1.

Theorem 4.3.1. Let K be a compact subset of R containing at least two
points. For all n ∈ N, put

Kn =
{
s ∈ R

∣∣∣ ∃t ∈ K : |s− t| 6 1
n

and minK 6 s 6 maxK
}

(then Kn is a finite disjoint union of intervals, Kn+1 ⊆ Kn and K =
∞⋂
n=1

Kn).

Let πn : K → D(Kn) be the continuous descending map defined by

πn(t) = {s ∈ K | s > t}

(hence πn maps into D(K) which is contained in D(Kn)). Let I1, I2, . . . , Im be
a finite family of mutually disjoint closed and bounded intervals, each containing
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more than one point. Finally, let π : K → D
( m⋃
j=1

Ij

)
be a continuous and de-

scending map. Then there is n ∈ N and a liftable map Λ : D(Kn) → D
( m⋃
j=1

Ij

)
such that

Λ ◦ πn(t) = π(t)

for all t ∈ K.

Proof. Define a map, Λ : D(K)→ D
( m⋃
j=1

Ij

)
, by

Λ(F ) =
⋃
t∈F

π(t)

(the right hand side is automatically closed since π is continuous and F is compact).
Then Λ is liftable. Note that since π is descending Λ(F ) = π(minF ) and hence
Λ ◦ πn = π for any n ∈ N. The aim of the proof will be to find n such that Λ
extends to D(Kn). If π has a continuous (not necessarily descending) extension
π̃ to Kn for some n, then Λ can be extended (as a liftable map) to D(Kn) by
defining

Λ(F ) =
⋃
t∈F

π̃(t).

In the following π is extended to Kn for a large enough n.
Let P({1, 2, . . . ,m}) be the set of non-empty subsets of {1, 2, . . . ,m}. Define

a continuous map g : K → P({1, 2, . . . ,m}) by

g(t) = {j ∈ {1, 2, . . . ,m} | π(t) ∩ Ij 6= ∅}.

Choose δ > 0 such that if P1, P2 ∈ P({1, 2, . . . ,m}), P1 6= P2, then |s− t| > δ for
all s ∈ g−1(P1) and all t ∈ g−1(P2). Then choose n ∈ N such that 1/n < δ/2.

By definition, Kn is a disjoint union of finitely many closed intervals. Next
it is proved that if I is one of these intervals, then g−1(P ) ∩ I 6= ∅ for exactly one
subset P of {1, 2, . . . ,m}.

Since I ∩K 6= ∅, it follows that there is at least one subset P of {1, 2, . . . ,m}
such that g−1(P ) ∩ I 6= ∅. For P ∈ P({1, 2, . . . ,m}), put

IP =
{
t ∈ I | ∃ s ∈ g−1(P ) : |s− t| 6 1

n

}
.

Then IP is closed and I can be written as the finite union

I =
⋃

P∈P({1,2,...,m})

IP .
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Since I is a closed interval, it is enough to prove that the IP ’s are disjoint. Let
t ∈ IP and t′ ∈ IP ′ . Find s ∈ g−1(P ) and s′ ∈ g−1(P ′) such that |t − s| 6 1/n
and |t′ − s′| 6 1/n. By the choice of δ, |s− s′| > δ. Hence

|t− t′| > δ − 2
n
> 0,

so that t 6= t′. This proves that IP ∩ IP ′ = ∅.
Let I be one of the finitely many intervals which Kn consists of and let P

be the unique subset of {1, 2, . . . ,m} for which g−1(P ) ∩ I 6= ∅. It is enough to
extend the restriction of π to g−1(P ) ∩ I to I. In order to do this, consider for
each j ∈ P the continuous map from g−1(P ) ∩ I into D(Ij) defined by

t 7→ π(t) ∩ Ij .

Using that D(Ij) is path connected it follows that each of these maps has a con-
tinuous extension to I.

5. THE CLASSIFICATION THEOREM

5.1. The following is the main theorem of this paper.

Theorem 5.1.1. Let B1 and B2 be unital C∗-algebras which can be realized
as inductive limits of sequences of finite direct sums of C

(
[0, 1]

)
⊗O2. Let I(B1)

(respectively I(B2)) be the lattice of closed two-sided ideals in B1 (respectively B2).
Assume that I(B1) and I(B2) are totally ordered and order isomorphic via an
order isomorphism,

Ψ̂ : I(B2)→ I(B1).

Then there is a ∗-isomorphism, Ψ : B1 → B2, which induces Ψ̂, i.e. Ψ−1(I) = Ψ̂(I)
for all I ∈ I(B2).

Remark 5.1.2. The proof given below does not apply in the simple case
(basically because the construction in Theorem 1.2.1 does not give a simple C∗-
algebra). However, it is not difficult to make a proof for the simple case. That the
theorem is true in the simple case also follows from [6]. It also follows from this
paper that the C∗-algebra obtained in the simple case is O2.

5.2. This section contains the proof of Theorem 5.1.1. For all m ∈ N, let Bm =
lm⊕
j=1

C([0, 1])⊗O2 and let ψm : Bm → Bm+1 be a unital ∗-homomorphism. Put

B = lim
−→

(Bm, ψm).
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Recall that Bm is ∗-isomorphic to C
( lm⋃
j=1

Imj ,O2

)
, where Im1 , I

m
2 , . . . , I

m
lm

is a family of mutually disjoint closed intervals contained in [0, 1] each contain-

ing more than one point. Denote the set of non-empty closed subsets of
lm⋃
j=1

Imj

equipped with the Hausdorff metric by D
( lm⋃
j=1

Imj

)
. Identifying I(Bm) \ {Bm}

with D
( lm⋃
j=1

Imj

)
gives a metric on the set of closed two-sided ideals which induces

the topology defined in Proposition 1.1.1 on I(Bm) \ {Bm} (see Proposition1.1.3).

Assume that B is non-simple and that I(B) is totally ordered. By Corollary

1.1.6 it follows that I(B) is order isomorphic (in particular homeomorphic) to a

compact subset K of [0, 1]. Since B is unital, maxK is an isolated point in K.

Let A be the C∗-algebra constructed in Theorem 1.2.1 with I(A) order

isomorphic to K via the canonical order isomorphism constructed in Theorem

1.2.1. In particular, this gives an order isomorphism

Ψ̂ : I(B)→ I(A).

Put K ′ = K \ {maxK} and for n ∈ N

K ′
n =

{
t ∈ R

∣∣∣ minK ′ 6 t 6 maxK ′ and ∃s ∈ K ′ : |s− t| 6 1
n

}
.

Then K ′
n is a disjoint union of finitely many intervals, K ′

n+1 ⊆ K ′
n and K ′ =

∞⋂
n=1

K ′
n. Set An = C(K ′

n)⊗O2, then

A = lim
−→

(An, ϕn),

where the ϕn’s are unital ∗-homomorphisms (for the definition of the ϕn’s see

Theorem 1.2.1).

In the following it is proved that A and B are ∗-isomorphic via a ∗-isomor-

phism which induces Ψ̂. The special properties of A will be used (see Theorem

1.2.1). Below, the natural map from the lattice of ideals of an inductive limit

C∗-algebra to the lattice of ideals of one of the building blocks will be denoted by

π (with a subscript if needed). In diagrams, the natural maps will just appear as

arrows as will the maps induced by the connecting ∗-homomorphisms.
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Lemma 5.2.1. Let ε > 0 and ρ > 0. Assume that there is a unital
∗-homomorphism ξ : Bm → An such that

I(An) ←− I(A)

ξ̂

y xΨ̂

I(Bm) ←− I(B)

commutes. Then there is k ∈ N, k > m, and a unital ∗-homomorphism η : An →
Bk such that

I(An) ←− I(A)

η̂

x xΨ̂

I(Bk) ←− I(B)

commutes within ε (with respect to the metric defined in Proposition 1.1.3 on
I(An)) and

I(An)

ξ̂ ↙ ↖ η̂

I(Bm) ←− I(Bk)
commutes within ρ (with respect to the metric defined in Proposition 1.1.3 on
I(Bm)).

Proof. Choose δ1 > 0 such that

d(I, J) < δ1 ⇒ d(ξ̂(I), ξ̂(J)) <
ρ

3

for all I and J in I(An).

Identify I(An) \ {An} with D(K ′
n) and I(Bk) \ {Bk} with D

( lk⋃
j=1

Ikj

)
for all

k ∈ N. Choose a finite subset G of K ′ such that for all t ∈ K ′ \G, there exist t1
and t2 in G so that t1 < t < t2 and max{t− t1, t2 − t} < min{δ1, ε}/6. It follows
from Proposition 1.3.2, Theorem 4.2.1 and 3.1.2 that there is k′ ∈ N, k′ > m, and
a unital ∗-homomorphism, η′ : An → Bk′ , such that

I(An) ←− I(A)

η̂′

x xΨ̂

I(Bk′) ←− I(B)

commutes within min{δ1, ε}. If I ∈ I(B), then by the choice of δ1 it follows that

d(ξ̂ ◦ η̂′ ◦ πk′(I), ψ̂k′,m ◦ πk′(I))

6 d(ξ̂ ◦ η̂′ ◦ πk′(I), ξ̂ ◦ πn ◦ Ψ̂(I)) + d(ξ̂ ◦ πn ◦ Ψ̂(I)), ψ̂k′,m ◦ πk′(I)) <
ρ

3
.
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Consider the two uniformly continuous maps

ψ̂k′,m, ξ̂ ◦ η̂′ : I(Bk′)→ I(Bm).

Choose δ2 > 0 such that

d(I, J) < δ2 ⇒ max{d(ψ̂k′,m(I), ψ̂k′,m(J)), d(ξ̂ ◦ η̂′(I), ξ̂ ◦ η̂′(J))} < ρ

3

for all I and J in I(Bk′). Find k ∈ N, k > k′, with the property that for all
I ∈ I(Bk) there is J ∈ I(B) such that d(ψ̂k,k′(I), πk′(J)) < δ2.

Put η = ψk,k′ ◦ η′, then η is a unital ∗-homomorphism. Let I ∈ Bk. Choose
J ∈ I(B) with the above property. Then, by the choice of δ2 and the above
estimate, it follows that

d(ξ̂ ◦ η̂(I), ψ̂k,m(I)) 6 d(ξ̂ ◦ η̂′ ◦ ψ̂k,k′(I), ξ̂ ◦ η̂′ ◦ πk′(J))

+ d(ξ̂ ◦ η̂′ ◦ πk′(J), ψ̂k′,m ◦ πk′(J))

+ d(ψ̂k′,m ◦ πk′(J), ψ̂k′,m ◦ ψ̂k,k′(I)) < ρ.

By definition, η makes
I(An) ←− I(A)

η̂

x xΨ̂

I(Bk) ←− I(B)

commute within ε.

The proof of the next lemma is very similar to the proof of the previous
lemma (in fact it is easier) except that is uses Theorem 4.3.1 instead of Theorem
4.2.1. The details are left to the reader.

Lemma 5.2.2. Let ε > 0. Assume that there is a unital ∗-homomophism
η : An → Bm such that the induced map η̂ : I(Bm)→ I(An) makes the diagram

I(An) ←− I(A)

η̂

x xΨ̂

I(Bm) ←− I(B)

commute within ε/3. Then there is a k ∈ N, k > n, and a unital ∗-homomorphism
ξ : Bm → Ak, such that

I(Ak) ←− I(A)

ξ̂

y xΨ̂

I(Bm) ←− I(B)
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commutes and
I(An) ←− I(Ak)

η̂ ↖ ↙ ξ̂

I(Bm)

commutes within ε with respect to the metric defined in Proposition 1.1.3 on I(An).

Proposition 5.2.3. Let A and B be as above, then there is a ∗-isomorphism
Ψ : A → B which induces Ψ̂.

Proof. The proof consists of constructing an approximate intertwining in the
sense of [5], Theorem 2.1. See also [9].

Choose for all n ∈ N a finite set of generators Xn of An. SetF1 = X1 and

Fn =
n⋃
i=1

ϕn,i(Xi) whenever n > 2 (ϕn,n is defined to be the identity map on An).

Then Fn is a finite set of generators for An. For each m ∈ N choose in the same
way a finite set of generators, Gm, for Bm.

Step 0. Identifying I(An) \ {An} with D(K ′
n) for all n ∈ N and I(B1) \ {B1}

with D
( l1⋃
j=1

I1
j

)
it follows from Theorem 4.3.1 and Theorem 3.1.2 that there is

n1 ∈ N and a unital ∗-homomorphism ξ1 : B1 → An1 such that

I(An1) ←− I(A)

ξ̂1

y xΨ̂

I(B1) ←− I(B)

commutes. Set F ′n1
= Fn1 ∪ ξ1(G1).

Step 1. Let δ1 > 0 be the number corresponding to taking ε = 1/2 and the
finite set equal to G1 in Corollary 2.2.4. Next take ε = 1/2 and the finite set equal
to F ′n1

in Corollary 2.2.4 to get δ2 > 0. Use Lemma 5.2.1 with ρ = δ1 and ε = δ2/3
to find m2 ∈ N, m2 > 1, and a unital ∗-homomorphism, η1 : An1 → Bm2 such that

I(An1) ←− I(A)

η̂1

x xΨ̂

I(Bm2) ←− I(B)

commutes within δ2/3 and

I(An1)
ξ̂1 ↙ ↖ η̂1

I(B1) ←− I(Bm2)
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commutes within δ1. By Corollary 2.2.4 there is a unitary u in Bm2 such that

‖Ad (u) ◦ η1 ◦ ξ1(x)− ψm2,1(x)‖ <
1
2

for all x ∈ G1. Replace η1 with Ad (u) ◦ η1. Then the above diagrams will still
commute within the given values. Put G′m2

= Gm2 ∪ η1(F ′n1
).

Step 2. Use Lemma 5.2.2 with ε = δ2 to find n2 ∈ N, n2 > n1, and a unital
∗-homomorphism ξ2 : Bm2 → An2 such that

I(An2) ←− I(A)

ξ̂2

y xΨ̂

I(Bm2) ←− I(B)

commutes and
I(An1) ←− I(An2)

η̂1 ↖ ↙ ξ̂2

I(Bm2)

commutes within δ2. From Corollary 2.2.4 it follows that there is a unitary u in
An2 such that

‖Ad (u) ◦ ξ2 ◦ η1(x)− ϕn2,n1(x)‖ <
1
2

for all x in F ′n1
. Replace ξ2 with Ad (u) ◦ ξ2. Again the above diagrams will still

commute within the given values. Set F ′n2
= ξ2(G′m2

) ∪ Fn2 ∪ ϕn2,n1(F
′
n1

).
Continue by induction and obtain, after passing to subsequences and renum-

bering, the following diagram of ∗-homomorphism and C∗-algebras

A1
ϕ1−→ A2

ϕ2−→ A3 −→ · · · −→A
ξ1↗ η1↘ ξ2↗ η2↘ ξ3↗
B1 −→

ψ1
B2 −→

ψ2
B3 −→ · · · −→B

which is an approximate intertwining. This gives a ∗-isomorphism ρ : B → A.
Let n ∈ N and k > n. Set ρkn = µAk ◦ ξk ◦ ψk,n, where µAk is the natural ∗-
homomorphism from Ak into A, and ρn(b) = lim ρkn(b). Then

ρ̂n(I) = lim ρ̂kn(I)

for all I ∈ I(A). Note that by construction the following diagram

I(An) ←− I(A)

ξ̂n

y xΨ̂

I(Bn) ←− I(B)
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commutes. It follows that if I ∈ I(A), then ρ̂kn(I) = πn ◦ Ψ̂−1(I). Hence

πn ◦ ρ̂ = ρ̂n = πn ◦ Ψ̂−1

for all n ∈ N so that ρ̂ = Ψ̂−1. Putting Ψ = ρ−1 completes the proof.

Theorem 5.1.1 follows from the above.

5.3. The following theorem is the homomorphism version of Theorem 5.1.1.

Theorem 5.3.1. Let B1 and B2 be unital C∗-algebras which can be realized
as inductive limits of sequences of finite direct sums of C

(
[0, 1]

)
⊗O2. Let I(B1)

(respectively I(B2)) be the lattice of closed two-sided ideals in B1 (respectively B2).
Assume that I(B1) and I(B2) are totally ordered and that

Ψ̂ : I(B2)→ I(B1)

is an order preserving map which is continuous with respect to the order topolo-
gies and has the property that Ψ̂−1({B1}) = {B2}. Then there is a unital ∗-
homomorphism Ψ : B1 → B2 which induces Ψ̂, i.e. Ψ−1(I) = Ψ̂(I) for all
I ∈ I(B2).

Proof. By Theorem 5.1.1 it can be assumed that B2 is on standard form,
i.e. it is as in Theorem 1.2.1. Using Theorem 4.3.1, the Existence Theorem 3.1.2
and the Uniqueness Theorem 2.2.4, a one-sided approximate intertwining can be
constructed (the unital ∗-homomorphisms going from the building blocks of B1

into the building blocks of B2). This uses that B2 is on standard form and gives
a unital ∗-homomorphism Ψ : B1 → B2. To see that Ψ induces Ψ̂, the same
argument as in the proof of Proposition 5.2.3 can be used.

5.4. This final section gives an application of the the Classification Theorem 5.1.1.
Let B be a non-simple unital C∗-algebra which can be realized as an inductive
limit of a sequence of C

(
[0, 1]

)
⊗ O2. It can be assumed that the connecting

∗-homomorphisms in such a realization are unital. Assume that I(B) is totally
ordered. Then I(B) is compact and metrizable in the order topology and has
an isolated maximum. Since the space of non-empty closed subsets of [0, 1] is
connected (it is even contractible), it follows that I(B) \ {B} is connected. Hence
I(B) \ {B} is a compact connected Hausdorff space with more than one point.
By [10], Theorem 28.8, it follows that I(B) \ {B} has at least two non-cut points
(for the definition see [10], Definition 28.5). It is not difficult to see that there
are exactly two non-cut points in I(B) \ {B}; the maximum and the minimum of
this set. Imitating the proof of [10], Theorem 28.13, it follows that I(B) \ {B} is
order isomorphic to [0, 1]. Hence I(B) is order isomorphic to [0, 1]∪{2}. Applying
Theorem 5.1.1 then gives the following theorem.
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Theorem 5.4.1. Up to ∗-isomorphism there is exactly one unital, non-
simple C∗-algebra with totally ordered lattice of ideals which can be realized as
an inductive limit of a sequence of C

(
[0, 1]

)
⊗O2.

Acknowledgements. A part of the work contained in this paper was carried out
during two stays at The Fields Institute. The author would like to thank the institute,
and George Elliott, for the hospitality extended to him. Most of all, the author would
like to thank Mikael Rørdam for invaluable help and encouragement.

REFERENCES

1. O. Bratteli, G.A. Elliott, D.E. Evans, A. Khishimoto, Homotopy of pair
of approximately commuting unitaries in a simple purely infinite unital C∗-
algebra, preprint.

2. L.G. Brown, G.K. Pedersen, C∗-algebras of real rank zero, J. Funct. Anal. 99
(1991), 131–149.

3. J. Cuntz, Simple C∗algebras generated by isometries, Comm. Math. Phys. 57(1977),
173–185.

4. J. Cuntz, K-theory of certain C∗-algebras, Ann. of Math. 113(1981), 181–197.
5. G.A. Elliott, On the classification of C∗-algebras of rank zero, J. Reine Angew.

Math. 443(1993), 179–219.
6. G.A. Elliott, M. Rørdam, Classification of certain infinite simple C∗-algebras. II,

Comment. Math. Helv. 70(1995), 615–638.
7. M. Rørdam, Classification of inductive limits of Cuntz algebras, J. Reine Angew.

Math. 440(1993), 175–200.
8. M. Rørdam, A short proof of Elliott’s theorem: O2 ⊗ O2

∼= O2, C.R. Math. Rep.
Acad. Sci. Canada 16(1994), 31–36.

9. K. Thomsen, On isomorphism of inductive limit C∗-algebras, Proc. Amer. Math.
Soc. 113(1991), 947–953.

10. S. Willard, General Topology, Addison-Wesley Stud. Nonlinearity, Addison-Wesley,
Redwood City, CA 1970.

11. S. Zhang, A property of purely infinite simple C∗-algebras, Proc. Amer. Math. Soc.
109(1990), 717–720.

JAKOB MORTENSEN
Department of Mathematics

and Computer Science
Odense University

Campusvej 55
DK-5230 Odense M.

DENMARK

E-mail: jmo@imada.ou.dk

Received May 10, 1996; revised June 6, 1998.


