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Abstract. A definition is given for C∗-ideals related to embedding ∗-alge-
bras in C∗-algebras. The shrinking algorithm on words is defined and related
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0. INTRODUCTION

There has been some consideration of C∗-algebras given by a set of generators

with relations (see [1], [2], [3], [4], [5], [6], [7], [8] and [9]). Given a ∗-algebra,

with generators and relations, it may not be possible to embed it into a C∗-

algebra. This paper considers which ∗-algebras may be embedded into C∗-algebras,

and specifically, what relations, involving words being equated to zero, generate

∗-algebras which may be embedded in C∗-algebras.
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1. C∗-IDEALS

In Section 1 we shall define C∗-ideals of ∗-algebras, and give some simple related

results.

Notation 1.1. Let A1 be the free unital ∗-algebra (algebra with an involu-

tion ∗) over C generated by the element x. Let W1 be the set of finite words which

may be formed from the elements x and x∗, (the element 1 is also considered to be

a word in W1). The elements of A1 are finite linear combinations of words from

W1. So, if y ∈ A1 then y =
∑

w∈W1

yw · w where each yw ∈ C and only finitely

many are non-zero. An ideal of A1 is said to be a ∗-ideal of A1 if it is closed under

the involution operation. Given a subset S of A1 we shall use 〈S〉 to denote the

two-sided ideal of A1 generated by S. We shall use 〈S〉∗ to denote the two-sided

∗-ideal of A1 generated by S. Note that

〈S〉∗ = 〈S〉+ 〈S∗〉 = 〈S ∪ S∗〉.

Given a ∗-algebra A, we say that a functional ν : A→ R+ is a C∗-seminorm on A if

ν is a sub-multiplicative seminorm which fulfills the C∗-condition ν(y∗y) = ν(y)2

for all y in A. Let NA be the set of all C∗-seminorms on A, and let NA be

partially ordered by saying that ν 6 ν′ if ν(y) 6 ν′(y) for all y in A. We shall use

“∗-polynomial” to mean a finite linear combination of words in non-commuting

elements and their adjoints. We will allow C∗-seminorms to send the identity to

zero. Note that NA must be non-empty (as it contains the zero functional).

Lemma 1.2. If A is a ∗-algebra and I is a ∗-ideal of A then the following

are equivalent:

(i) the quotient ∗-algebra A/I may be embedded in a C∗-algebra;

(ii) there exists a C∗-norm on A/I;

(iii) there exist some C∗-seminorm ν on A with I = ker(ν);

(iv) there exist some ∗-representation ϕ : A → B(H) (H a Hilbert space)

with I = ker(ϕ);

(v) there exist some C∗-seminorm ν on A with I closed in A with respect

to ν.
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Proof. Given (ii), then we may embed A/I into the completion of A/I with

respect to its C∗-norm which will be a C∗-algebra, which gives (i). Given (iii), ν

induces a C∗-norm on A/I, which gives (ii). Given (iv), the C∗-norm on B(H)

induces, via ϕ, a C∗-seminorm on A, which gives (iii). Given (i), and using the

Gelfand-Naimark Theorem, the embedding lifts to a ∗-representation on A as

required for (iv). So (i) to (iv) are equivalent. Clearly (iii) inplies (v). Given (v),

let ν′ be the quotient semi-norm ν/I on A/I. Now, ker(ν) ⊆ I, as, if there exists

y not in I with ν(y) = 0, then I cannot be closed with respect to ν. So, ν′ is a

C∗-norm on A/I and we have (ii).

Definition 1.3. Given a ∗-algebra A and a ∗-ideal I of A, we say that I is

a C∗-ideal of A if any of the equivalent conditions in Lemma 1.2 hold.

Examples 1.4. For some examples we shall consider some ideals of A1. The

∗-ideal 〈x∗x〉 is not a C∗-ideal, as if it were then, by condition (iii) of Lemma 1.2,

there would exist some C∗-seminorm ν on A1 with ker(ν) = 〈x∗x〉. But, in this

case 0 = ν(x∗x) = ν(x)2 and so x ∈ ker(ν) but x 6∈ 〈x∗x〉. However 〈x∗x − 1〉
is a C∗-ideal of A1 and this follows from a result of Coburn ([2]). Also, it is a

result of Goodearl and Menal ([3]) that the ∗-algebra A1 may be embedded into a

C∗-algebra, so 〈0〉 is a C∗-ideal of A1.

Definition 1.5. If A is a ∗-algebra with the property that for all y in A the

set {ν(y) | ν ∈ NA} is bounded then say that A is compact. In this case we may

define µ : A→ R+ by µ(y) = sup{ν(y) | ν ∈ NA}. It is easy to see that µ will be

the maximal C∗-seminorm on A, that is, the maximal element of NA.

Proposition 1.6. If A is a compact ∗-algebra and S is a subset of A then

there exists a minimum C∗-ideal in A containing S. This C∗-ideal is the closure

of 〈S〉∗ in A with respect to the maximal C∗-seminorm on A.

Proof. This is standard.

Definition 1.7. Given a subset S of a ∗-algebra A, if the set of C∗-ideals

of A containing S has a minimum element then call it the C∗-ideal generated by

S and write it 〈S〉C∗ . Proposition 1.6 shows that when A is a compact ∗-algebra

any subset of A will have this property. In a general ∗-algebra this property may

not hold, and so we may not always be able to define the C∗-ideal generated by a

particular subset of a particular ∗-algebra.
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2. THE SHRINKING ALGORITHM ON WORDS

The rest of this paper will consider which words in W1 generate C∗-ideals in A1,
and related results. So, from now on, objects should be taken to be in A1 and, if
we call an element a word, we shall mean that it is an element of W1.

Notation 2.1. Given words v and w, say that v > w if v is in the ∗-ideal
generated by w, that is, if v ∈ 〈w〉∗. So then v > w if and only if v = u1 · w · u2

or v = u1 · w∗ · u2 for some words u1 and u2. When we use an ordering on W1

without comment, we shall mean this ordering. Let |w| denote the length of word
w. For example |x2x∗3x| = 6 and |1| = 0.

Now, if I is a C∗-ideal of A1 with u∗u · v in I, where u and v are words, then
(uv)∗ ·uv ∈ I and so uv ∈ I (see Examples 1.4). To express this implication we will
write u∗uv uv to mean that any C∗-ideal containing u∗uv must also contain uv,
and we shall say that u∗uv shrinks to uv. This leads us to the following definition.

Definition 2.2. For a word w we define the shrinking algorithm on w as
follows:

(0) Let w′ = w.
(1) If w′ = u∗u · v for any words u and v, with u 6= 1, then let w′ = uv, and

go back to (1).
(2) If w′ = u · vv∗ for any words u and v, with v 6= 1, then let w′ = uv, and

go back to (2).
(3) Terminate the algorithm.
Let w̃ denote the final result of applying the shrinking algorithm to the word

w. We say that w is unshrinkable if w = w̃. Let W̃1 be the set of unshrinkable
words in W1. The next result shows that these are good definitions.

Theorem 2.3. If w is a word then:
(i) If we apply the shrinking algorithm to w we shall always get the same

result at termination no matter what choices we make in the process, that is
.̃ : W →W is a well-defined function;

(ii) The set {w̃, w̃∗} is exactly the set of maximal unshrinkable words less
than or equal to w;

(iii) If I is a C∗-ideal of A1 then w̃ is in I if and only if w is in I.

Proof. (i) The reason there is something to prove is that given some word
w′ occurring during the algorithm, it may be that w′ = u∗1u1 · v1 = u∗2u2 · v2
for some words u1, v1, u2 and v2, with u1 6= u2. In this case we could choose to
proceed in the algorithm in two (or more) possible ways, and this could effect the
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final outcome. This is effectively the only place it could go wrong so we need only
consider this case.

We may assume without loss of generality that v1 = sv2 for some word s.
So u∗2 > u∗1. We shall show that, if we choose to remove u∗1 rather than all of u∗2,
then the algorithm will eventually remove the rest of u∗2 as well. As v1 = sv2,
we have u∗1u1s = u∗2u2. As u∗2u2 is hermitian we must have u∗1u1s = s∗u∗1u1. By
comparing the right-hand ends of these two expressions, as |u1s| > |u1|, we must
have u1s = t · u1 for some word t. Thus u∗2u2 = u∗1tu1. As this is hermitian it
follows that u∗1tu1 = u∗1t

∗u1, and thus t = t∗. Write t = r∗r for some word r. So
u∗2u2 = u∗1r

∗ · ru1 and thus u2 = r · u1. Thus, if we choose to shrink our word by
removing u∗1 we will be left with u1v1 = u1s · v2 = tu1 · v2 = r∗r · u1v2.

Thus, in the next iteration of the shrinking algorithm we still have the option
to get to ru1 · v2 = u2v2. Again, we may have more than one option, but applying
the same argument repeatedly we may see that either the algorithm will reduce to
something less than u2v2, or we will eventually be left with u2v2 as the algorithm
only terminates when all the options are gone. So, if there is ever more than one
word we could remove in the shrinking algorithm, the algorithm will eventually
remove the largest of them no matter which one we choose at this point. From
this we may deduce that the shrinking algorithm will always terminate with the
same answer for a given starting word.

(ii) Clearly w̃ is an unshrinkable word less than or equal to w. Write w as
w = w1w2 · · ·wl where each wj = x or x∗. Clearly, w̃ = ws1 · · ·ws2 for some
s1 and s2 with 1 6 s1 6 s2 6 l. If v is an unshrinkable word less than or
equal to w then v = wt1 · · ·wt2 , or v∗ = wt1 · · ·wt2 , for some t1 and t2 with
1 6 t1 6 t2 6 l. If t1 < s1 then there must be some point in the shrinking
algorithm where w′ = wj · · ·wl, with j 6 t1 and the next step in the algorithm
will shrink past t1. That is w′ = c∗c · v′ with vu = d · cv′ for some word u and
some word d 6= 1. So then c∗ = ed for some word e and vu = dd∗ · e∗v′. As v is
unshrinkable, this means that d = 1 which is a contradiction. So we must have
t1 > s1. Similarly, we may deduce that t2 6 s2, so v 6 w̃. Thus {w̃, w̃∗} is exactly
the set of maximal unshrinkable words less than or equal to w.

(iii) This is clear from the comments before Definition 2.2, along with the
observation that w̃ 6 w.

Not all unshrinkable words are of the form xn or x∗n for some n, although
these certainly are unshrinkable. For example, other unshrinkable words are
x2x∗x2, x4x∗2x3 and x6x∗2xx∗x3. Shrinkable words can look quite similar to
unshrinkable words, as an example consider x6x∗2xx∗x2 x6x∗2x x6x∗2 x6.
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Comment 2.4. If I = 〈w〉∗ for some shrinkable word w then I cannot be a

C∗-ideal as, if it were, we would have w̃ ∈ I (by Theorem 2.3 (iii)) but w̃ 6∈ I as w

is shrinkable. This observation leads us to ask if 〈w〉∗ is a C∗-ideal when w is an

unshrinkable word. At this point we might conjecture that 〈w〉C∗ = 〈w̃〉∗ for all

words w. The last two sections are concerned with trying to prove this conjecture.

3. THE EXISTENCE OF C∗-IDEALS GENERATED BY WORDS

In this section we shall prove that we may define the C∗-ideals generated by words;

first we shall need a few results to set up some machinery. Note that, if y ∈ A1

and B is any ∗-algebra, then y may be considered to act as an operator on B. If

b ∈ B then we obtain y(b) by substituting b for x in the expression y =
∑
yw · w.

So for example, if y = x2 + 2x∗x then y(b) = b2 + 2b∗b.

Definition 3.1. Let ϕ : A1 → B(H) and ψ : A1 → B(G) be representation

of A1 over Hilbert spaces H and G. Define ϕ � ψ : A1 → B(H ⊗ G) to be the

∗-representation given by (ϕ� ψ)x = ϕ(x)⊗ ψ(x).

Note that this is not the same as ϕ⊗ψ as this acts on the ∗-algebra A1⊗A1.

Also note that if y ∈ A1 then it may not be true that (ϕ�ψ)y = ϕ(y)⊗ψ(y). For

example consider (ϕ�ψ)(2x) = 2ϕ(x)⊗ψ(x) but ϕ(2x)⊗ψ(2x) = 4ϕ(x)⊗ψ(x).

Theorem 3.2 Take ϕ and ψ to be ∗-representations of A1 as above. Let w

be a word. Then (ϕ� ψ)(w) = ϕ(w)⊗ ψ(w).

Proof. If (a ⊗ b) and (c ⊗ d) are in B(H ⊗ G) then (a ⊗ b)∗ = a∗ ⊗ b∗ and

(a ⊗ b) · (c ⊗ d) = (ac ⊗ bd). So then w(a ⊗ b) = w(a) ⊗ w(b). So, (ϕ � ψ)(w) =

w((ϕ� ψ)x) = w(ϕ(x))⊗ w(ψ(x)) = ϕ(w)⊗ ψ(w).

Corrolary 3.3. Take ϕ and ψ to be ∗-representations of A1 as above. If

y =
∑
yw · w in A1 then (ϕ� ψ)(y) =

∑
ym · (ϕ(w)⊗ ψ(w)).

We shall use � later to combine ∗-representations in order to prove results

about ideals generated by words. First we must define a rather complicated looking

∗-representation with some useful properties.

Definition 3.4. Let w be a word and let m = |w|. We may write w =

· · ·xr3x∗r2xr1 . Let H = l2(m + 1) with basis {ε0, . . . , εm}. Also, for all j,
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let nj =
j∑

k=1

rk. Define the representation Sw : A1 → B(H) to be the unital

∗-homomorphism defined as follows:

Sw(x)εj =


εj+1

2 for 0 6 j < n1, n2 < j < n3, . . .,
0 for j = n1, n3, . . .,
εj−1

2 for n1 < j < n2, n3 < j < n4, . . .,
εj−1+εj+1

2 for j = n2, n4, . . .;

so,

Sw(x∗)εj =


εj−1

2 for 0 6 j < n1, n2 < j < n3, . . .,
εj−1+εj+1

2 for j = n1, n3, . . .,
εj+1

2 for n1 < j < n2, n3 < j < n4, . . .,
0 for j = n2, n4, . . ..

Informally, the operator Sw(x) acts like a weighted shift on H but shifts
different parts of it in different directions. Note that ‖Sw(x)‖ < 1.

Lemma 3.5. If y =
∑
yv · v 6= 0 is in A1 then there exists a word v with

non-zero coefficient in y and points ε, ε′ ∈ l2(|v| + 1) such that 〈Sv(v)ε, ε′〉 6= 0
but 〈yuSv(u)ε, ε′〉 = 0 for all other words u.

Proof. Let m = max{|v|
∣∣ yv 6= 0} and let v be a word of length m with

yv 6= 0. Let ε = ε0 and ε′ = εm. Given α in H, let d(α) = max{j | 〈εj , α〉 6=
0} Informally, this represents the distance along the basis for which α contains
information. Write Sv(x) = t. Considering the action of t on α in H we see that
both t and t∗ can only move information along to the right by at most one basis
vector or, more formally, d(tα) 6 d(α) + 1 and d(t∗α) 6 d(α) + 1. If u is a word
then d(u(t)ε0) 6 |u| with equality only being attained if each letter of the word u
increases d. The operator Sv is defined in such a way that d(Sv(v)ε0) = m. Let
u be a word other than v. If yu = 0 then clearly 〈yuS(u)ε, ε′〉 = 0. If yu 6= 0 then
either |u| < m, in which case d(Sv(u)ε0) < m, or |u| = m. It is not hard to see
that if |u| = m and u 6= v then we again have d(Sv(u)ε0) < m (informally, in this
case the operator turns back, or goes to zero, at some point along the basis) and
we have finished.

Definition 3.6. If w1, . . . , wr are words then let µw1,...,wr be the maximal
C∗-seminorm on A1 with µw1,...,wr

(x) 6 1 and µw1,...,wr
(wj) = 0 for all 1 6 j 6 r.

So µw1,...,wr = sup{ν | ν is a C∗-seminorm on A1 with ν(x) 6 1 and ν(wj) = 0
for all 1 6 j 6 r} which is a C∗-seminorm. Also, given λ ∈ R let ψλ be the
∗-representation of A1 given by ψλ : A1 → C (x 7→ λ). If ϕ is a ∗-representation
of A1 and w is a word then (ψλ � ϕ)(w) = 1⊗ λ|w|ϕ(w).
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Lemma 3.7. Let w1, . . . , wr and v be words. If there exists a C∗-seminorm

ν on A1 with ν(wj) = 0 for all 1 6 j 6 r and ν(v) > 0 then v 6∈ ker(µw1,...,wr
).

Proof. If v = 1 then the result holds as the C∗-seminorm given by ψ0 must

be less than or equal to µw1,...,wr
(as wj 6= 1 for all j) and ψ0(1) = 1. So take v to

be not equal to 1. Let ν be a C∗-seminorm with the required properties. As v 6= 1

and ν(v) > 0 we must have ν(x) 6= 0. Let λ = 1/ν(x). Let ϕ be a ∗-representation

with ‖ϕ(y)‖ = ν(y) for all y ∈ A1. Let ϕ′ = ϕ � ψλ and let ν′(y) = ‖ϕ′(y)‖
for all y ∈ A1. Then ν′ is a C∗-seminorm with ν′(x) = ν(x)/ν(x) = 1 and

ν′(wj) = ν(wj)/ν(x)|wj | = 0. So ν′ 6 µw1,...,wr
and ν′(v) = ν(v)/ν(x)|v| > 0,

therefore µw1,...,wr
(v) > 0.

Theorem 3.8. Let w1, . . . , wr be words. If y ∈ ker(µw1,...,wr
) then y is a

finite linear combination of words in ker(µw1,...,wr
).

Proof. Let y ∈ ker(µw1,...,wr ). In order to get a contradiction assume y

has a non-zero coefficient for a word not in ker(µw1,...,wr ) . Let y′ =
∑
{yv · v |

v ∈ ker(µw1,...,wr )}. As ker(µw1,...,wr ) is an ideal, y′ ∈ ker(µw1,...,wr ) so y − y′ ∈
ker(µw1,...,wr ). Let z = y − y′. Because of our assumption about y the element z

must be non-zero and is a linear combination of words not in ker(µw1,...,wr
). By

Lemma 3.5 there exists a word v and vectors ε and ε′ in l2(|v|+1) such that zv 6= 0

(so v 6∈ ker(µw1,...,wr
)) and 〈Sv(v)ε, ε′〉 6= 0 but 〈zuSv(u)ε, ε′〉 = 0 for all words

u 6= v. Let ϕ : A1 → B(G) be a ∗-representation of A1 onto the Hilbert space G

with ‖ϕ(·)‖ = µw1,...,wr
(·). We have ϕ(v) 6= 0, therefore there exist δ and δ′ in G

such that 〈ϕ(v)δ, δ′〉 6= 0. Now let π = ϕ � Sv so π : A1 → B(G ⊗ l2(|v| + 1)).

By Corollary 3.3, we have π(z) =
∑
zuϕ(u)⊗Sv(u) but 〈zuSv(u)ε, ε′〉 = 0 for all

u 6= v. Therefore

〈π(z)(δ ⊗ ε), δ′ ⊗ ε′〉 = 〈zvπ(v)(δ ⊗ ε), δ′ ⊗ ε′〉 = zv〈ϕ(v)δ, δ′〉〈Sv(v)ε, ε′〉 6= 0.

So π(z) 6= 0. But, if we let ν be the C∗-seminorm on A1 given by π then ν(x) 6

1. Also, ν(wj) = ‖ϕ(wj) ⊗ Sv(wj)‖ = 0, as ϕ(wj) = 0, for all j. Therefore

ν 6 µw1,...,wr but µw1,...,wr (z) = 0, which contradicts π(z) 6= 0, and the result is

proved.

Corollary 3.9. If w is a word then 〈w〉C∗ exists (see Definition 1.7) and

is equal to the kernel of µw.
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Proof. Clearly ker(µw) is a C∗-ideal. Let I be a C∗-ideal of A1 containing

w and let y ∈ ker(µw). Let ν be a C∗-seminorm of A1 with ker(ν) = I. By

Theorem 3.8, the element y is a finite linear combination of words in ker(µw). If

v is a word in ker(µw) then v must be in ker(ν) by Lemma 3.7. Therefore y is a

finite linear combination of words in ker(ν) which is an ideal, so y ∈ ker(ν). That

is, y ∈ I. So ker(µw) is contained in any C∗-ideal containing w and is 〈w〉C∗ .

So, for any word in A1, we may define the C∗-ideal generated by it. Proposi-

tion 1.6 stated that any subset of a compact ∗-algebra generates a C∗-ideal of that

∗-algebra. This last result shows that it is not always necessary for a ∗-algebra to

be compact to be able to define the C∗-ideal generated by certain elements (or sub-

sets) of that ∗-algebra. In fact the C∗-seminorms on A1 which are zero for the word

w are unbounded whenever x 6∈ 〈w〉C∗ . To see this, let ϕ be any ∗-representation

of A1 with ϕ(x) 6= 0 and ϕ(w) = 0 (which must exists as x 6∈ 〈w〉C∗). For any

λ ∈ R we have (ϕ � λ)w = 0 and ‖(ϕ � λ)x‖ = ‖ϕ(x)‖ |λ| which we may take to

be as large as we like. Before the final section we shall give some simple corollaries

from Theorem 3.8 and Corollary 3.9.

Corollary 3.10. Let w be a word. Then 〈w〉∗ = 〈w〉C∗ if and only if

W1 ∩ 〈w〉∗ = W1 ∩ 〈w〉C∗ .

Proof. The “only if” part is clear. Assume W1∩〈w〉∗ = W1∩〈w〉C∗ . Clearly

〈w〉∗ ⊆ 〈w〉C∗ . Let y be in 〈w〉C∗ . By Corollary 3.9, y ∈ ker(µw) and, by Theo-

rem 3.8, y is a finite linear combination of words in ker(µw) which by the assump-

tion are in 〈w〉∗, and the result is proved.

So, if we have a C∗-ideal generated by a word, and we know which words it

contains, then we know everything it contains. This greatly simplifies problems

about the C∗-ideals generated by words.

Corollary 3.11. Let w be a word. Then 〈w〉∗ = 〈w〉C∗ if and only if

W̃1 ∩ 〈w〉∗ = W̃1 ∩ 〈w〉C∗ (see Definition 2.2).

Proof. Again the “only if” part is clear. Assume W̃1 ∩ 〈w〉∗ = W̃1 ∩ 〈w〉C∗ .

By Theorem 2.3 (iii), if v is a word in 〈w〉C∗ then ṽ ∈ 〈w〉C∗ . So, by our assumption

ṽ ∈ 〈w〉∗ and as ṽ 6 v we have v ∈ 〈w〉∗. This gives us W1 ∩ 〈w〉∗ = W1 ∩ 〈w〉C∗
and by Corollary 3.10 we have finished.
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4. THE C∗-IDEALS OF SOME SPECIFIC WORDS

In this final section we shall prove the conjecture that 〈w〉C∗ = 〈w̃〉∗ (see Comment
2.4), for some particular words w. Finally we shall consider C∗-ideals generated
by more than one word.

Notation 4.1. We shall call the elements of the set {xr, x∗r | r ∈ N}
syllables. Any word w may be written as a product of syllables. We shall say the
number of syllables of w is the least number of syllables it takes to make up w. For
example, the number of syllables of w = x3x∗2x4 is three and they are x3, x∗2 and
x4. Also, let A∗{x : R1, . . . , Rn} denote the universal unital ∗-algebra generated
by one element, x, subject to the relation R1, . . . , Rn.

Theorem 4.2. If n is in N then 〈xn〉C∗ = 〈xn〉∗. So A∗{x : xn = 0} may
be embedded into a C∗-algebra.

Proof. Take n in N. By Corollary 3.10 it is sufficient to prove that any word
in 〈xn〉C∗ is also in 〈xn〉∗. Let w be a word which is not in 〈xn〉∗. Define a
representation ϕ of A1 by

ϕ(x) =



0 0 0 · · 0
1 0 0 · · 0
1 1 0 0 · 0
· 1 1 0 0
1 · ·
1 1 · 1 1 0


with this being an n by n square matrix. If X is a matrix we shall use X[j, k] to
denote the entry of X at position [j, k]. It is not hard to see that ϕ sends xn to
zero and that ϕ(xr)[n, 1] > 1 for all r ∈ N with r < n. Hence, ϕ(x∗r)[1, n] > 1 also.
We shall show by induction on the number of syllables of w, that if v is a word
which has non-zero image under ϕ and w = v · xr with r < n then ϕ(w)[1, 1] > 0
or ϕ(w)[n, 1] > 0, and that if w = v · x∗r then ϕ(w)[1, n] > 0 or ϕ(w)[n, n] > 0.

First, if w = xr then we may see that ϕ(w)[n, 1] > 1 > 0 as r < n. Similarly,
if w = x∗r then ϕ(w)[1, n] > 1 > 0. Now, if w = v′·x∗sxr then s < n (as ϕ(v′x∗s) 6=
0) and so we may apply the induction hypothesis to get ϕ(v′x∗s)[1, n] > 0 or
ϕ(v′x∗s)[n, n] > 0. As all the entries of ϕ(x) are non-negative, and ϕ(xr)[n, 1] > 1,
we have ϕ(w)[1, 1] > 0 or ϕ(w)[n, 1] > 0. A similar argument works for w =
v ·xsx∗r. So then, ϕ(w) 6= 0 and thus w is not in 〈xn〉C∗ as this must be contained
in the kernel of ϕ and we have finished.
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Any syllable xn is an unshrinkable word and we have just proved that the
∗-ideal it generates is a C∗-ideal. However not all unshrinkable words are syllables.
The shortest unshrinkable word with more than one syllable is x2x∗x2 and so we
go on to prove the following theorem.

Theorem 4.3. The ∗-ideal 〈x2x∗x2〉∗ is a C∗-ideal. So A∗{x : x2x∗x2 = 0}
may be embedded into a C∗-algebra.

Proof. By Corollary 3.10, we need only show that x2x∗x2 generates alge-
braically any of the words in its C∗-ideal. Define ϕ to be the representation of A
given by ϕ : x 7→ X where

X =

 0 −3 1
0 0 1
0 0 1

 .

It is easy to see that X2X∗X2 = 0. Note that for all n > 1,

Xn = X2 =

 0 0 −2
0 0 1
0 0 1

 .

So, if w is a word then ϕ(w) = ϕ(w′) where w′ is a word with syllables only
out of {1, x, x∗, x2, x∗2}. We are seeking to show that w 6∈ 〈x2x∗x2〉∗ implies that
ϕ(w) 6= 0. By Corollary 3.11 we may take w to be unshrinkable. As ϕ applied to
any syllables is non-zero we need only consider words consisting of more than one
syllable. Any such word whose first or last syllable is x or x∗ will be shrinkable.
Also, any word ending in x2x∗2 or x∗2x2 is shrinkable and any word ending in
x2x∗x2 or x∗2xx∗2 is in 〈x2x∗x2〉∗. So, we need only to consider words in one of
following four forms:

(i) w = v · x∗2 · (xx∗)r · x2,

(ii) w = v · x2 · x∗(xx∗)r · x2,

(iii) w = v · x2 · (x∗x)r · x∗2, or

(iv) w = v · x∗2 · x(x∗x)r · x∗2,
where v ∈W and r ∈ {1, 2, 3, . . .}.

We shall prove that any such word w has ϕ(w) 6= 0 by induction on the
number of syllables of w. Take w to be in one of the four forms listed above and
assume, for cases (i) and (iv) that ϕ(v · x∗2) 6= 0, and for cases (ii) and (iii) that
ϕ(v · x2) 6= 0.
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By using induction, (and noting that (XX∗)rXX∗ = XX∗(XX∗)r), one
may check that for any r ∈ {1, 2, . . .} we have

(XX∗)r =

 d e e

e f f

e f f


for some d > 2e, 2f and e, f > 0. Similarly, one may see that

(X∗X)r =

 0 0 0
0 d′ −e′

0 −e′ f ′


for some d′, e′, f ′ with d′, e′, f ′ > 0. It is also easy to see that for any word v, we
will have

ϕ(v) ·X2 =

 0 0 a

0 0 b

0 0 c


for some a, b, c ∈ R, and

ϕ(v) ·X∗2 =

−2a′ a′ a′

−2b′ b′ b′

−2c′ c′ c′


for some a′, b′, c′ ∈ R.

We may now consider the four cases mentioned earlier:
(i) We take w = v · x∗2 · (xx∗)r · x2 and assume that ϕ(v · x∗2) 6= 0. So,

ϕ(w) =

 0 0 4a′(d+ f − 2e)
0 0 4b′(d+ f − 2e)
0 0 4c′(d+ f − 2e)


with {a′, b′, c′} 6= {0} and d+ f − 2e > d− 2e > 0 thus ϕ(w) 6= 0.

Similarly, in case (ii) we have

ϕ(w) =

 0 0 2a(2f − d− e)
0 0 2b(2f − d− e)
0 0 2c(2f − d− e)


with {a, b, c} 6= {0} and 2f − d− e < 2f − d < 0.

In case (iii) we have

ϕ(w) =

−2af ′ af ′ af ′

−2bf ′ bf ′ bf ′

−2cf ′ cf ′ cf ′
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with {a, b, c} 6= {0} and f ′ > 0.
Finally, in case (iv) we have

ϕ(w) =

 12a′e′ −6a′e′ −6a′e′

12b′e′ −6b′e′ −6b′e′

12c′e′ −6c′e′ −6c′e′


with {a′, b′, c′} 6= {0} and e′ > 0. So, in each case we have ϕ(w) 6= 0 and have
finished our proof.

Theorem 4.4. Let w1, . . . , wr be words. Then 〈w1, . . . , wr〉C∗ = 〈w1〉C∗ +
· · ·+ 〈wr〉C∗ .

Proof. The ideal 〈w1, . . . , wr〉C∗ exists by an easy extension of the proof of
Corollary 3.9. Let I = 〈w1, . . . , wr〉C∗ and J = 〈w1〉C∗ + · · ·+ 〈wr〉C∗ . As 〈wj〉C∗
is the smallest C∗-ideal containing wj , and I is a C∗-ideal containing wj , we have
〈wj〉C∗ ⊆ I. Therefore J ⊆ I and we need to prove the reverse inclusion. For all
wj , let ϕwj

be a ∗-representation with kernel 〈wj〉C∗ . Let ψ = ϕw1 � · · · � ϕwr
.

Clearly ψ(wj) = 0 for all j ∈ {1, . . . , r} As ker(ψ) is a C∗-ideal we have I ⊆ ker(ψ).
For any word v, its image ψ(v) is equal to ϕw1(v) ⊗ · · · ⊗ ϕwr

(v), which is zero
only if ϕwj

(v) = 0 for some j. Therefore W1 ∩ I ⊆ W1 ∩ ker(ψ) ⊆ W1 ∩ J . Now
let y be in I with y =

∑
yu · u. We are seeking to show that y is in J . Similarly

to the proof of Theorem 3.8, as W1 ∩ I ⊆ W1 ∩ J , we need only to consider the
possibility that y is a non-zero linear combination of words which are not in J .
So u 6∈ J for all yu 6= 0. Let π = ψ � Sv where v is a word with yv 6= 0 and
〈Sv(v)ε, ε′〉 6= 0 but 〈yuSv(v)ε, ε′〉 = 0 for all words u 6= v. We may assume that
ψ maps A1 into B(G) where G is a Hilbert space. As ψ(v) 6= 0 we may let δ, δ′

be in G with 〈ψ(v)δ, δ′〉 = 0. Similarly to the proof of Theorem 3.8 this gives us
〈π(y)(δ⊗ ε), δ′⊗ ε〉 6= 0. But I ⊆ ker(π) (as π(wj) = 0 for all j) so π(y) = 0 which
gives a contradiction. So y cannot be a non-zero linear combination of words not
in J , and the result is proved.

This last result shows that we may answer any question about the C∗-ideals
generated by more than one word by knowing about the C∗-ideals generated by
single words. This leaves us still wanting to prove the conjecture that 〈w〉C∗ =
〈w̃〉∗, for all words w, or, equivalently, the ∗-ideal generated by a word is a C∗-
ideal if and only if the word is unshrinkable. The “only if” part is proved and
we have seen that the conjecture holds for any syllable and for x2x∗x2 but it is
open for longer unshrinkable words although we have proved that they do generate
C∗-ideals.
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