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Abstract. The Toeplitz C∗-algebras associated to quasi-lattice ordered
groups (G, P ) studied by Nica in [12] were shown by Laca and Raeburn ([7])
to be crossed products of an abelian C∗-algebra BP by a semigroup of en-
domorphisms. Here we define a natural boundary for the semigroup P as a
subset of the maximal ideal space (or spectrum) of BP and prove that the
Toeplitz C∗-algebra associated to P is simple exactly when this boundary is
all of the spectrum of BP , in which case the Toeplitz C∗-algebra is actually
purely infinite. We also prove that when the boundary is a proper subset of
the spectrum, it induces an ideal of the Toeplitz C∗-algebra which is maximal
among induced ideals.
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1. INTRODUCTION

Suppose G is a group and P ⊂ G is a unital subsemigroup with no inverses, that
is, P 2 ⊂ P and P ∩P−1 = {e}. Then P induces a left-invariant partial order on G

via x 6 y if x−1y ∈ P ; according to Nica the pair (G, P ) is a quasi-lattice ordered
group if every finite subset of G having an upper bound in P has a least upper
bound in P . The notation x ∨ y is used for the least common upper bound of x

and y, with the convention x ∨ y = ∞ when there is no common upper bound in
P . The reader is referred to [12] and [7] for the basic properties and examples of
quasi-lattice ordered groups.

Nica associated two C∗-algebras to every (G, P ): a regular Toeplitz (or
Wiener-Hopf) C∗-algebra T (G, P ), generated by the left regular representation
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of P on `2(P ), and a C∗-algebra C∗(G, P ) which is universal for isometric repre-

sentations satisfying the covariance condition

i(x)∗i(y) = i(x−1(x ∨ y))i(y−1(x ∨ y))∗,

where {i(x) | x ∈ P} is a semigroup of isometries such that for any covariant semi-

group of isometries {Vx | x ∈ P}, the map i(x) 7→ Vx extends to a homomorphism

of C∗(G, P ) onto C∗({Vx | x ∈ P}). This universal algebra is clearly unique up

to isomorphisms and, when the quasi-lattice order is amenable, it is isomorphic to

the Toeplitz C∗-algebra, ([12], Section 4 (see also [7], Section 2)).

In [7], C∗(G, P ) was shown to be a semigroup crossed product of an abelian

C∗-algebra by a semigroup of endomorphisms. Specifically, if 1x denotes the char-

acteristic function of the set {y ∈ P | y > x}, then the family of projections

{1x ∈ `∞(P ) | x ∈ P} is closed under multiplication and thus

BP = span {1x | x ∈ P}

is a commutative unital C∗-algebra, on which the semigroup P acts by (left trans-

lation) endomorphisms given by αx : 1y 7→ 1xy. The semigroup crossed prod-

uct BP oP is naturally isomorphic to C∗(G, P ) ([7], Corollary 2.4), and this led

in [7] to a characterization of faithful representations and to uniqueness results for

Toeplitz algebras which unify the treatment of various C∗-algebras generated by

semigroups of isometries. The main result of this note, Theorem 5.4, gives nec-

essary and sufficient conditions for simplicity and pure infiniteness of generalized

Toeplitz C∗-algebras in terms of the quasi-lattice order structure.

When applied to specific free product quasi-lattice orders this gives as special

cases Cuntz’s result that O∞ is purely infinite simple as well as a result of Dinh

on the spectral C∗-algebras of discrete product systems.

In their study of noncommutative disk algebras, Davidson and Popescu have

independently obtained a related result ([3]), see Remark 5.7 below.
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2. THE MAXIMAL IDEAL SPACE OF BP

Following [12] we will say that a subset A of P is hereditary if x 6 y ∈ A implies
x ∈ A, and that it is directed if any pair x, y ∈ A has a common upper bound in
A. The collection of all nonempty hereditary directed subsets of P will be denoted
by Ω and endowed with the topology inherited from {0, 1}P by identifying subsets
of P with their characteristic functions. Thus, a net {Aλ} converges to A in Ω if
and only if χAλ

(x) converges to χA(x) for every x ∈ P .
There is a homeomorphism between the maximal ideal space of BP and Ω

obtained by sending a multiplicative linear functional ω on BP to the set Aω =
{x ∈ P | ω(1x) = 1} ([12], Proposition 6.2.1). The inverse of this homeomorphism
sends a hereditary directed set A into the functional Â defined by Â(f) = lim

x∈A
f(x)

for f ∈ BP ; this limit exists for every f ∈ BP because BP is the closed linear span
of functions of the form 1x. We will identify BP and C(Ω) and write f(A) instead
of Â(f).

The semigroup P embeds as a dense subset of Ω by x 7→ [e, x] = {y ∈ P |
e 6 y 6 x}, so Ω may be seen as a compactification of P coming from the order
structure. The following proposition gives a basis for the topology of Ω consisting
of closed and open neighborhoods.

Proposition 2.1. If H is a finite subset of P and a 6 h for all h ∈ H, the
set

(2.1) V (a,H) := {B ∈ Ω | a ∈ B, h /∈ B (∀)h ∈ H},

is closed and open. Furthermore, the collection of all such subsets is a basis for
the topology, and Ω is totally disconnected.

Proof. Notice first that

V (a,H) =
{

B ∈ Ω
∣∣∣ ∏

h∈H

(1a − 1h)(B) = 1
}

=
{

B ∈ Ω
∣∣∣ ∏

h∈H

(1a − 1h)(B) > 0
}

.

Since the function
∏

h∈H

(1a − 1h) is continuous on Ω, the set V (a,H) is clopen.

A typical basic open neighborhood around A ∈ Ω is N(A;F ) = {B ∈ Ω |
χB(x) = χA(x) for x ∈ F}, where F is a finite subset of P . Thus, in order to
prove that the sets from (2.1) form a base for the topology, it suffices to show that
for any N(A;F ) there exist a and H such that A ∈ V (a,H) ⊂ N(A;F ).

If F ∩ A is not empty, let a be its least upper bound, which exists because
A is directed; otherwise let a = e. Let H = {a ∨ x ∈ P | x ∈ F \ A}, thus a 6 h
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for each h ∈ H. Since A is hereditary h /∈ A for every h ∈ H because if a∨ x ∈ A,
then x ∈ A. Thus A ∈ V (a,H).

Suppose now B ∈ V (a,H). If x ∈ F ∩ A then x 6 a. Since B is hereditary
and a ∈ B it follows that x ∈ B. If x ∈ F \ A, then x /∈ A. Hence either a and
x have no common upper bound, in which case x /∈ B, or else a ∨ x = h ∈ H in
which case x /∈ B as well. This proves that χA(x) = χB(x) for every x ∈ F , hence
B ∈ N(A;F ).

Next we define an action of P by left multiplication as partial homeomor-
phisms of Ω. For t ∈ P and A ∈ Ω we consider the smallest hereditary subset of
P containing tA, i.e. the set

[e, tA] = {y ∈ P | y 6 ta for some a ∈ A}.

This set is indeed hereditary because if x 6 y ∈ [e, tA] then x 6 ta for some a ∈ A,
so x ∈ [e, tA] and it is also directed because if x 6 ta and y 6 tb for a, b ∈ A, then
x ∨ y 6 t(a ∨ b) and a ∨ b ∈ A so x ∨ y ∈ [e, tA]. Thus [e, tA] ∈ Ω.

Proposition 2.2. For each t ∈ P the map θt : Ω → Ω defined by θt(A) =
[e, tA], is a homeomorphism of Ω onto the clopen subset Ωt = {B ∈ Ω | t ∈ B},
with inverse given by θ−1

t (B) = t−1(t ∨ B) := {t−1(t ∨ b) | b ∈ B}. Furthermore,
θs ◦ θt = θst.

Proof. The function 1t : B ∈ Ω 7→ χB(t) is continuous for each t ∈ P , hence
the set Ωt = {B ∈ Ω | χB(t) = 1} = {B ∈ Ω | χB(t) > 0} is closed and open.

Suppose B ∈ Ωt, that is, t ∈ B. The set B0 = {t−1(t ∨ b) | b ∈ B}
is hereditary because if x 6 y ∈ B0 then tx 6 ty ∈ B so tx ∈ B and x =
t−1(t∨ tx) ∈ B0; it is also directed because if x, y ∈ B0 then t(x∨y) = tx∨ ty ∈ B

so x∨ y ∈ B0. Therefore B0 is in Ω and it is easy to verify that θt(B0) = B, hence
that θt : Ω → Ωt is surjective.

The map θt is also injective, with inverse given by θ−1
t (B) = t−1(t ∨ B)

because A = t−1(t ∨ θt(A)).
Recall that a net {Aλ | λ ∈ Λ} converges to A in Ω if and only if χAλ

(x)
converges to χA(x) in C for each x ∈ P . To prove that θt is continuous, suppose
Aλ → A and fix x ∈ P ; it is enough to show that χ[e,tAλ](x) converges to χ[e,tA](x).
There are two cases to be considered, depending on whether x is in [e, tA] or not.
If x ∈ [e, tA], there is an a ∈ A with x 6 ta, hence χAλ

(a) = 1 for λ in a cofinal
subset Λ1 of Λ. Thus x ∈ [e, tAλ] for λ in Λ1, hence χ[e,tAλ](x) converges to 1.

If x /∈ [e, tA], then χAλ
(a) = 0 for a cofinal subset of Λ. Thus x /∈ [e, tAλ]

for this cofinal subset of Λ, hence χ[e,tAλ](x) converges to 0.
Since θt is a continuous bijection from a compact Hausdorff space onto an-

other, its inverse is continuous as well.
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Recall from [7], Section 2, that the embeddings iBP
of BP and iP of P into

the crossed product BP oP are covariant for α in the sense that iBP
(αx(f)) =

iP (x)iBP
(f)iP (x)∗. Since iBP

is injective we will identify BP with its image
iBP

(BP ) and simply use f in place of iBP
(f). The endomorphism αx has a left

inverse α−1
x given by α−1

x (f) 7→ iP (x)∗fiP (x). Next we see that at the level of
Ω the maps corresponding to these endomorphisms αx are given by the partial
homeomorphisms θx.

Proposition 2.3. Let θ be as in Proposition 2.2 and suppose f ∈ C(Ω) and
A ∈ Ω.

(i) If x ∈ A then αx(f)(A) = f(θ−1
x (A)).

(ii) If x /∈ A then αx(f)(A) = 0.
(iii) If x ∈ P then (i(x)∗fi(x))(A) = f(θx(A)).

Proof. For fixed A both sides of (i)–(iii) are bounded linear functionals on
f ∈ C(Ω) = span {1y | y ∈ P}, so it suffices to prove the claims for f = 1y for
each y ∈ P .

By definition of α, (αx(1y))(A) = (1xy)(A) = χA(xy). Since x /∈ A implies
xy /∈ A, (ii) follows. If x ∈ A then xy ∈ A if and only if y ∈ x−1(x ∨A) = θ−1

x (A)
so χA(xy) = χθ−1

x (A)(y), which proves (i).
If x and y do not have a common upper bound, then i(x)∗1yi(x) = 0 so the

left hand side in (iii) vanishes. Since θx(A) is directed and contains x, it cannot
contain y, thus χθx(A)(y) = 0, and the right hand side vanishes as well.

If x and y do have a common upper bound, then i(x)∗1yi(x) = 1x−1(x∨y) by
covariance, thus

(i(x)∗1yi(x))(A) = (1x−1(x∨y))(A) = χA(x−1(x ∨ y))

= χxA(x ∨ y) = χ[e,xA](y) = 1y([e, xA]),

finishing the proof of (iii).

Remark 2.4. After having identified the maximal ideal space of BP and Ω,
it is easy to compute the partial action from [14], Theorem 6.6 explicitly in terms
of partial homeomorphisms:

θx =
{

θσ(x)θτ(x)−1 if x ∈ PP−1,
0 otherwise.

We recall that for x ∈ PP−1, the element σ(x) ∈ P is the least upper bound of x,
and τ(x) = x−1σ(x) is the least upper bound of x−1, so that x = σ(x)τ(x)−1 is
the “most efficient” way to write x as st−1 with s, t ∈ P .
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Remark 2.5. At first sight it looks a bit un-natural that the action of t ∈ P

on A ∈ Ω does not give simply tA but the hereditary subset generated by tA; also,
the result of the action of t−1 on B ∈ Ω has the somewhat surprising formula of
t−1(t∨B). The reason for this lack of naturality is our insistence on representing
the points in the spectrum of BP as subsets of P , which is the form originally
given by Nica ([12]).

The formulas can be made more transparent if one is willing to modify the
presentation of the spectrum slightly and consider, for every A ∈ Ω its tail-set:

Tail(A) := {x ∈ G | x has an upper bound in A},

which is a subset of G from which A can be recovered easily as A = Tail(A) ∩ Ω.
Then not only the action of t and t−1 (for t ∈ P ), but in general the action θx for
x ∈ PP−1 is described by the simple formula

Tail(θx(A)) = xTail(A),

defined on {A ∈ Ω | x−1 ∈ Tail(A)} and having image equal to {B ∈ Ω | x ∈
Tail(B)}.

These natural formulas for the partial homeomorphisms have been used to
extend the action (θx)x∈PP−1 to the inverse semigroup of transformations of P

generated by left translations, cf. [13].

3. INVARIANT SUBSETS AND THE BOUNDARY OF P

Next we review a few basic facts about θ-invariant subsets of Ω and introduce the
boundary ∂P of P , which will give rise to the maximal induced ideal.

Definition 3.1. ([12], Section 6) A subset K of Ω is θ-invariant or simply
invariant if θx(K) ⊂ K and θx(Ω \K) ⊂ Ω \K for every x ∈ P , equivalently, if K

contains both θx(K) and θ−1
x (K ∩ Ωx) for each x ∈ P .

An ideal I of BP is called invariant if both αx(I) and i(x)∗Ii(x) are con-
tained in I for each x ∈ P .

Proposition 3.2. A closed subset K of Ω is invariant if and only if the
associated ideal IK = {f ∈ BP | f(A) = 0 (∀)A ∈ K} is invariant.

Proof. Direct application of Proposition 2.3.
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Definition 3.3. An element A of Ω is maximal if A ⊂ B ∈ Ω implies A = B.
We will denote by Ω∞ the set of maximal elements of Ω (i.e. the collection of all
maximal hereditary directed subsets of P ). The closure of Ω∞ in Ω will be the
boundary ∂P of P .

We first show that maximal elements always exist.

Lemma 3.4. If A ∈ Ω there exists B ∈ Ω∞ such that A ⊂ B.

Proof. The collection ΩA = {B ∈ Ω | A ⊂ B} is partially ordered by inclu-
sion. Since the union of a linearly ordered family of hereditary directed subsets of
P is hereditary and directed, Zorn’s lemma applies and gives the existence of at
least one maximal element in ΩA, i.e. there exists B ∈ Ω∞ with A ⊂ B.

Proposition 3.5. (i) If the semigroup P is directed, in the sense that any
two elements have a common upper bound, then Ω∞ = {P} and conversely, if Ω∞

consists of a single point then P is directed.
(ii) If the semigroup P is not directed then for each x ∈ P there is a contin-

uum of elements A ∈ Ω∞ containing x.

Proof. The semigroup P is always hereditary, if it is also directed, then
clearly Ω∞ = {P}. If there is only one element in Ω∞, it must be P because of
Lemma 3.4. This proves (i).

Suppose P is not directed, i.e. there exist a and b in P such that a∨ b = ∞.
Let x ∈ P and consider the product πs associated to a sequence s of a’s and b’s of
length n. If πs = πs′ then the first factors, of s and of s′, have a common upper
bound and hence coincide; by induction, it follows that s = s′. Thus different
sequences give different products.

The previous lemma, when applied to A = [e, xπs], gives 2n different points
in Ω∞. They are different because if s 6= s′ then πs ∨ πs′ = ∞ and hence also
xπs ∨xπs′ = ∞, so xπs and xπs′ cannot both be in the same directed subset of P .

For each infinite sequence λ of a’s and b’s consider the net {xπλ1···λn} de-
termined by the finite initial subsequences. By compactness, this net has an
accumulation point, and different sequences λ give different points because of the
preceding argument. Although these accumulation points need not be in Ω∞,
Lemma 3.4 gives a subset of Ω∞ with cardinality c.

Lemma 3.6. The set Ω∞ is θ-invariant.

Proof. We must show that θt leaves Ω∞ and Ω\Ω∞ invariant for every t ∈ P .
Let A ∈ Ω∞; if θt(A) ⊂ B ∈ Ω then t ∈ B and the set θ−1

t (B) = {x ∈ P | tx ∈ B}
is in Ω and contains A as a subset. By maximality A = θ−1

t (B). Thus θt(A) = B

and θt(A) is maximal, proving that θt leaves Ω∞ invariant.
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Assume now A /∈ Ω∞, then A is properly contained in some B ∈ Ω. But
then θt(A) is properly contained in θt(B), hence θt(A) /∈ Ω∞.

The following theorem gives a key characteristic property of the boundary.
The maximality of the elements of Ω∞ translates into a minimality property of its
closure under the action of P .

Theorem 3.7. The boundary ∂P is the smallest nonempty closed invariant
subset of Ω and the collection of functions vanishing on ∂P is the largest proper
invariant ideal of BP .

Proof. Suppose x ∈ P . Since θx is continuous and leaves Ω∞ invariant, it
leaves ∂P := Ω∞ invariant. If A /∈ Ω∞, there is an open set V around A disjoint
from Ω∞. Since θx is open and leaves Ω \ Ω∞ invariant, the set θx(V ) is an open
neighborhood of θx(A) which is disjoint from Ω∞ by the previous lemma. Thus
∂P is a nonempty closed invariant set.

If a closed invariant subset of Ω contains an element B, then it also contains
lim
t∈A

θt(B) whenever it exists. Thus, to prove that ∂P is contained in every closed

invariant subset, it suffices to prove that if A ∈ Ω∞ then the net {θt(B)}t∈A

converges to A for every B ∈ Ω.
Let A1 be a cofinal subset of A and suppose the subnet {θx(B) | x ∈ A1}

converges to C ∈ Ω. If a ∈ A then a ∈ θx(B) for every x ∈ A1 with x > a. Since
1θx(B)(a) → 1C(a), we conclude that a ∈ C. So A ⊂ C and by maximality A = C.
Thus θx(B) converges to A because Ω is compact and A is the only possible limit
point for convergent subnets.

By Proposition 2.3 invariant ideals correspond to invariant closed sets so the
second claim follows from the first.

Remark 3.8. It is interesting to compare our ∂P with the collection of
unbounded elements of Ω. We have seen that ∂P is the singleton {P} for every
directed semigroup, but for instance for the directed semigroup N2 ⊂ Z2 the
unbounded elements in Ω(N2) contain two copies of N besides the boundary point
N2 itself. (These copies of N arise from taking limits along vertical and horizontal
lines in BN2 .)

Remark 3.9. In the case of a free group with finitely many generators, the
boundary corresponds to the space of infinite words in the generators, endowed
with the product topology. The free group with infinitely many generators is more
interesting: in this case the space of infinite words is Ω∞, but the boundary is all
of Ω. To see this simply observe that a typical neighborhood of [e, e] ∈ Ω involves
only finitely many restrictions, voiding a finite collection of first letters, so it must
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contain infinite words which start with other letters. This apparently simple fact
underlines the advantage of Nica’s approach to define the topology on Ω using
the partial order structure on P rather than a product space construction. This
allows for a unified treatment of the diagonal subalgebras BF+

n
of T On for n finite

or infinite, while infinite product space techniques fail to deal with infinite n.

Remark 3.10. The compactification Ω of P coincides with the unit space
of the Wiener-Hopf groupoid of Muhly and Renault ([9], Section 3). Indeed, the
Toeplitz C∗-algebras of quasi-lattice ordered groups can be obtained as groupoid
C∗-algebras, cf. [13], Section 3. Moreover, the notion of invariance used here corre-
sponds to invariance in the groupoid sense, so our discussion about invariant ideals
of the Toeplitz algebras could also be placed in the framework of Renault’s theory
— see e.g. [15], Propositions 4.5 and 4.6. The context of Muhly and Renault is
more general than the present one in the sense that they deal with locally compact
semigroups, not just discrete ones. However, we point out that, in general, quasi-
lattice ordered semigroups do not satisfy the normality assumption ([9], 3.1 (iv)).
In fact, normal semigroups can be intrinsically characterized as the cancellative
semigroups P for which tP = Pt for every t ∈ P ([6], Remark 1.2 (i)), which, in
turn, implies that P is directed, so normal quasi-lattice ordered semigroups have
trivial boundary by Proposition 3.5.

4. THE LARGEST INDUCED IDEAL

Denote by Φ : C∗(G, P ) → C(Ω) the positive conditional expectation extending
the map

i(x)i(y)∗ 7→ δx,yi(x)i(y)∗

by linearity and continuity ([12], [7]). This conditional expectation can be used to
lift (or induce) invariant ideals from the fixed point algebra to ideals in C∗(G, P )
as in [12]. Specifically, if I is an invariant ideal in BP , the set

J = {X ∈ C∗(G, P ) | Φ(XX∗) ∈ I}

is an ideal in BP oP , which is said to be induced from I. It is also possible to
induce from ideals of BP which are not invariant, but this does not give any new
induced ideals, see [12], Equation (22). There is a correspondence between induced
ideals of C∗(G, P ), invariant ideals of BP and closed invariant subsets of Ω.
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Lemma 4.1. If X ∈ C∗(G, P ) and x, y ∈ P then

Φ(i(x)i(y)∗Xi(y)i(x)∗) = i(x)i(y)∗Φ(X)i(y)i(x)∗.

Proof. Fix x and y; since both sides are bounded linear maps on X, it suffices
to prove it for the elements spanning a dense set. With X = i(s)i(t)∗ both sides
are zero if s 6= t, while if s = t both sides are i(x)i(y)∗i(s)i(t)∗i(y)i(x)∗.

Proposition 4.2. If Φ(J) ⊂ J for an ideal J of C∗(G, P ), then Φ(J) is an
invariant ideal of BP = C(Ω).

Proof. Φ(J) is an ideal because BP Φ(J) = Φ(BP Φ(J)) ⊂ Φ(BP J) ⊂ Φ(J),
and it is invariant because if X ∈ J then i(x)i(y)∗Xi(y)i(x)∗ ∈ J , so by Lemma 4.1
i(x)i(y)∗Φ(X)i(y)i(x)∗ ∈ Φ(J).

If (G, P ) has the approximation property for positive definite functions ([12],
Definition 4.5.2), then J coincides with the ideal induced from Φ(J ) ([12], Corol-
lary 6.1). But even if this is not the case, there is a largest element in the class of
proper ideals closed under the conditional expectation, as shown in the following
proposition.

Proposition 4.3. If K is an invariant closed subset of Ω, then

JK = {X ∈ C∗(G, P ) | (Φ(XX∗))(A) = 0 (∀)A ∈ K}

is an ideal in C∗(G, P ), which is proper if and only if K 6= ∅.
If J is a proper ideal in C∗(G, P ) with Φ(J) ⊂ J , then J ⊂ J∂P .

Proof. It suffices to show that both Xi(x)i(y)∗ and i(x)i(y)∗X are in JK

whenever X ∈ JK because C∗(G, P ) = span {i(x)i(y)∗ | x, y ∈ P}. Since ideals
are hereditary, the first claim follows from

(4.1) Φ(Xi(x)i(y)∗i(y)i(x)∗X∗) = Φ(Xi(x)i(x)∗X∗) 6 Φ(XX∗).

For the second claim recall that since K is invariant, the associated ideal of C(Ω),

IK = {f ∈ C(Ω) | f(A) = 0 (∀)A ∈ K},

is invariant so i(x)i(y)∗Φ(XX∗)i(y)i(x)∗ vanishes on K. Because of Lemma 4.1

(4.2) Φ(i(x)i(y)∗XX∗i(y)i(x)∗) = i(x)i(y)∗Φ(XX∗)i(y)i(x)∗,

thus i(x)i(y)∗X ∈ JK as well, proving that JK is a two sided ideal which is closed
because Φ and Â are continuous.
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If X ∈ J +
K then X1/2 ∈ JK , hence Φ(X) = Φ(X1/2X1/2) vanishes on K.

Thus Φ(Φ(X)Φ(X)) = Φ(X)2 also vanishes on K proving that Φ(X) is in JK .
Since every element in JK is a linear combination of four positive elements in JK

and since Φ is linear, we have Φ
(
JK

)
⊂ JK .

Suppose now J is an ideal of C∗(G, P ) with Φ(J) ⊂ J . Then Φ(J) is an
invariant ideal in C(Ω), and there is a corresponding invariant closed set K ⊂ Ω,
such that Φ(J) = {f ∈ BP | f(K) = (0)}. If J is proper, so is Φ(J) and by
Theorem 3.7 for all X ∈ J the function Φ(XX∗) vanishes on Ω∞ which causes
J ⊂ J∂P .

Remark 4.4. If ideals are closed under the conditional expectation and the
quasi-lattice order has the approximation property of Nica ([12], Section 6), then
every ideal of the Toeplitz C∗-algebra is induced. In such case, denoting also by α

the action of P by endomorphisms of C(∂P ), it follows from Proposition 4.3 that
C(∂P )oαP is simple.

5. SIMPLICITY AND PURE INFINITENESS

When the conditional expectation Φ is faithful as a positive map, i.e. when JΩ =
(0), the quasi-lattice ordered group (G, P ) is said to be amenable and it follows
from [7], Theorem 3.7 that every ideal in C∗(G, P ) contains a projection of the

form
n∏

i=1

(1a − 1xi
) for some a ∈ P and xi > a. The following lemma specifies

conditions under which such a projection is large enough to force the identity into
the ideal.

Lemma 5.1. Let F be a finite subset of P and assume
∏

x∈F

(1a−1x) does not

vanish at a point A of Ω∞. Then
∏

x∈F

(1a− 1x) dominates a projection of the form

1y for some y > a.

Proof. Suppose for every x ∈ a∨A there exists zx ∈ F such that x∨ zx ∈ P .
Since F is finite, the net x ∨ zx has a subnet with zx = z constant. Passing to a
further subnet if necessary, we can assume lim

Λ
[e, λ ∨ zλ] exists. Since Λ is cofinal

in A, the limit contains A, and since A is maximal they must coincide. Thus
x ∨ z ∈ A and since A is hereditary, z ∈ A which constitutes a contradiction.
Hence there must exist some y ∈ a ∨ A for which y ∨ z = ∞ for all z ∈ F , which
implies 1y 6

∏
F

(1a − 1x).
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Lemma 5.2. Suppose (G, P ) is a quasi-lattice ordered group. The following
are equivalent:

(i) The subset of maximal elements Ω∞ is dense in Ω (i.e. ∂P = Ω).
(ii) For every finite subset F of P \{e} there exists z ∈ P such that z∨x = ∞

for all x ∈ F .
(iii) For every finite subset F of P \ {e} and every a ∈ P the projection∏

x∈F

(1a − 1ax) dominates 1y for some y > a.

Proof. Assume (ii) holds and let a ∈ P and F be finite subset P \ {e}. If
y > az then y > a and y 6> ax for all x ∈ F , so 1az 6

∏
x∈F

(1a − 1ax), giving

(iii). Conversely, if F is a finite subset of P , it suffices to apply (iii) with a = e to
obtain (ii).

To prove that (ii) implies (i) it suffices to show that the basic clopen set
V (a, aF ) intersects Ω∞. By Proposition 3.5 there exists at least one A ∈ Ω∞

containing [e, az]. Since ax ∨ az = ∞ for all x ∈ F and A is directed, ax /∈ A so
A is in V (a, aF ).

Conversely, if Ω∞ is dense, the projection
∏

x∈F

(1 − 1x) does not vanish at a

boundary point and Lemma 5.1 gives z ∈ P such that z ∨ x = ∞ for all x ∈ F .
Thus (i) implies (ii).

Remark 5.3. Condition (ii) above is closely related but slightly stronger
than assuming that no finite set contains a lower bound for every element in
P \ {e} or, equivalently, that the compacts are not contained in the Wiener-Hopf
algebra ([12], Proposition 6.3).

If there is a finite set of lower bounds then condition (ii) obviously fails to
hold, but the absence of such a finite set of lower bounds does not imply (ii), as
shown by the example of a totally ordered dense subgroup (Γ,Γ+) of the reals
with the usual order. The existence of a finite set of lower bounds means that the
semigroup P is contained in finitely many branches (originating from those lower
bounds), while the existence of a set F such that for every y ∈ P there is x ∈ F

with x∨y ∈ P corresponds to a finite collection of branches eventually intersecting
any given branch.

Theorem 5.4. Suppose (G, P ) is a quasi-lattice ordered group. The follow-
ing are equivalent:

(i) (G, P ) is amenable and ∂P = Ω.
(ii) C∗(G, P ) is simple.
(iii) For every nonzero A ∈ C∗(G, P ) there exist B,C ∈ C∗(G, P ) such that

BAC = 1.
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Proof. For the proof of (i) ⇒ (iii) we borrow a familiar argument of Cuntz
([2]). Let A ∈ C∗(G, P ), A 6= 0. It suffices to produce elements B,C ∈ C∗(G, P )
such that BAC is invertible. There is no loss of generality in assuming ‖A‖ = 1.
By amenability ‖Φ(AA∗)‖ = c > 0, and there is an element of the form X =∑
x,y∈F

λx,yi(x)i(y)∗, with ‖X‖ = 1 such that ‖A−X‖ < c/4. Thus ‖AA∗−XX∗‖ <

c/2 and, since Φ is a contraction, ‖Φ(XX∗)‖ > c/2. Let µ = ‖Φ(XX∗)‖−1, so
that µc/2 < 1/2.

The projection Q corresponding to XX∗ as in [7], Lemma 3.2 is of the form∏
x∈F

(1a−1ax) for a finite subset F of P , and since Ω∞ is assumed to be dense, part

(ii) of Lemma 5.2 gives z ∈ P such that i(1z)Q = i(1z). Since Q is a subprojection
of the projection on which Φ(XX∗) attains its norm, QXX∗Q = QΦ(XX∗)Q =
‖Φ(XX∗)‖Q, which gives

i(z)∗i(1z)QXX∗Qi(z) = i(z)∗‖Φ(XX∗)‖i(1z)i(z) = ‖Φ(XX∗)‖I.

Since ‖i(z)∗i(1z)Q‖ = ‖Qi(z)‖ = 1 it follows that

‖µi(z)∗i(1z)QAA∗Qi(z)− I‖ = µ‖i(z)∗i(1z)Q(AA∗ −XX∗)Qi(z)‖ <
µc

2
<

1
2
,

which implies that µi(z)∗i(1z)QAA∗Qi(z) is invertible.
(ii) ⇒ (i). If C∗(G, P ) is simple, then every representation is faithful so

(G, P ) is amenable. Moreover, the ideal J∂P induced from ∂P := Ω∞ is trivial
so every function vanishing on Ω∞ must vanish everywhere, which is enough to
conclude that Ω∞ is dense.

(iii) ⇒ (ii) is trivial.

Remark 5.5. If C∗(G, P ) is simple, then it is purely infinite.

Corollary 5.6. The Toeplitz C∗-algebra of the free product of two or more
countable ordered subgroups of R, at least one of which is dense, is purely infinite
simple.

Proof. Such a free product is amenable as a quasi-lattice ordered group by [7],
Theorem 4.4 and it satisfies the conditions of Lemma 5.2 by [7], Corollary 5.3, so
Theorem 5.4 above gives the result.

Remark 5.7. When all the factors are isomorphic the result follows from
[4], Theorem 4.3. When there are finitely many nonisomorphic factors, it has been
established independently in current work of Davidson and Popescu ([3]).

Since the situation studied here fits naturally into the framework of partial
actions, it seems interesting to explore the extent to which recent results on purely
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infinite C∗-algebras from group boundary actions ([8]), and from free products of
cyclic groups ([16]) also hold for partial actions. In particular the action on ∂P

ought to be a boundary action in a sense generalizing that of [8].
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