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Abstract. In this paper we show that each subnormal n-tuple T ∈ L(H)n

with the property that the Taylor spectrum of T is contained in the closed
Euclidean unit ball and is dominating in the open ball, is reflexive. The proof
is based on the observation that the dual algebra generated by T possesses
the factorization property (A1,ℵ0). The same results are shown to hold for
subnormal tuples that possess an isometric w∗-continuous H∞-functional cal-
culus over the unit ball. Thus we extend a result of Olin and Thomson on the
reflexivity of arbitrary single subnormal operators to the case of subnormal
systems with rich spectrum in the Euclidean unit ball.
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A result of Scott Brown ([4]) from 1978 shows that each subnormal operator T ∈
L(H) on a complex Hilbert space H has a non-trivial invariant subspace. Using
Scott Brown’s methods, Olin and Thomson ([15]) proved that, for each weak-∗-
continuous linear functional L on the weak-∗-closed algebra AT generated by a
single subnormal operator T ∈ L(H), there are vectors x and y ∈ H such that
L(A) = 〈Ax, y〉 for every A ∈ AT . As a consequence of this result, Olin and
Thomson were able to prove that each subnormal operator T on a Hilbert space
H is reflexive, and that the weak-∗-closed algebra generated by T coincides with
the WOT-closed algebra generated by T (with the two topologies being identical
on this algebra).
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A result of K. Yan ([20]) shows that each subnormal n-tuple T , that is, each
system T = (T1, . . . , Tn) ∈ L(H)n of Hilbert-space operators that extends to a
system N = (N1, . . . , Nn) ∈ L(K)n of commuting normal operators on a larger
Hilbert space K, possesses a non-trivial joint invariant subspace. It is an open
question whether each subnormal n-tuple T ∈ L(H)n is reflexive. A result of
Bercovici ([2]) shows that each commuting system of isometries on a Hilbert space
is reflexive. An extension of this result to jointly quasinormal systems was given
by E.A. Azoff and M. Ptak ([1]). Apart from this, no general reflexivity results
for subnormal systems seem to be known (see also [14]).

Sarason’s decomposition theorem for compactly supported measures on the
complex plane and corresponding decomposition theorems for subnormal opera-
tors (see [9]) allow the reduction of the reflexivity problem for single subnormal
operators to the particular case of a subnormal operator T ∈ L(H) that possesses
a minimal normal extension N ∈ L(K) with a scalar spectral measure µ for which
H∞(D) = P∞(D, µ). Here H∞(D) is the Hardy space of all bounded analytic
functions on the open unit disc D in C, P∞(D, µ) denotes the weak-∗-closure of
the polynomials in L∞(D, µ), and we write H∞(D) = P∞(D, µ) if µ|∂D is abso-
lutely continuous with respect to the normalized Lebesgue measure m on the unit
circle and if the identity map C[z]→ P∞(D, µ), p 7→ p, extends to a dual algebra
isomorphism H∞(D)→ P∞(D, µ).

In the present paper we show that the results of Olin and Thomson remain
true for subnormal systems T ∈ L(H)n with rich spectrum in the unit ball B in
Cn. More precisely, let T ∈ L(H)n be a subnormal tuple such that the Taylor
spectrum σ(T ) of T is contained in the closed ball B and is dominating in the open
ball B. Then we show that, for each weak-∗-continuous linear functional L on the
weak-∗-closed algebra AT generated by T , there are vectors x and y in H with

L(A) = 〈Ax, y〉 (A ∈ AT ).

As a corollary we obtain that the weak-∗-closed algebra AT generated by T co-
incides with the WOT-closed algebra generated by T , and that both topologies
agree on this algebra.

Under the same conditions we prove that, for each sequence (Lk)k>1 of weak-
∗-continuous linear functionals Lk on AT , there are vectors x, yk in H with

Lk(A) = 〈Ax, yk〉 (A ∈ AT , k > 1).
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In the case that T is pure we deduce that the vectors x in H for which the induced
cyclic invariant subspace

Hx =
∨

k∈Nn

T kx ∈ Lat(T )

is an analytic invariant subspace for T form a dense subset of H. As a consequence
we obtain that each subnormal system T ∈ L(H)n with rich spectrum in the unit
ball B is reflexive.

The above results are also shown to be true for each subnormal system T in
L(H)n that possesses an isometric and weak-∗-continuous H∞-functional calculus
Φ : H∞(B)→ L(H) over the unit ball, or equivalently, for each subnormal system
T ∈ L(H)n that possesses a minimal normal extension N ∈ L(K)n with a scalar
spectral measure µ for which µ|∂B is a Henkin measure and H∞(B) = P∞(B, µ).
Subnormal tuples with an isometric H∞-functional calculus over the unit ball are
in particular absolutely continuous spherical contractions with a spherical dilation
and isometric H∞-functional calculus (see [10]). In the one-variable case, this
latter class consists precisely of all absolutely continuous contractions of class (A).
By a result of Brown and Chevreau these contractions are reflexive. It is therefore
natural to conjecture that each absolutely continuous spherical contraction of class
(A) is reflexive. But it seems that additional ideas are needed to decide this
question in the multivariable case.

0. PRELIMINARIES

Let T = (T1, . . . , Tn) ∈ L(H)n be a commuting system of continuous linear oper-
ators on a complex Hilbert space H. We denote by σ(T ) the Taylor spectrum of
T (see [11]). The Banach space L(H) is the norm-dual of the space C1(H) of all
trace-class operators on H via the duality

C1(H)× L(H)→ C, (A,B) 7→ Tr(AB).

The smallest unital w∗-closed subalgebra AT of L(H) containing T1, . . . , Tn is the
norm-dual of the Banach space QT = C1(H)/⊥AT . Thus AT becomes a dual
algebra, that is, a Banach algebra A which is isometrically isomorphic to the
norm-dual of a certain fixed Banach space A∗ such that the multiplication in A is
separately w∗-continuous. Let A and B be dual algebras with preduals A∗ and B∗.
By a dual algebra isomorphism ϕ : A → B we mean an algebra homomorphism
between A and B that is an isometric isomorphism and a w∗-homeomorphism,
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or equivalently, an algebra homomorphism that is the adjoint of an isometric
isomorphism ϕ∗ : B∗ → A∗.

For T ∈ L(H)n as above and x, y ∈ H, we denote by [x⊗ y] ∈ QT the equiv-
alence class of the rank-one operator H → H, ξ 7→ 〈ξ, y〉x. Each w∗-continuous
linear functional L : AT → C is of the form

L =
∞∑

k=1

[xk ⊗ yk],

where (xk) is a bounded sequence in H and
∞∑

k=1

‖yk‖ <∞. Let p, q be any cardinal

numbers with 1 6 p, q 6 ℵ0. The dual algebra AT possesses property (Ap,q) if,
for each matrix (Lij) of functionals Lij ∈ QT (0 6 i < p, 0 6 j < q), there are
vectors (xi)06i<p and (yj)06j<q in H solving the equations

Lij = [xi ⊗ yj ] (0 6 i < p, 0 6 j < q).

If p = q, then we write Ap instead of Ap,p.
Let G ⊂ Cn be an open set. We denote by O(G) the Fréchet algebra of all an-

alytic complex-valued functions on G, and we write H∞(G) for the Banach algebra
of all bounded analytic functions on G equipped with the norm ‖f‖ = sup

z∈G
|f(z)|.

A set σ⊂Cn is dominating in G if ‖f‖=sup{|f(z)| : z ∈ σ∩G} for all f ∈H∞(G).
The space H∞(G) is a w∗-closed subspace of L∞(G) with respect to the duality
〈L1(G), L∞(G)〉 (formed with respect to the (2n)-dimensional Lebesgue measure).
A sequence (fk) inH∞(G) is a w∗-zero sequence if and only if (fk) is norm-bounded
and converges to zero pointwise on G, or equivalently, uniformly on all compact
subsets of G.

We write P∞(G) for the w∗-closure of the polynomials in H∞(G). The
space P∞(G) is a dual algebra with predual QG = L1(G)/⊥P∞(G). For λ ∈ G
and k ∈ Nn, the w∗-continuous linear functionals

Eλ : P∞(G)→ C, f 7→ f(λ)

E(k)
λ : P∞(G)→ C, f 7→ f (k)(λ)

will be regarded as elements in QG.
Let Φ : P∞(G) → L(H) be a unital w∗-continuous algebra homomorphism

with Φ(zi) = Ti (i = 1, . . . , n). For x, y ∈ H,

x⊗ y : P∞(G)→ C, f 7→ 〈Φ(f)x, y〉
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defines an element in QG with x⊗ y = Φ∗
(
[x⊗ y]

)
, where Φ∗ : QT → QG denotes

the predual of Φ : P∞(G) → AT . The map Φ : P∞(G) → AT is a dual algebra
isomorphism if and only if Φ is isometric. In this case, the properties (Ap,q) for
AT admit an obvious reformulation in terms of the dual algebra P∞(G).

Let X be a compact subset of Cn. We write M(X) for the Banach space
of all regular complex Borel measures on X, and we set M+(X) = {µ ∈ M(X) :
µ > 0}. For µ ∈ M+(X) and 1 6 q < ∞, we define P q(X,µ) as the closure
of the polynomials in Lq(X,µ), while P∞(X,µ) stands for the w∗-closure of the
set of all polynomials in L∞(X,µ). The space P∞(X,µ) is a dual algebra with
predual Q(µ) = L1(X,µ)/⊥P∞(X,µ). For a complex measure µ ∈ M(X), the
space P q(X,µ) is defined as P q(X, |µ|), and the same convention is used for the
other spaces defined above. When the context is clear, we omit the underlying
space X in the above notations.

Let B = {z ∈ Cn : |z| < 1} be the open Euclidean unit ball in Cn, and let
S = ∂B be the unit sphere. We write A(B) (sometimes also A(S)) for the Banach
algebra of all continuous complex functions on B which are analytic on B, equipped
with the supremum-norm. A Montel sequence is a sequence (fk) in A(B) that is a
w∗-zero sequence in H∞(B). A measure µ ∈M(S) is a Henkin measure if

lim
k→∞

∫
S

fk dµ = 0

for each Montel sequence (fk). Examples of Henkin measures are the surface
measure σ on S, all measures that are absolutely continuous with respect to σ and
all measures in A(B)⊥. Here A(B) is regarded as a closed linear subspace of C(S).
For details on Henkin measures, we refer the reader to Chapter 9 in [16]. We write
HM(S) for the set of all Henkin measures µ ∈M(S).

For each measure µ ∈ HM(S), there is a unique w∗-continuous algebra ho-
momorphism rµ : H∞(B)→ P∞(S, µ) extending the restriction map

A(B)→ C(S), f 7→ f |S.

A measure µ ∈ M(B) is a Henkin measure if µ|S ∈ HM(S). In this case, the map
r = r(µ) : H∞(B)→ P∞(B, µ) with

r(f)|B = f and r(f)|S = r(µ|S)(f)
(
f ∈ H∞(B)

)
is a contractive w∗-continuous algebra homomorphism. Furthermore, the map

Φ : H∞(B)→ L
(
L2(B, µ)

)
, Φ(f)g = r(f)g
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and its restriction Φ|P 2(B, µ) to the invariant subspace P 2(B, µ) are w∗-continuous
algebra homomorphisms. In particular, for x, y ∈ L2(B, µ),

x⊗ y : H∞(B)→ C, f 7→
∫
B

r(f)xy dµ

defines an element in the predual Q = L1(B)/⊥H∞(B) of H∞(B). When the
map r : H∞(B) → P∞(B, µ) is isometric, then r is the adjoint of an isometric
isomorphism r∗ : Q(µ) = L1(B, µ)/⊥P∞(B, µ) → Q, and we shall not distinguish
between elements in Q and the corresponding functionals in Q(µ).

1. FACTORIZATION RESULTS

Let B = {z ∈ Cn : |z| < 1} be the open Euclidean unit ball in Cn, and
let Q = L1(B)/⊥H∞(B) be the predual of H∞(B) as explained in the pre-
liminaries. Our factorization results for subnormal commuting systems will be
based on corresponding factorization properties for the special subnormal system
Mz = (Mz1 , . . . ,Mzn

) consisting of the multiplication operators by the coordinate
functions on the space P 2(µ), where µ is a Henkin measure on B.

Lemma 1.1. Let L ∈ Q = L1(B)/⊥H∞(B) be given with ‖L‖ = 1 6= |L(1)|,
and let ν ∈M(B) be a measure with ‖ν‖ 6 1 and

L(f |B) =
∫
B

f dν
(
f ∈ A(B)

)
.

Then |ν|(B) = 0, ‖ν‖ = 1, and ν|S is a Henkin measure.

Proof. For each Montel sequence (fi) in A(B), the sequence∫
S

fi dν = L(fi|B)−
∫
B

fi dν

converges to zero. Hence ν|S is a Henkin measure. By Hahn-Banach there is
a function f ∈ H∞(B) with ‖f‖ = 1 and 〈L, f〉 = 1. Let (pk) be a sequence of
polynomials with ‖pk‖∞,B 6 1 such that f is the w∗-limit of (pk) in H∞(B). Then∫

B

pk dν = L(pk|B) k−→ 1.
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On the other hand, we know that∫
B

pk dν =
∫
B

pk dν +
∫
S

pk dν k−→
∫
B

f dν +
∫
S

rν|S(f) dν.

The estimate
1 =

∣∣∣ ∫
B

f dν +
∫
S

rν|S(f) dν
∣∣∣ 6 ‖ν‖ 6 1

implies that ‖ν‖ = 1 and that

|ν|(B) =
∣∣∣ ∫

B

f dν
∣∣∣ 6 ∫

B

|f |d|ν|.

We conclude that |f | = 1, |ν|-almost everywhere on B. Therefore the assumption
that |ν|(B) 6= 0 would imply that f is a constant function of modulus 1, and hence
that 1 = |〈L, f〉| = |L(1)|, which is not true by hypothesis.

For each positive real number t, we set Bt = {z ∈ Cn : |z| < t}. Define
At = B \Bt for 0 < t < 1. Let µ ∈M(B) be a Henkin measure, and let

r : H∞(B)→ P∞(B, µ)

be the contractive w∗-continuous algebra homomorphism defined in the prelimi-
naries. We denote by r∗ : Q(µ)→ Q the predual of the map r.

Corollary 1.2. Let µ ∈M+(B) be a Henkin measure such that the induced
map

r : H∞(B)→ P∞(B, µ)

is a dual algebra isomorphism. Let L ∈ Q(µ) be an element with ‖L‖ = 1 6= |L(1)|,
and let (uk) be a sequence in L1(B, µ) with

(i) lim
k→∞

‖uk‖1 6 1;

(ii) lim
k→∞

[uk] = L in Q(µ).

Then each measure ν ∈ M(B) for which there is a subsequence (vk) of (uk)
with

ν = w∗- lim
k→∞

vkdµ

in M(B) is a Henkin measure with |ν|(B) = 0 and ‖ν‖ = 1. For each t with
0 < t < 1, we have

lim
k→∞

∫
Bt

|uk|dµ = 0.
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Proof. For (vk) and ν as above, we have

‖ν‖ 6 lim
k→∞

‖vkdµ‖ = lim
k→∞

‖vk‖1 6 1

and
(r∗L)(f |B) = lim

k→∞

∫
B

f ukdµ =
∫
B

f dν
(
f ∈ A(B)

)
.

Thus the first part of the assertion follows from Lemma 1.1.
Assume that there are real numbers 0 < t < 1 and ε > 0 such that∫

Bt

|uk|dµ > ε

for infinitely many k. By passing to a suitable subsequence, we may suppose that
this estimate holds for all k and that the limits

ν = w∗- lim
k→∞

ukdµ, η = w∗- lim
k→∞

ukχBt
dµ

exist in M(B). It follows that |η|(B \ Bt) = 0, and by the first part, |ν|(B) = 0.
Since ν − η = w∗- lim

k→∞
ukχAtdµ and

‖ukχAt
dµ‖ =

∫
At

|uk|dµ =
∫
B

|uk|dµ−
∫
Bt

|uk|dµ 6 ‖uk‖1 − ε,

we obtain the contradiction

1 = ‖ν‖ 6 ‖ν‖+ ‖η‖ = ‖ν − η‖ 6 lim
k→∞

(‖uk‖1 − ε) 6 1− ε.

Let σ be the surface measure on the unit sphere S ⊂ Cn, and let H∞(S) =
P∞(S, σ). Then the canonical map r : H∞(B) → H∞(S) is a dual algebra iso-
morphism. We shall identify H∞(B) with H∞(S) and Q = L1(B)/⊥H∞(B) with
Q(σ) = L1(S, σ)/⊥H∞(S).

Lemma 1.3. The set

C{Eλ : λ ∈ B} = {L ∈ Q(σ) : ‖L‖ = L(1) = 1},

where on the left we mean the closed convex hull of the set of all point evaluations
Eλ(λ ∈ B), consists precisely of those elements L ∈ Q(σ) for which there is a
Henkin measure ν ∈M+(S) with ‖ν‖ = 1 and

L(f) =
∫
S

rν(f) dν
(
f ∈ H∞(B)

)
.

Furthermore, the set M = {L ∈ Q(σ) : ‖L‖ = |L(1)|} has no interior points.



Algebras of subnormal operators on the unit ball 45

Proof. Define M1 = {L ∈ Q(σ) : ‖L‖ = L(1) = 1}. Note that M = CM1.
Fix an element L ∈ M1 and a sequence (uk) in L1(S, σ) with L = [uk] and
‖uk‖1 < 1 + 1

k (k > 1). After passing to a subsequence, we may suppose that

(ukdσ) w∗−→ ν

in M(S). Then ‖ν‖ 6 1 and

L(f |S) = lim
k→∞

∫
S

ukf dσ =
∫
S

f dν
(
f ∈ A(B)

)
.

It follows that ‖ν‖ = 1 = ν(S) and that ν is a positive Henkin measure.
Next we show that each element L ∈ Q(σ) for which there is a Henkin

measure ν ∈M+(S) with ‖ν‖ = 1 and

L(f) =
∫
S

rν(f) dν
(
f ∈ H∞(B)

)
belongs to C{Eλ : λ ∈ B}. Otherwise, the separation theorem would yield a
function g ∈ H∞(B) and a real number α with

sup
λ∈B

Re g(λ) < α < Re

(∫
S

rν(g) dν

)
=
∫
S

Re rν(g) dν.

By adding a sufficiently large positive constant to g if necessary, we may suppose
that Re rν(g) > 0 ν-almost everywhere. Since rν : H∞(B) → L∞(S, ν) is a
contractive unital homomorphism of Banach algebras, it follows that

exp
(
‖Re rν(g)‖∞,ν

)
= ‖exp

(
rν(g)

)
‖∞,ν = ‖rν

(
exp(g)

)
‖∞,ν

6 ‖exp(g)‖∞,B = exp
(

sup
λ∈B

Re g(λ)
)
.

Thus we would obtain the contradiction that

sup
λ∈B

Re g(λ) < α < sup
λ∈B

Re g(λ).

To conclude the proof, let us assume that the setM = CM1 has an interior
point. Then there would be an element L ∈ Int(M) ∩M1. Let g ∈ L1(S, σ) be
a function with

∫
S
g dσ = 0. Then there is a real number tg 6= 0 and an element

Lg ∈M1 such that
L+ tg[g] = αgLg
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for a suitable αg ∈ C. By applying both sides to the function 1 ∈ H∞(S), one
obtains that αg = 1. Hence

[g] =
Lg − L
tg

,

and there is a real Henkin measure ν ∈M(S) with ν(S) = 0 and∫
S

fg dσ =
∫
S

f dν
(
f ∈ A(B)

)
.

Note that, for each g ∈ L1(S, σ),

g dσ =

(
g −

∫
S

g dσ

)
dσ +

(∫
S

g dσ

)
σ.

Hence by Valskii’s theorem (Theorem 9.2.1 in [16]), we could conclude that each
Henkin measure µ ∈M(S) is contained in

{ν : ν ∈M(S) is a real Henkin measure with ν(S) = 0}+A(B)⊥ + Cσ.

Hence for each Henkin measure µ ∈M(S),

Imµ ∈ Im
(
A(S)⊥

)
+ Rσ,

Reµ = Im(iµ) ∈ Im
(
A(S)⊥

)
+ Rσ = Re

(
A(S)⊥

)
+ Rσ.

But then each Henkin measure would be of the form

µ = Reµ+ i Imµ ∈ ν1 + ν2 + Cσ

with suitable measures ν1, ν2 ∈ A(S)⊥. Here ν2 is the complex conjugate of the

measure ν2. Since A(S)⊥ = A(S)
⊥

and since A(S)⊥ + Cσ = A0(S)⊥, where
A0(S) = {f ∈ A(S) : f(0) = 0}, we would obtain that

HM(S) = A0(S)⊥ +A(S)
⊥
.

Note that A(S)
⊥

= A(S)⊥ ⊂ HM(S) (for instance by Henkin’s theorem). Since
HM(S) is a closed subspace of M(S), this implies that A0(S) + A(S) is a closed
subspace of C(S) and that

M(S) =
(
A0(S) ∩A(S)

)⊥ = A0(S)⊥ +A(S)
⊥

= HM(S).

This contradiction completes the proof.
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The following result is well known in the one-dimensional case (see Lemma
V.4.3 in [8]). The extension to the multidimensional case is straightforward. We
give the details for the convenience of the reader.

Lemma 1.4. Let K ⊂ Cn be a compact set, and let µ ∈ M+(K). Fix a
positive integer k > 1 and set p = 2k + 1 and q = p/2k. For each h ∈ Lq(µ) with
‖h‖q = sup

{
|
∫
K

fh dµ| : f ∈ P p(µ) with ‖f‖p 6 1
}
, there is a function x ∈ P 2(µ)

such that |h| = |x|2 µ-almost everywhere.

Proof. We may and shall suppose that ‖h‖q = 1. Since the closed unit ball
of P p(µ) is weakly compact, there is a function u of norm one in P p(µ) with

1 =
∫
K

uh dµ = ‖u‖p‖h‖q = 1.

The above equality (in Hölder’s inequality) can only occur if |u|p = |h|q µ-almost
everywhere (p. 190 in [12]). Using the concrete values of p and q, we obtain that
|u|2k = |h| µ-almost everywhere.

Let us define x = uk ∈ L2(µ). To check that x ∈ P 2(µ), choose a sequence
(pj) of polynomials with lim

j→∞
‖pj − u‖2k+1 = 0. Using Hölder’s inequality, one

obtains∫
K

|uk − pk
j |2 dµ =

∫
K

|u− pj |2
∣∣∣ k−1∑

i=0

uipk−1−i
j

∣∣∣2dµ
6

(∫
K

|u− pj |2k+1dµ

) 2
2k+1

(∫
K

∣∣∣ k−1∑
i=0

uipk−1−i
j

∣∣∣2 2k+1
2k−1

dµ

) 2k−1
2k+1

.

To see that the second factor is bounded in j, use Hölder’s inequality and the
observation that, for i = 0, . . . , k − 1, with s = 2k+1

2k−1

|ui|2s ∈ L
2k−1

2i (µ) (= L∞(µ) for i = 0),

|pk−1−i
j |2s ∈ L

2k−1
2(k−i)−1 (µ)

and that 2k + 1 > 2(k−1−i)(2k+1)
2(k−i)−1 .

For the rest of this section, we shall suppose that µ ∈ M+(B) is a Henkin
measure with ‖µ‖ = 1 and such that the canonical map

r : H∞(B)→ P∞(B, µ)

is a dual algebra isomorphism. As before we set Q(µ) = L1(µ)/⊥P∞(µ). The map
r is the adjoint of an isometric isomorphism r∗ : Q(µ)→ Q. We use the preceding
result to show that each element in Q can almost be factorized.
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Lemma 1.5. Let δ, t > 0 be real numbers with 0 < t < 1. Let L ∈ Q(µ)
be given with ‖L‖ < δ2. For any given ε > 0 and any given functions g1, . . . , gl,
h1, . . . , hl ∈ L2(µ) ( l > 1 arbitrary), there are functions x in P 2(µ) and y in
L2(µ|At) with:

(i) ‖x‖ < δ, ‖y‖ < δ;
(ii) ‖L− x⊗ y‖ < ε;
(iii) max

i=1,...,l
‖y giχB‖1 < ε, max

i=1,...,l
‖xhiχB‖1 < ε.

Proof. Since by Lemma 1.3 the set

r∗{L ∈ Q(µ) : ‖L‖ = |L(1)|} = {L ∈ Q : ‖L‖ = |L(1)|}

has no interior points, we may suppose that ‖L‖ 6= |L(1)|.
We choose a sequence (vk) in L∞(µ) with 0 < ‖vk‖1 < min(δ2, ‖L‖+ 1

k ) and
L = lim

k→∞
[vk] in Q(µ). Let us fix an integer k > 1. Since

lim
q↓1
‖vk‖q = ‖vk‖1,

we can choose an odd integer p > 3 (depending on k) such that the conjugate
exponent q satisfies

‖vk‖q < min
(
δ2, ‖L‖+

1
k

)
.

By Hahn-Banach Theorem, there is a function uk ∈ Lq(µ) with uk − vk ∈ P p(µ)⊥

and
‖uk‖q = sup

{∣∣∣ ∫
B

f vkdµ
∣∣∣ : f ∈ P p(µ) and ‖f‖p 6 1

}
.

By Lemma 1.4 there is a function xk ∈ P 2(µ) with |xk|2 = |uk| µ-almost every-
where. Since uk ∈ L1(µ) with [uk] = [vk] and since

‖uk‖1 6 ‖uk‖q 6 ‖vk‖q,

we have lim
k→∞

‖uk‖1 6 ‖L‖, and Corollary 1.2 yields that

lim
k→∞

∫
Bs

|uk|dµ = 0 (0 < s < 1).

The measurable function yk : B→ C defined by setting

yk(z) = χAt
(z)
(
uk(z)/xk(z)

)
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if xk(z) 6= 0 and yk(z) = 0 otherwise, satisfies |yk|2 = |uk| µ-almost everywhere
on At. Hence xk ∈ P 2(µ), yk ∈ L2(µ|At) with max(‖xk‖, ‖yk‖) < δ. Because of

|〈[uk]− xk ⊗ yk, f〉| =

∣∣∣∣∣
∫
B

ukf dµ−
∫
B

xkykf dµ

∣∣∣∣∣ 6
∫
Bt

|uk|dµ ‖f‖∞,µ

for all f ∈ P∞(µ), it follows that ‖L− xk ⊗ yk‖ < ε for k sufficiently large.
Fix η > 0 with δη < ε

2 and choose a real number s with 0 < s < 1 such that∫
B\Bs

|hi|2dµ < η2,

∫
B\Bs

|gi|2dµ < η2

for i = 1, . . . , l. Then for k sufficiently large, the estimates

‖xkhiχB‖1 =
∫
Bs

|xk| |hi|dµ+
∫

B\Bs

|xk| |hi|dµ

6 ‖hi‖2

(∫
Bs

|uk|dµ

) 1
2

+ ‖xs‖2

( ∫
B\Bs

|hi|2dµ

) 1
2

< ε,

‖ykgiχB‖1 6 ‖gi‖2

(∫
Bs

|uk|dµ

) 1
2

+ ‖yk‖2

( ∫
B\Bs

|gi|2dµ

) 1
2

< ε

hold for i = 1, . . . , l.

To improve the preceding almost factorization result, we need to know more
about the possible boundary values of functions in A(B).

Lemma 1.6. Let κ : S → R be a Borel measurable function such that c 6

κ 6 d, where c, d > 0 are given real numbers. For any finite positive Borel measure
ν on S and any real number ε > 0, there is a function g ∈ A(B) with |g| 6 d on B
and

ν
(
{z ∈ S : κ(z) 6= |g(z)|}

)
< ε.

Proof. By Lusin’s theorem (p. 227 in [7]) there is a real-valued continuous
function p : S→ R with p 6 d and

ν
(
{z ∈ S : κ(z) 6= p(z)}

)
<
ε

2
.

Replacing p by max(p, c) if necessary, we may suppose that c 6 p 6 d. Choose
a positive real number α with αp > 2 on S. Then there is a function h ∈ A(B)
(Theorem 15.2 in [17]) with Reh 6 log(αp) on S and

ν
(
{z ∈ S : log(αp)(z) 6= Reh(z)}

)
<
ε

2
.

But then g = eh

α satisfies all the required conditions.
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The next result is the main tool to prove property (A1) for subnormal tuples
with rich spectrum in the unit ball. To prove it we modify corresponding ideas
from [8] (Chapter VII) and [19].

Lemma 1.7. Let t, δ and ε be positive real numbers with t < 1 and δ < 1
3 . If

L ∈ Q(µ) and a ∈ L2(µ), b ∈ L2(µ|At) satisfy

‖L− a⊗ b‖ < δ4,

and if h1, . . . , hr ∈ L2(µ) are given functions, then there are functions x ∈ P 2(µ)
and y ∈ L2(µ|At), and a Borel set Z ⊂ S of measure µ(Z) < ε with:

(i) ‖L− (a+ x)⊗ (b+ y)‖ < ε;
(ii) ‖x‖ < 3δ, ‖yχB‖ < δ2;
(iii) ‖(b+ y)χS‖ < δ2 + ‖bχS‖

1−2δ , ‖b+ y‖ < δ2 + ‖b‖
1−2δ ;

(iv) |a+ x| > (1− 2δ)|a| µ-almost everywhere on S \ Z;
(v) ‖x⊗ (hjχB)‖ < ε for j = 1, . . . , r.

Proof. By Lemma 1.5 there are functions u ∈ P 2(µ) and v ∈ L2(µ|At) with
‖u‖ < δ2, ‖v‖ < δ2 and

‖L− a⊗ b− u⊗ v‖ < ε

6
,

‖u⊗ (bχB)‖ < ε

6
, ‖a⊗ (vχB)‖ < ε

6
,

‖u⊗ (hjχB)‖ < ε

2
(j = 1, . . . , r).

Choose a constant η > 0 with η < ε such that∫
Z

(
|uv|+

(
1 +

2
δ

)
|ub|
)
dµ <

ε

6

for each Borel set Z ⊂ S with µ(Z) < η. Define κ : S → R by κ(z) = 2
δ if

|a(z)| 6 |u(z)|/δ and κ(z) = 1 otherwise. Here (as in all similar situations) a(z)
has to be understood as the value of a fixed representative of the equivalence class
a ∈ L2(µ). By Lemma 1.6 there is a function g ∈ A(B) with |g| 6 2

δ on B such
that

Z1 = {z ∈ S : |g(z)| 6= κ(z)}

is a Borel set with µ(Z1) < η/2. By Theorem 3.5 in [17] there is a Montel sequence
(pi) in A(B) with |pi| < 1 on B such that

(
|pi(z)|

) i−→ 1 µ-almost everywhere on S.
Egoroff’s theorem (Proposition 3.1.3 in [7]) allows us to choose a Borel set Z2 ⊂ S
with µ(Z2) < η/2 such that (|pi|)

i−→ 1 uniformly on S \ Z2. Then Z = Z1 ∪ Z2

is a measurable subset of S with µ(Z) < η.
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We fix a natural number j such that 1− |pj | < δ/2 on S \ Z2 and such that

f = pjg ∈ A(B) satisfies

‖ufχB‖ <
ε

6(‖hj‖+ ‖b‖+ δ2)
(j = 1, . . . , r).

Then x = (1 + f)u ∈ P 2(µ) satisfies ‖x‖ < 3δ. On S1 = {z ∈ S \ Z : |a(z)| 6

|u(z)|/δ}

|a+ u| 6
(

1 +
1
δ

)
|u|, |uf | >

(
1− δ

2

)
2
δ
|u| = 2− δ

δ
|u|,

and hence on the same set we have

|a+ x| = |uf + a+ u| >
(

1
δ
− 2
)
|u| > |u|.

On S1 ∩ {z ∈ S : a(z) 6= 0} this gives the estimate∣∣∣a+ x

a

∣∣∣ = ∣∣∣a+ x

u

∣∣∣ ∣∣∣u
a

∣∣∣ > 1− 2δ.

Therefore on S1 we obtain that |a+ x| > (1− 2δ)|a|.
On the set S2 = {z ∈ S : |a(z)| > |u(z)|/δ} ∩ (S \Z1) we have |x| 6 2|u|, and

hence |a+ x| > ( 1
δ − 2)|u| > |u|. Furthermore, because of

|a| 6 |a+ x|+ |x| 6 |a+ x|+ 2|u| 6 |a+ x|+ 2δ|a|

it follows that |a+ x| > (1− 2δ)|a| on S2.

Combining these two estimates we obtain on S \ Z

|a+ x| > |u| and |a+ x| > (1− 2δ)|a|.

Define a function w ∈ L2(µ) by setting

w =
u

a+ x

(
v − (1 + f)b

)
on W = (S \ Z) ∩ {z ∈ S : a(z) + x(z) 6= 0}, and w = 0 elsewhere. Set

y = vχB + wχS ∈ L2(µ|At).
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The function y + b ∈ L2(µ) satisfies the right estimate, since

‖y + b‖2 =
∫
B

|v + b|2 dµ+
∫
W

∣∣∣ u

a+ x
v +

a

a+ x
b
∣∣∣2 dµ+

∫
S\W

|b|2 dµ

=
∫
B

|v|2 dµ+ 2Re
∫
B

vb dµ+
∫
B

|b|2 dµ+
∫

S\W

|b|2 dµ

+
∫
W

|v|2
∣∣∣ u

a+ x

∣∣∣2 dµ+ 2Re
∫
W

vb
ua

|a+ x|2
dµ+

∫
W

∣∣∣ a

a+ x

∣∣∣2|b|2 dµ

6
(
‖v‖+

‖b‖
1− 2δ

)2

.

A similar estimate shows that ‖(y + b)χS‖ < δ2 + ‖bχS‖
1−2δ .

Our choices imply that

‖x⊗ hjχB‖ 6 ‖u⊗ hjχB‖+ ‖uf ⊗ hjχB‖ <
ε

2
+
ε

6
< ε,

‖x⊗ bχB‖ <
ε

6
+
ε

6
=
ε

3
.

We still have to estimate the norm of

L− (a+ x)⊗ (b+ y) = L− a⊗ b− x⊗ y − a⊗ y − x⊗ b.

For this purpose, write

x⊗ y = u⊗ (vχB + wχS) + (uf)⊗ (vχB + wχS) = u⊗ v + (uf)⊗ (vχB) + z,

where z = u⊗ (−vχS + wχS) + (uf)⊗ wχS. This gives

L− (a+ x)⊗ (b+ y) = (L− a⊗ b− u⊗ v)− (uf)⊗ (vχB)− a⊗ (vχB)

− x⊗ (bχB)−
(
z + a⊗ (wχS) + x⊗ (bχS)

)
.

Observe that, for ϕ ∈ P∞(µ),(
z + a⊗ (wχS) + x⊗ (bχS)

)
(ϕ) =

∫
S

ϕ(−uv + uw + ufw + aw + xb) dµ

=
∫
S

ϕ
(
(a+ x)w − uv + xb

)
dµ

=
∫
Z

ϕ(ub+ ufb− uv) dµ.

Hence

‖z + a⊗ (wχS) + x⊗ (bχS)‖ 6
∫
Z

|uv|+
(

1 +
2
δ

)
|ub|dµ < ε

6
,

and therefore ‖L− (a+ x)⊗ (b+ y)‖ < ε.
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The preceding result can be used to show that the dual algebra generated
by the multiplication tuple Mz ∈ L

(
P 2(µ)

)n satisfies property (A1) whenever the
measure µ ∈M+(B) is a Henkin probability measure for which the canonical map
r = r(µ) : H∞(B)→ P∞(B, µ) is a dual algebra isomorphism.

Theorem 1.8. There is a universal constant C > 0 such that, for each
element L ∈ Q(µ) and any given functions a, b ∈ P 2(µ), there are x, y ∈ P 2(µ)
with L = x⊗ y and

‖x− a‖ 6 C‖L− a⊗ b‖ 1
2 , ‖y‖ 6 C(‖L− a⊗ b‖ 1

2 + ‖b‖).

Proof. Define d = ‖L − a ⊗ b‖. Without loss of generality we may suppose
that d > 0. Set γ = 1/16

√
d, L1 = γ2L, and x0 = γa, y0 = γb.

Choose a sequence (εk)k>1 of positive real numbers with 1/4 < ε1 < 1/3,

εk+1 < εk (k > 1), and
∞∑

k=1

εk <∞. Because of

∣∣∣ 1
1− 2εk

− 1
∣∣∣ = 2εk

1− 2εk
< 6εk (k > 1)

the product
∞∏

k=1

(
1/(1− 2εk)

)
converges to a positive real number R. Define

ρ = max
{

3
∞∑

k=1

εk, R
( ∞∑

k=1

ε2k

)}
.

Since ‖L1 − x0 ⊗ y0‖ < ε41, an inductive application of Lemma 1.7 yields
sequences (xk)k>1 in P 2(µ) and (yk)k>1 in L2(µ) with

‖L1 − xk ⊗ yk‖ < ε4k+1,

‖xk+1 − xk‖ < 3εk+1, ‖yk+1‖ < ε2k+1 +
‖yk‖

1− 2εk+1

for all k > 0. Then x = lim
k→∞

xk ∈ P 2(µ) exists and ‖x− x0‖ < ρ. Because of the
estimates

‖yk‖ < ε2k +
‖yk−1‖
1− 2εk

< ε2k +
ε2k−1

1− 2εk
+

‖yk−2‖
(1− 2εk−1)(1− 2εk)

< · · ·
< ρ+R‖y0‖,
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the sequence (yk) is bounded. Hence there is a subsequence of (yk) that converges
weakly to some function y ∈ L2(µ) with ‖y‖ 6 ρ+R‖y0‖.

To conclude the proof it suffices to observe that

L = (x/γ)⊗ P (y/γ),

where P is the orthogonal projection from L2(µ) onto P 2(µ) and

‖(x/γ)− a‖ 6 16ρ
√
d, ‖y/γ‖ 6 16ρ

√
d+R‖b‖.

Let G be a bounded open subset of Cn, and let T = (T1, . . . , Tn) ∈ L(H)n be
a subnormal tuple such that T possesses an isometric and w∗-continuous functional
calculus

Φ : P∞(G)→ L(H).

Denote by N ∈ L(K)n the minimal normal extension of T defined on a larger
Hilbert space K ⊃ H. We define X = σ(N) and we fix a scalar-valued spectral
measure µN ∈M(X) of N . There is an isometric and w∗-continuous isomorphism
of von Neumann algebras

Ψ : L∞(X,µN )→W ∗(N),

where W ∗(N) is the von Neumann algebra generated by N1, . . . , Nn in L(H). The
set

W = {f ∈ L∞(X,µN ) : Ψ(f)H ⊂ H}

is a w∗-closed subalgebra of L∞(X,µN ) containing all polynomials. A standard ar-
gument (cf. Corollary II.2.17 in [8]) shows that the induced w∗-continuous algebra
homomorphism

Ψ0 :W → L(H), f 7→ Ψ(f)|H

is isometric again. Hence this map induces a dual algebra isomorphism

Ψ0 :W →W(T )

onto a w∗-closed subalgebraW(T ) of L(H) containing AT . But then P∞(X,µN ) =
Ψ−1

0 (AT ), and Ψ0 yields the dual algebra isomorphism

ΨT : P∞(X,µN )→ AT , ΨT (f) = Ψ(f)|H.

The composition

ϕ : P∞(G) Φ−→ AT

Ψ−1
T−→ P∞(X,µN )
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is a dual algebra isomorphism, and the map

ΦN : P∞(G)→ L(K), f 7→ Ψ
(
ϕ(f)

)
is a w∗-continuous algebra homomorphism with the property that Φ(f) = ΦN (f)|H
for all f ∈ P∞(G). Furthermore, for any two functions f ∈ P∞(G) and g ∈
P∞(X,µN ), the identity ϕ(f) = g holds if and only if Φ(f) = Ψ(g)|H.

Our next aim is to show that the dual algebra generated by a subnormal tuple
T ∈ L(H)n that possesses an isometric and w∗-continuous functional calculus over
the unit ball has property (A1). To reduce this result to the particular case stated
in Theorem 1.8, we use the multidimensional version of a result from [8].

Proposition 1.9. Let T ∈ L(H)n be a subnormal tuple with minimal nor-
mal extension N ∈ L(K)n. For a given vector h ∈ H and any given real number
ε > 0, there is a separating vector f ∈ H for N such that ‖f − h‖ < ε.

This result can be proved in exactly the same way as in the one-variable case
(see Proposition V.17.4 in [8]). We omit the details.

Theorem 1.10. There is a constant R > 0 such that if T ∈ L(H)n is a sub-
normal n-tuple with w∗-continuous isometric H∞-functional calculus
Φ : H∞(B) → L(H), then for any functional L ∈ QT and any given vectors
a, b ∈ H, there are vectors x, y ∈ H with L = [x⊗ y] and

‖x− a‖ 6 R‖L− [a⊗ b]‖ 1
2 , ‖y‖ 6 R(‖L− [a⊗ b]‖ 1

2 + ‖b‖).

Proof. Let C > 0 be the constant determined in Theorem 1.8. Let T in
L(H)n be a subnormal tuple as in Theorem 1.10, and let N ∈ L(K)n be its
minimal normal extension. Then σ(N) ⊂ σ(T ) ⊂ B.

Fix elements L ∈ QT and a, b ∈ H such that d = ‖L− [a⊗ b]‖ > 0. Choose
a real number ε > 0 with

C(d+ ε‖b‖) 1
2 + ε < (C + 1)d

1
2 .

By Proposition 1.9 there is a separating vector h ∈ H for N with ‖h−a‖ < ε. Set
X = σ(N). Let E be the operator-valued spectral measure for N . Let µ ∈M(B)
be the trivial extension of the scalar-valued spectral measure

µN : B(X)→ [0,∞), µN (A) = 〈E(A)h, h〉

of N determined by h. Here B(X) denotes the σ-algebra of all Borel sets in X. The
restriction map P∞(µ) → P∞(X,µN ), f 7→ f |X, is a dual algebra isomorphism
which we use to identify the dual algebras P∞(µ) and P∞(X,µN ).
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We apply the remarks following Theorem 1.8 to the case G = B. Using the
same notations, we obtain a dual algebra isomorphism

π : H∞(B)
ϕ−→ P∞(X,µN ) ∼= P∞(µ).

For each f ∈ H∞(B), the function π(f) is the uniquely determined element in
P∞(µ) with Ψ

(
π(f)|X

)
|H = Φ(f). In particular, π maps each function f ∈ A(B)

to its equivalence class in P∞(µ).
Since, for each Montel sequence (fk) in A(B),∫

S

fk d(µ|S) =
∫
B

χSfk dµ = 〈[χS], π(fk|B)〉 k−→ 0,

the measure µ is a Henkin measure, and π coincides with the canonical w∗-
continuous contractive algebra homomorphism r(µ) : H∞(B) → P∞(µ) associ-
ated with the Henkin measure µ (see the preliminaries). Hence we can apply
Theorem 1.8 to the measure µ.

Let Hh =
∨

(T kh; k ∈ Nn) ∈ Lat(T ) be the cyclic invariant subspace of T
generated by h. Because of

‖p(T )h‖2 =
∫
X

|p|2 d〈E(·)h, h〉 =
∫
B

|p|2 dµ
(
p ∈ C[z]

)
there is a (unique) unitary operator U : P 2(µ) → Hh with U(p) = p(T )h for all
polynomials p. Let us denote by γ∗ : QT → Q(µ) the predual of the dual algebra
isomorphism γ = Φ ◦ π−1 = ΨT .

An elementary exercise shows that

γ∗
(
[U(f)⊗ U(g)]

)
= f ⊗ g (f, g ∈ P 2(µ)).

Let Ph be the orthogonal projection from H onto Hh. Choose functions ã, b̃ in
P 2(µ) with U(ã) = Pha and U(b̃) = Phb. By Theorem 1.8 there are functions
f, g ∈ P 2(µ) with γ∗(L) = f ⊗ g and

‖f − ã‖ 6 C‖γ∗(L)− ã⊗ b̃‖ 1
2 ,

‖g‖ 6 C
(
‖γ∗(L)− ã⊗ b̃‖ 1

2 + ‖b‖
)
.

Define x = U(f) and y = U(g). Then L = [x⊗ y] and

‖x− a‖ 6 ‖f − ã‖+ ‖Ph(a)− a‖

6 C‖L− Pha⊗ Phb‖
1
2 + ‖(Ph − I)(a− h)‖

6 C(d+ ε‖b‖) 1
2 + ε < (C + 1)d

1
2 .

In the same way we obtain that

‖y‖ 6 (C + 1)(d
1
2 + ‖b‖).

Thus the assertion of Theorem 1.10 holds with R = C + 1.
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The preceding results can be used to show that each subnormal tuple T in
L(H)n such that the spectrum of T is contained in the closed unit ball and is
dominating in the open unit ball generates a dual algebra of class (A1).

Theorem 1.11. There is a constant α > 0 such that if T ∈ L(H)n is a
subnormal tuple with σ(T ) ⊂ B and such that σ(T ) is dominating in B, then for
any functional L ∈ QT , there are vectors x, y ∈ H with max(‖x‖, ‖y‖) 6 α

√
‖L‖

and
L = [x⊗ y].

Proof. Choose a minimal normal extension N ∈ L(K)n of T . Let µ ∈M(B)
be the trivial extension of a scalar spectral measure forN , as in the preceding proof.
The canonical isomorphism of von Neumann algebras Ψ : L∞(B, µ) → W ∗(N)
associated with N induces a dual algebra isomorphism (cf. the section following
Theorem 1.8)

Φ : P∞(µ)→ AT , f 7→ Ψ(f)|H.

Chaumat’s lemma (Lemma V.17.10 in [8]) can be used to show (Proposi-
tion VI.1.11 in [8]) that the w∗-closed subalgebra P∞(µ) ⊂ L∞(B, µ) admits a
decomposition

P∞(µ) = L∞(µ|∆1)⊕ P∞(µ)|∆2,

where B = ∆1 ∪ ∆2 is a Borel measurable partition of the closed unit ball and
the two spaces on the right are regarded as subsets of the space on the left via
trivial extension. Furthermore, one can choose ∆1,∆2 in such a way that there is
a complex measure η ∈M(B) with∫

B

f dη = 0
(
f ∈ P∞(µ)

)

and such that |η| is equivalent to the measure µ∆2 ∈M(B) defined by

µ∆2(A) = µ(A ∩∆2).

Since, for f ∈ A(B), ∫
S

f d(η|S) = −
∫
B

f d(η|B),

the measure η|S is a Henkin measure. By Henkin’s theorem (Theorem 9.3.1 in
[16]), the measure |η|S| is also a Henkin measure. Hence µ∆2 ∈M(B) is a Henkin
measure.
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Since the characteristic functions χi : B → C of ∆i (i = 1, 2) belong to
P∞(µ), the orthogonal projections Qi = Ψ(χi) leave the space H invariant. The
orthogonal projections Pi = Qi|H = Φ(χi) (i = 1, 2) yield an orthogonal decom-
position

H = H1 ⊕H2, Hi = PiH (i = 1, 2)

which reduces the algebra AT . Since

Ψ(f)H1 = Ψ(f)Q1H = Q1Ψ(f)Q1H = Q1Ψ(fχ1)H ⊂ Q1H = H1

for all f ∈ L∞(B, µ), it follows that the space H1 is reducing for W ∗(N).
Since µ∆2 is a Henkin measure, the composition

Ψ2 : H∞(B) −→ P∞(µ∆2) ∼= χ2P
∞(µ) Φ−→ AT

rest−→ L(H2)

defines a w∗-continuous contractive H∞-functional calculus for T |H2.
Write χB, χS : B→ C for the characteristic functions of the sets ∆1 ∩ B and

∆1 ∩ S, respectively. The subspaces HB ⊂ H, HS ⊂ H defined as the images of
the projections PB = Ψ(χB)|H and PS = Ψ(χS)|H are reducing for W ∗(N). The
normal tuple T |HB = N |HB possesses the C00-functional calculus

ΨB : H∞(B)→ L(HB), f 7→ Ψ(f̃χ1)|HB,

where f̃ is the trivial extension of f onto B.
We claim that

AT = W ∗(T |HS)⊕W ∗(T |HB)⊕ A(T |H2).

Obviously, AT is contained in the direct sum on the right. To prove the opposite
inclusion, we first show that each of the three compositions

L∞(µ|∆1 ∩ S) ↪→ P∞(µ) Φ−→ AT
rest−→W ∗(T |HS),

L∞(µ|∆1 ∩ B) ↪→ P∞(µ) Φ−→ AT
rest−→W ∗(T |HB),

P∞(µ)|∆2 ↪→ P∞(µ) Φ−→ AT
rest−→ A(T |H2)

is a dual algebra isomorphism. Indeed, the first two maps are isometric, w∗-
continuous, unital ∗-homomorphisms mapping (z1, . . . , zn) to T |HS and T |HB,
respectively, while the third map is an isometric w∗-continuous unital algebra
homomorphism mapping the coordinate functions to the components of T |H2.
Since

P∞(µ) = L∞(µ|∆1 ∩ S)⊕ L∞(µ|∆1 ∩ B)⊕ P∞(µ)|∆2,
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the reverse inclusion is clear.
Since σ(T |HS) is contained in the unit sphere, it follows that σ(T |HB ⊕H2)

is still dominating in B. Hence T |HB ⊕ H2 is subnormal and possesses the w∗-
continuous isometric H∞-functional calculus

γ : H∞(B)→ L(HB ⊕H2), f 7→ ΨB(f)⊕Ψ2(f).

Let L ∈ QT be arbitrary. Then the functionals defined by

L0 : W ∗(T |HS) ↪→ AT
L−→ C,

L1 : A(T |HB⊕H2) ↪→ AT
L−→ C,

are w∗-continuous. Since T |HS is normal, there are vectors x0, y0 ∈ HS with
max(‖x0‖, ‖y0‖) 6

√
‖L0‖ 6

√
‖L‖ such that

〈L0, A〉 = 〈Ax0, y0〉
(
A ∈W ∗(T |HS)

)
.

By Theorem 1.10 there are vectors x1, y1 ∈ HB ⊕ H2 with max(‖x1‖, ‖y1‖) 6

R
√
‖L1‖ 6 R

√
‖L‖ and

〈L1, A〉 = 〈Ax1, y1〉
(
A ∈ A(T |HB⊕H2)

)
.

Then x = x0+x1 and y = y0+y1 are vectors with max(‖x‖, ‖y‖) 6
√

1 +R2
√
‖L‖

and such that

〈L,A〉 = 〈L0, A|HS〉+ 〈L1, A|HB ⊕HS〉 = 〈Ax0, y0〉+ 〈Ax1, y1〉 = 〈Ax, y〉

for all operators A ∈ AT .

In the setting of Theorem 1.10 or Theorem 1.11 the dual algebra AT gen-
erated by the subnormal tuple T ∈ L(H)n satisfies the property (A1(ρ)) with
ρ = 1 + R2 in the sense of [3], Definition 2.01. As a well-known consequence (see
Proposition 2.09 in [3]) we obtain the following result.

Corollary 1.12. Let T ∈ L(H)n be a subnormal tuple with σ(T ) ⊂ B. Sup-
pose that σ(T ) is dominating in B or that T possesses an isometric w∗-continuous
H∞-functional calculus Φ : H∞(B) → L(H). Then AT coincides with the WOT-
closed algebra generated by T , and on AT the WOT and w∗-topology coincide.
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2. AN INFINITE FACTORIZATION THEOREM

In this section we show that the dual algebra generated by a subnormal system
T ∈ L(H)n with σ(T ) ⊂ B and the property that σ(T ) is dominating in B has
property (A1,χ0). As before, let us fix a Henkin measure µ ∈M+(B) with ‖µ‖ = 1
such that the associated map

r : H∞(B)→ P∞(B, µ)

is a dual algebra isomorphism.

Lemma 2.1. Let m>1 be an integer, let L1, . . . , Lm∈Q(µ)=L1(µ)/⊥P∞(µ),
and let ε > 0, 0 < δ < 1

3 , 0 < alpha1, . . . , αm < 1, ρ1, . . . , ρm > 0 be given real
numbers. Suppose that a ∈ L2(B, µ) and bk ∈ L2(µ|Aαk

) (k = 1, . . . ,m) are
functions with

‖Lk − a⊗ bk‖ < ρk (k = 1, . . . ,m).

Then there are functions x ∈ P 2(µ) and yk ∈ L2(µ|Aαk
) (k = 1, . . . ,m) with

‖Lk − (a+ x)⊗ yk‖ < ε,

‖x‖ < 3
δ

m∑
i=1

√
ρi,

‖(yk − bk)χB‖ <
√
ρk, ‖ykχS‖ <

√
ρk

(1− 2δ)m−k
+
‖bkχS‖

(1− 2δ)m

for k = 1, . . . ,m.

Proof. For m = 1, the result follows easily from Lemma 1.7. Therefore we
may assume that m > 1.

Define µk = µ|Aαk
(k = 1, . . . ,m) and set

ε1 = min
16k6m

ρk − ‖Lk − a⊗ bk‖
2

.

Choose δ1 > 0 such that∫
Z

|a bk|dµ < ε1 (k = 1, . . . ,m)

for each Borel set Z ⊂ S with µ(Z) < δ1.
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Using again Lemma 1.7 one obtains functions x1 ∈ P 2(µ), y1 ∈ L2(µ1), and
a Borel set Z1 ⊂ S of measure µ(Z1) < δ1 with

‖L1 − (a+ x1)⊗ y1‖ <
ε

m+ 1
,

‖x1‖ <
3
δ

√
ρ1, ‖(y1 − b1)χB‖ <

√
ρ1,

‖y1χS‖ <
√
ρ1 +

1
1− 2δ

‖b1χS‖,

‖y1‖ <
√
ρ1 +

1
1− 2δ

‖b1‖,

|a+ x1| > (1− 2δ)|a| µ-almost everywhere on S \ Z1,

‖x1 ⊗ bkχB‖ < ε1 (k = 1, . . . ,m).

Define w1 ∈ L∞(B, µ) by setting

w1(z) =
a(z)

a(z) + x1(z)

for z ∈ V1 = (S \ Z1) ∩ {z ∈ S : a(z) + x1(z) 6= 0} and w1(z) = 0 otherwise. The
functions

bk(1) = bkχB + bkw1χS ∈ L2(µk) (k = 1, . . . ,m)

satisfy the estimates ‖bk(1)‖ 6
(
1/(1− 2δ)

)
‖bk‖ and

‖Lk− (a+x1)⊗bk(1)‖ 6 ‖Lk−a⊗bk−x1⊗bkχB‖+ε1 < ‖Lk−a⊗bk‖+2ε1 6 ρk

for k = 1, . . . ,m.
Choose a positive real number ε2 6 ε/(m+ 1)(m− 1) with

ε2 6 min
16k6m

ρk − ‖Lk − (a+ x1)⊗ bk(1)‖
2

.

Fix a number δ2 > 0 such that∫
Z

|a+ x1| |y1|dµ < ε2,

∫
Z

|a+ x1| |bk(1)|dµ < ε2 (k = 1, . . . ,m)

for each Borel set Z ⊂ S with µ(Z) < δ2. Repeating the first step, but this time
with L1, a, bk replaced by L2, a + x1, bk(1), we obtain functions x2 ∈ P 2(µ),
y2 ∈ L2(µ2) and a Borel set Z2 ⊂ S of measure µ(Z2) < δ2 satisfying all the
corresponding estimates and such that in addition

‖x2 ⊗ y1χB‖ <
ε

m+ 1
.
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Continuing in this way, one obtains functions x1, . . . , xm ∈ P 2(µ), and yk ∈
L2(µk) (k = 1, . . . ,m) together with Borel sets Z1, . . . , Zm ⊂ S such that∫

Zk+1

∣∣∣a+
j∑

i=1

xi

∣∣∣ |yj |dµ <
ε

(m− 1)(m+ 1)

for k = 1, . . . ,m− 1 and j = 1, . . . , k, and such that

∥∥∥Lk −
(
a+

k∑
i=1

xi

)
⊗ yk

∥∥∥ < ε

m+ 1
,

‖xk‖ <
3
δ

√
ρk, ‖(yk − bk)χB‖ <

√
ρk,

‖ykχS‖ <
√
ρk +

1
1− 2δ

‖bk w1 · · ·wk−1χS‖ 6
√
ρk +

(
1

1− 2δ

)k

‖bkχS‖,

‖yk‖ <
√
ρk +

1
1− 2δ

‖bk(χB + w1 · · ·wk−1χS)‖ 6
√
ρk +

(
1

1− 2δ

)k

‖bk‖,

∣∣∣a+
k∑

i=1

xi

∣∣∣ > (1− 2δ)
∣∣∣a+

k−1∑
i=1

xi

∣∣∣ µ-almost everywhere on S \ Zk,

‖xk ⊗ yiχB‖ <
ε

m+ 1
(i = 1, . . . , k − 1)

for all k = 1, . . . ,m. Here the functions wk ∈ L∞(B, µ) (k = 1, . . . ,m) are given by

wk(z) =
(
a(z) +

k−1∑
i=1

xi(z)
)
/
(
a(z) +

k∑
i=1

xi(z)
)

for z ∈ Vk = (S \Zk)∩
{
z ∈ S :

(
a+

k∑
i=1

xi

)
(z) 6= 0

}
and wk(z) = 0 for z ∈ B \Vk.

Define x =
m∑

i=1

xi ∈ P 2(µ), hm = ym ∈ L2(µm), and

hk = yk(χB + wk+1 · · ·wmχS) ∈ L2(µk) (1 6 k < m).

With these definitions we obtain, for k = 1, . . . ,m,

‖hkχS‖ 6
( 1

1− 2δ

)m−k

‖ykχS‖ 6
( 1

1− 2δ

)m−k(√
ρk +

( 1
1− 2δ

)k

‖bkχS‖
)
,

‖(hk − bk)χB‖ = ‖(yk − bk)χB‖ <
√
ρk,

‖x‖ < 3
δ

m∑
i=1

√
ρi.
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For 1 6 k < m and Yk = Vk+1 ∩ · · · ∩ Vm, it follows that

‖Lk − (a+ x)⊗ hk‖

=
∥∥∥Lk −

(
a+

k∑
i=1

xi

)
⊗ ykχB −

( m∑
i=k+1

xi

)
⊗ ykχB

−
(
a+

m∑
i=1

xi

)
⊗ ykwk+1 · · ·wmχYk

∥∥∥
=
∥∥∥Lk −

(
a+

k∑
i=1

xi

)
⊗ ykχB −

m∑
i=k+1

xi ⊗ (ykχB)

−
(
a+

m∑
i=1

xi

)
⊗
(
yk

[(
a+

k∑
i=1

xi

)
/
(
a+

m∑
i=1

xi

)]
χYk

)∥∥∥
6
∥∥∥Lk −

(
a+

k∑
i=1

xi

)
⊗ yk

∥∥∥+
m∑

i=k+1

‖xi ⊗ (ykχB)‖

+ sup
{∣∣∣ ∫

S\Yk

f
(
a+

k∑
i=1

xi

)
yk dµ

∣∣∣ : f ∈ P∞(µ) with ‖f‖ 6 1
}
.

Note that a+
k∑

i=1

xi = 0 µ-almost everywhere on
(
(S \Zk+1)∩ · · · ∩ (S \Zm)

)
\Yk.

Hence the above supremum can be estimated from above against

m∑
j=k+1

∫
Zj

∣∣∣a+
k∑

i=1

xi

∣∣∣ |yk|dµ <
ε

m+ 1
.

Thus, for 1 6 k < m, the estimate

‖Lk − (a+ x)⊗ hk‖ <
ε

m+ 1
+ (m− k) ε

m+ 1
+

ε

m+ 1
6 ε

results, while for k = m,

‖Lm − (a+ x)⊗ hm‖ <
ε

m+ 1
< ε.

The corresponding estimates for the functions yk yield

‖hk‖ = ‖yk(χB + wk+1 · · ·wmχS)‖

6 ‖yk‖
( 1

1− 2δ

)m−k

6
√
ρk

( 1
1− 2δ

)m−k

+
( 1

1− 2δ

)m

‖bk‖

for k = 1, . . . ,m.
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Let µ ∈M+(B) be a Henkin measure as in Lemma 2.1. The next result im-
plies that the dual algebra generated by the multiplication tuple Mz ∈ L

(
P 2(µ)

)n
satisfies property (A1,ℵ0).

Proposition 2.2. Let (Lk)k>1 be a sequence in Q(µ) = L1(µ)/⊥P∞(µ).
Then, for any given ε > 0, there is a constant C(ε) > 0 such that, for each
a ∈ P 2(µ), there are functions x, yk ∈ P 2(µ) (k > 1) with ‖x− a‖ < ε and

Lk = x⊗ yk, ‖yk‖ 6 C(ε)k12‖Lk‖ (k > 1).

Proof. Without loss of generality we may suppose that Lk 6= 0 for all k > 1.

Choose a real number η > 0 so small that 12
√
η
∞∑

k=1

k−2 < ε and define

δk = 1/4k3 for k > 1. Since

0 6
1

1− 2δk
− 1 6 4δk (k > 1)

and since (1+x1) · · · (1+xm) 6 exp(x1+· · ·+xm) for any finite set of real numbers
xi > −1, it follows that(

1
1− 2δk

)k

− 1 6 exp(4kδk)− 1 (k > 1).

Since 4kδk 6 1 (k > 1) and since ex − 1 < 3x for 0 < x 6 1, we obtain(
1

1− 2δk

)k

− 1 6 12kδk =
3
k2

(k > 1).

In particular, the product

τ =
∞∏

k=1

(
1

1− 2δk

)k

converges.
Define ρk = η/k12 (k > 1). Then

∞∑
k=1

k

δk

√
ρk = 4

√
η
∞∑

k=1

1
k2

<
ε

3
.

Define Mk = ρkLk/2‖Lk‖ (k > 1). Then ‖Mk‖ < ρk for k > 1. Set
x0 = a ∈ P 2(µ) and y0 = 0 ∈ L2(µ). Using Lemma 2.1 we construct inductively
sequences (xm)m>1 and (ym)m>1 with

(i) xm ∈ P 2(µ), ym = (ym
1 , . . . , y

m
m) ∈ L2(µ)m;

(ii) ‖Mk − xm ⊗ ym
k ‖ < ρm+1;
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(iii) ‖xm − xm−1‖ < 3
δm
m
√
ρm;

(iv) ‖ym
k χS‖ <

(
1

1−2δm

)m [
‖ym−1

k χS‖+ (1− 2δm)k√ρm

]
;

(v) ‖(ym
k − y

m−1
k )χB‖ <

√
ρm

for all m > 1 and k = 1, . . . ,m. Here ym−1
m = 0 by definition.

For m > k > 1, we obtain

‖ym
k χS‖ <

√
ρm

(1− 2δm)m−k
+
‖ym−1

k χS‖
(1− 2δm)m

<

√
ρm

(1− 2δm)m−k
+
(

1
1− 2δm

)m
[ √

ρm−1

(1− 2δm−1)m−1−k
+

‖ym−2
k χS‖

(1− 2δm−1)m−1

]
< · · ·

6
m∑

i=k

(
m∏

j=i

(
1

1− 2δj

)j
)
√
ρi 6

[ ∞∏
j=k

(
1

1− 2δj

)j
] ∞∑

i=k

√
ρi.

From (v) it follows that yk,B = lim
m→∞

ym
k χB ∈ L2(µ) exists for k > 1 and that

‖yk,B‖ = lim
m→∞

∥∥∥ m∑
i=k

(yi
k − yi−1

k )χB

∥∥∥ 6
∞∑

i=k

√
ρi.

For k > 1, let us fix a weak limit yk,S ∈ L2(µ) of a subsequence of (ym
k χS)m>k.

The above estimates imply that

‖yk,S‖ 6 τ
∞∑

i=k

√
ρi (k > 1).

Then yk = yk,B + yk,S (k > 1) is a weak limit of a subsequence of (ym
k )m and

‖yk‖ 6 (1 + τ)
∞∑

i=k

√
ρi (k > 1).

It follows from (iii) that x = lim
m→∞

xm ∈ P 2(µ) exists and that

‖x− a‖ 6
∞∑

m=1

‖xm − xm−1‖ 6 3
∞∑

m=1

m

δm

√
ρm < ε.

Condition (ii) ensures that

Mk = x⊗ yk (k > 1).

To conclude the proof it suffices to replace the sequence (yk) by the sequence
P (2‖Lk‖yk/ρk), where P is the orthogonal projection of L2(µ) onto P 2(µ). Our
definitions show that the constant C(ε) can be chosen as C(ε) = C/ε with a
suitable universal constant C.
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As in Section 1 we use the above measure theoretic results to obtain corre-
sponding factorizations for subnormal tuples.

Theorem 2.3. Let T ∈ L(H)n be a subnormal tuple with an isometric w∗-
continuous H∞-functional calculus Φ : H∞(B) → L(H). Then, for any given
ε > 0, there is a constant C(ε) (only depending on ε) such that, for each sequence
(Lk)k>1 in QT and each given vector a ∈ H, there are vectors x, yk (k > 1) in H

with ‖x− a‖ < ε and

Lk = [x⊗ yk], ‖yk‖ 6 C(ε)k12‖Lk‖ (k > 1).

Proof. In exactly the same way as in the proof of Theorem 1.10 the asser-
tion can be reduced to the corresponding measure theoretic result contained in
Proposition 2.2. To make sure that the chosen vector x ∈ H satisfies the condition
‖x−a‖ < ε, one should choose the separating vector h ∈ H for the minimal normal
extension N of T close enough to the given vector a ∈ H.

As a corollary we obtain that the dual algebra generated by a subnormal
tuple T ∈ L(H)n with a w∗-continuous isometric H∞-functional calculus over
the unit ball in Cn possesses property (A1,ℵ0). We obtain the same result for
subnormal tuples T ∈ L(H)n with rich spectrum in the unit ball.

Theorem 2.4. Let T ∈ L(H)n be a subnormal tuple with σ(T ) ⊂ B and
σ(T ) dominating in B. Then, for each sequence (Lk)k>1 in QT , there are vectors
x, yk ∈ H (k > 1) with Lk = [x⊗ yk] (k > 1).

Proof. The Chaumat decomposition used to prove Theorem 1.11 allows us
to reduce the assertion to the case considered in Theorem 2.3 and to the fact that
the von Neumann algebra generated by a commuting tuple of normal operators
satisfies property (A1,χ0).

For the convenience of the reader, we briefly discuss the case of normal tuples.
Let N ∈ L(K)n be a normal tuple on a Hilbert space K. Choose a separating
vector f ∈ K for N and denote by E the operator-valued spectral measure for
N . Then µ = 〈E(·)f, f〉 ∈ M(X), where X = σ(N), is a scalar-valued spectral
measure for N , and we have the usual isomorphism of von Neumann algebras

L∞(X,µ)
φ−→W ∗(N),

which is the adjoint of a corresponding isometric isomorphism

L1(X,µ)
φ∗←− C1(K)/⊥W ∗(N).
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Since

‖p(N)f‖2 = 〈|p|2(N)f, f〉 =
∫
X

|p|2 d〈E(·)f, f〉 = ‖p‖22,µ

for all polynomials p in z and z, there is a unitary operator

U : L2(X,µ) −→
∨

k,`>0

NkN∗`f

intertwining Mz on L2(X,µ) and the restriction of N to the space on the right.
Let (Lk)k>1 be a sequence of w∗-continuous linear forms Lk : W ∗(N)→ C.

Then (hk) =
(
φ∗(Lk)

)
is a sequence in L1(X,µ). Since

〈[U(f)⊗ U(g)], φ(θ)〉 =
∫
X

θfg dµ

for f, g ∈ L2(X,µ) and θ ∈ L∞(X,µ), it suffices to check that there are functions
f, gk ∈ L2(X,µ) with hk = fgk for k > 1. To prove this, we are of course allowed
to assume that hk 6= 0 for all k. Define an L1-function by

h =
∞∑

k=1

2−k |hk|
‖hk‖1

∈ L1(X,µ)

and choose functions f, g ∈ L2(X,µ) with h = fg and f non-zero almost every-
where. Then it suffices to define gk = hk/f and to observe that gk ∈ L2(X,µ)
because of the estimates

|gk| = |hk|/|f | 6 2k‖hk‖1h/|f | = 2k‖hk‖1|g|.

3. REFLEXIVITY

Let T ∈ L(H)n be a commuting subnormal tuple on a Hilbert space H. We denote
by Alg Lat(T ) the subalgebra of L(H) consisting of all operators C ∈ L(H) with
Lat(C) ⊃ Lat(T ). We show that T is reflexive, that is, Alg Lat(T ) coincides with
the WOT-closed unital subalgebra of L(H) generated by T , whenever σ(T ) ⊂ B
and σ(T ) is dominating in the open ball B. We obtain the same result under the
condition that T possesses an isometric w∗-continuous H∞(B)-functional calculus.

Our reflexivity proof will be based on the following consequence of Theo-
rem 2.3.
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Theorem 3.1. Let T ∈ L(H)n be a subnormal tuple with an isometric w∗-
continuous H∞-functional calculus Φ : H∞(B) → L(H). Let (µj)j>0 be a dense
sequence in B. Then, for any ε > 0 and any vector a ∈ H, there are vectors
x, y

(k)
j ∈ H (j > 0, k ∈ Nn) with ‖x− a‖ < ε and

x⊗ y(k)
j = E(k)

µj
/k! (j > 0, k ∈ Nn)

and such that, for each j > 0, the power series

fj(λ) =
∑

k∈Nn

y
(k)
j (λ− µj)k

converges on the polydisc with centre µj and multiradius ρj = (1 − |µj |)/
√
n, i.e.

on

Dj = {λ ∈ Cn : |λi − µj,i| < ρj for i = 1, . . . , n}.

Proof. Let us choose an enumeration (Lk)k>1 of the set

{E(k)
µj
/k! : j > 0 and k ∈ Nn}

in the following way. Set L1 = E(0)
µ0 . Then enumerate all functionals E(k)

µ0 /k!
(|k| = 1), then all functionals E(k)

µ1 /k! (|k| 6 1), then all functionals

E(k)
µ0
/k! (|k| = 2), E(k)

µ1
/k! (|k| = 2), E(k)

µ2
/k! (|k| 6 2),

and continue in this way.
Fix a natural number m > 0. For i > 0, each functional

E(j)
µm
/j! (|j| = m+ i)

occurs in the sequence (Lk)k>1 with an index k 6 (m + i + 1)n+1. The norm of
the functionals E(j)

µm/j! (|j| = m+ i) can be estimated by (Theorem 2.2.7 in [13])

‖E(j)
µm
/j!‖ 6

(
1
ρm

)m+i

.

According to Theorem 2.3 one can choose vectors x, y(j)
i ∈ H (i > 0, j ∈ Nn)

with ‖x− a‖ < ε and

x⊗ y(j)
i = E(j)

µi
/j! (i > 0, j ∈ Nn)
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and such that with a suitable constant C > 0 (independent of i and j) the vector
y
(j)
m corresponding to E(j)

µm (|j| = m+ i, i > 0) satisfies

‖y(j)
m ‖ 6 C(m+ i+ 1)12(n+1)

(
1
ρm

)m+i

.

Let λ ∈ Dm. Then, for |j| = m+ i (i > 0),

‖y(j)
m (λ− µm)j‖ 6 ‖y(j)

m ‖ρ|j| 6 C(m+ i+ 1)12(n+1)(ρ/ρm)m+i,

where ρ = max
ν=1,...,n

|λi − µm,ν | < ρm. The terms on the right of the last inequality

remain bounded for i > 0, because

lim
k→∞

(
(k + 1)12(n+1)

) 1
k = 1.

Therefore the power series

fm(λ) =
∑
j∈Nn

y(j)
m (λ− µm)j

converges on the polydisc Dm.

Let T ∈ L(H)n be as in Theorem 3.1, and let us choose vectors x, y(k)
j

(j > 0, k ∈ Nn) as explained there. Define

Y = Yx =
∨

k∈Nn

T kx ∈ Lat(T )

and set ỹ(k)
j = Pxy

(k)
j , where Px is the orthogonal projection from H onto Yx.

With the notations from Theorem 3.1,

B =
⋃
j∈N

Dj ,

and, for each j ∈ N, the series

ej(λ) =
∑

k∈Nn

ỹ
(k)
j (λ− µj)

k (λ ∈ Dj)

defines a conjugate analytic function ej : Dj → Y .
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Lemma 3.2. In the situation explained above, ei = ej on Di∩Dj for i, j ∈ N,
and the induced conjugate analytic function e : B→ Y satisfies

x⊗ e(λ) = Eλ (λ ∈ B).

Proof. For λ = Dj and f ∈ H∞(B),

〈x⊗ ej(λ), f〉 =
∑

k∈Nn

〈x⊗ y(k)
j , f〉(λ− µj)k = f(λ).

Therefore we obtain that x⊗ ej(λ) = Eλ for j ∈ N and λ ∈ Dj . Since, for i, j ∈ N
and λ ∈ Di ∩Dj ,

〈T kx, ej(λ)〉 = λk = 〈T kx, ei(λ)〉 (k ∈ Nn),

there is a conjugate analytic function e : B→ Y with ej = e|Dj for j > 0.

Note that in the setting of Lemma 3.2 we have

(λi − Ti|Y )∗e(λ) = 0 (λ ∈ B, i = 1, . . . , n).

To prove our reflexivity results we use the concept of an analytic invariant sub-
space.

Definition 3.3. Let A ∈ L(H)n be a commuting tuple of Hilbert-space
operators. Let G ⊂ Cn be an open connected set. A space Y ∈ Lat(A) is a G-
analytic invariant subspace for A if there is a non-zero conjugate analytic function
e : G→ Y such that (λi −Ai|Y )∗e(λ) = 0 for λ ∈ G and i = 1, . . . , n.

For a commuting tuple A ∈ L(H)n and x ∈ H, we denote by

Yx =
∨

k∈Nn

Akx

the smallest space in Lat(A) containing the vector x, and we write Px for the
orthogonal projection of H onto Yx. Suppose that Yx is a G-analytic invariant
subspace via the conjugate analytic function e : G→ Yx. Then the zero set of the
function e coincides with the set {λ ∈ G : 〈x, e(λ)〉 = 0}. Indeed, if 〈x, e(λ)〉 = 0,
then

〈Akx, e(λ)〉 = 〈x, (A|Yx)∗ke(λ)〉 = λk〈x, e(λ)〉 = 0

for all k ∈ Nn, and hence e(λ) = 0.
For e as above, the map

ι = ιe : H → O(G), h 7→ 〈h, e〉

becomes continuous linear ifO(G) is equipped with its natural Fréchet-space topol-
ogy. For u ∈ Yx and p ∈ C [z], we have

ι
(
p(A)u

)
= 〈p(A)u, e〉 = 〈u, p̃

(
(A|Yx)∗

)
e〉 = pι(u)

(
p̃(λ) = p(λ̄)

)
.

For h ∈ H, we denote by Z(h) the zero set of the analytic function ι(h).
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Lemma 3.4. Let A ∈ L(H)n be a commuting tuple, and let x ∈ H. Suppose
that Yx is a G-analytic invariant subspace for A via the conjugate analytic function
e : G→ Yx. The function

G \ Z(x)→ Yx, λ 7→ e(λ)/〈e(λ), x〉

extends to a conjugate analytic function ψ : G→ Yx. Furthermore, ψ is the unique
conjugate analytic function on G with

ψ(λ) ∈ Ker(λi −Ai|Yx)∗ (λ ∈ G, i = 1, . . . , n)

and 〈x, ψ(λ)〉 = 1 for all λ ∈ G.

Proof. Let ι : H → O(G), h 7→ 〈h, e〉, be the continuous linear map consid-
ered before. Since

ι
(
p(A)x

)
∈ ι(x)O(G)

(
p ∈ C[z]

)
and since the principal ideal ι(x)O(G) ⊂ O(G) is closed, it follows that ι(Yx) ⊂
ι(x)O(G). In particular, for each u ∈ Yx, the function

G \ Z(x)→ C, λ 7→ 〈u, e(λ)〉/〈x, e(λ)〉

has a unique extension to an analytic function fu ∈ O(G). As an application of
the uniform boundedness principle, it follows that the formula

〈u, ψ(λ)〉 = fu(λ) (u ∈ Yx, λ ∈ G)

defines a conjugate analytic function ψ : G→ Yx with

ψ(λ) = e(λ)/〈e(λ), x〉
(
λ ∈ G \ Z(x)

)
.

Clearly, 〈x, ψ(λ)〉 = 1 for all λ ∈ G, and the uniqueness part of the assertion is
obviously true.

We need a few more elementary properties of analytic invariant subspaces.

Lemma 3.5. Let Y be a G-analytic invariant subspace for a commuting tuple
A in L(H)n via the conjugate analytic function e : G→ Y . Define

X = {v ∈ Y : 〈v, e(λ)〉 = 0 for all λ ∈ G}.

(i) For u ∈ Y \X, the space Yu is a G-analytic invariant subspace via the
function eu : G→ Yu, λ 7→ Pue(λ).
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(ii) Suppose that Y = Yx for some x ∈ H and that A possesses a w∗-
continuous functional calculus Φ : P∞(G)→ L(H). For h ∈ P∞(G) and λ ∈ G,

〈Φ(h)x, e(λ)〉 = h(λ)〈x, e(λ)〉.

In particular Φ(h)x ∈ Y \X for each non-zero h ∈ P∞(G).

Proof. (i) For u ∈ Y \ X, the function eu : G → Yu, λ 7→ Pu

(
e(λ)

)
, is

non-zero and satisfies, for all λ ∈ G,

(λi −Ai|Yu)∗eu(λ) = Pu(λi −Ai|Y )∗Pu

(
e(λ)

)
= Pu(λi −Ai|Y )∗e(λ) = 0.

(ii) For h ∈ P∞(G), choose a net (pj) of polynomials with w∗-limit h. Then

〈Φ(h)x, e(λ)〉 = lim
j→∞
〈x, p̃j

(
(A|Y )∗

)
e(λ)〉 = h(λ)〈x, e(λ)〉

for λ ∈ G.

Let T ∈ L(H)n be a subnormal tuple with an isometric w∗-continuous H∞-
functional calculus Φ : H∞(B)→ L(H). By Theorem 3.1 and the remark preced-
ing Definition 3.3, the set

C = {x ∈ H : Yx is a B-analytic invariant subspace for T}

is a dense subset of H. Let x ∈ C and let ψ : B → Yx be the unique conjugate
analytic function with

x⊗ ψ(λ) = Eλ (λ ∈ B).

Fix an operator C ∈ Alg Lat(T ). Since (C|Yx)∗ ∈ Alg Lat
(
(T |Yx)∗

)
, there are

(unique) complex numbers g(λ) (λ ∈ B) such that

(C|Yx)∗ψ(λ) = g(λ)ψ(λ) (λ ∈ B).

For u ∈ Yx and λ ∈ B,

〈Cu,ψ(λ)〉 = 〈u, (C|Yx)∗ψ(λ)〉 = g(λ)〈u, ψ(λ)〉.

The induced map

Ψ = Ψx : Alg Lat(T )→ H∞(B), C 7→ g (defined as above)

is a contractive unital algebra homomorphism with Ψ(Ti) = zi for i = 1, . . . , n.
Now a standard procedure following for instance [6] can be used to prove

that T is reflexive.
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Proposition 3.6. Let T ∈ L(H)n be a subnormal tuple with an isometric
w∗-continuous H∞-functional calculus Φ : H∞(B) → L(H). Let x ∈ C and let
C ∈ Alg Lat(T ). Then g = Ψx(C) is the unique function in H∞(B) with

Φ(g)|Yx = C|Yx.

Proof. To simplify the notation we write Y instead of Yx. Since σ(T |Y ) = B,
the restriction of Φ to Y gives an isometric w∗-continuous H∞-functional calculus
for T |Y . Thus the uniqueness part of the assertion is obvious.

To prove that the function g has the claimed property, denote by ψ : B→ Y

the conjugate analytic function with x⊗ψ(λ) = Eλ for λ ∈ B and define X = {u ∈
Y : 〈u, ψ(λ)〉 = 0 for all λ ∈ B}. It suffices to show that

〈Φ(g)u, v〉 = 〈C u, v〉 (u ∈ Y \X, v ∈ Y ).

We first show that this equality holds if, in addition, u⊗v = Eλ0 for some λ0 in
B. Let ψu : B→ Yu be the unique conjugate analytic function with u⊗ψu(λ) = Eλ
for λ ∈ B. By Lemma 3.4 and Lemma 3.5 we know that

ψu(λ) = Pu

(
ψ(λ)

)
/〈ψ(λ), u〉

for all λ ∈ B\Z(u), where Z(u) = {λ ∈ B : 〈u, ψ(λ)〉 = 0}. Since u⊗v = u⊗ψu(λ0),
it follows that

〈Cu, v〉 = 〈Cu,ψu(λ0)〉 = lim
λ→λ0

λ/∈Z(u)

〈Cu,ψ(λ)〉/〈u, ψ(λ)〉 = g(λ0) = 〈Φ(g)u, v〉.

In a second step we prove that 〈Φ(g)u, v〉 = 〈Cu, v〉 for all u ∈ Y \X, v ∈ Y
with

u⊗ v ∈ E = LH{Eλ : λ ∈ B},

where on the right we mean the linear hull of the set of all Eλ (λ ∈ B). Let

u ⊗ v =
m∑

i=1

tiEλi with pairwise distinct λ1, . . . , λm ∈ B and t1, . . . , tm ∈ C \ {0}.

Choose polynomials pi ∈ C[z] with pi(λj) = δij/ti for i, j = 1, . . . ,m and define
vi = pi(T |Y )∗v. Then

u⊗ vi(f) = 〈Φ(fpi)u, v〉 = f(λi)
(
f ∈ H∞(B)

)
,

and the first step yields that

〈Φ(g)u, v〉 =
m∑

i=1

tig(λi) =
m∑

i=1

ti〈Cu, vi〉 =
〈
Cu,

m∑
i=1

tivi

〉
= 〈Cu, v〉.
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To check the last equality note that u⊗ v = u⊗
( m∑

i=1

tivi

)
.

To complete the proof we show that 〈Φ(g)u, v〉 = 〈Cu, v〉 for all u ∈ Y \X
and v ∈ Y . Fix u ∈ Y \X and v ∈ Y such that L = u⊗ v /∈ E . Choose a sequence
(Lk)k>1 in E with (Lk) k−→ L. Theorem 1.10 applied to T |Y allows us to choose
sequences (uk)k>1 and (vk)k>1 in Y with Lk = uk ⊗ vk and

‖uk − u‖ 6 Rd
1/2
k , ‖vk‖ 6 Rd

1/2
k +R‖v‖

for k > 1. Here dk = ‖Lk−u⊗v‖. After passing to suitable subsequences we may
suppose that (vk)k>1 converges weakly to a vector w ∈ Y and that uk /∈ X for all
k > 1. By the second step of the proof

〈Cu,w〉 = lim
k→∞

〈Cuk, vk〉 = lim
k→∞

〈Φ(g)uk, vk〉 = 〈Φ(g)u, v〉.

Since, for all f ∈ H∞(B),

u⊗ v(f) = lim
k→∞

〈Φ(f)uk, vk〉 = 〈Φ(f)u,w〉 = u⊗ w(f),

it follows that 〈Cu, v〉 = 〈Cu,w〉. This observation completes the proof.

Let T ∈ L(H)n be a subnormal tuple with an isometric w∗-continuous H∞-
functional calculus Φ : H∞(B)→ L(H). Let C ∈ Alg Lat(T ). By Proposition 3.6,
for each vector x ∈ C, there is a unique function gx in H∞(B) with C|Yx =
Φ(gx)|Yx. Since C is dense in H, the reflexivity of T is proved if we can show that
gx = gy for all x, y ∈ C.

Theorem 3.7. Each subnormal tuple T ∈ L(H)n with an isometric w∗-
continuous H∞-functional calculus Φ : H∞(B)→ L(H) is reflexive.

Proof. Fix an operator C ∈ Alg Lat(T ). For each x ∈ C, we denote by gx

the unique function in H∞(B) with C|Yx = Φ(gx)|Yx. We know that ‖gx‖ 6 ‖C‖
for all x ∈ C.

We claim that, for each v ∈ H, there is a function g ∈ H∞(B) with Cv =
Φ(g)v. To check this, choose a sequence (xk)k>1 in C with lim

k→∞
xk = v. By passing

to a subsequence we can achieve that the associated sequence (gxk
)k>1 possesses

a w∗-limit g in H∞(B). But then we obtain, for all y ∈ H,

〈Φ(g)v, y〉 = lim
k→∞

〈Φ(gxk
)v, y〉 = lim

k→∞
〈Φ(gxk

)xk, y〉 = lim
k→∞

〈Cxk, y〉 = 〈Cv, y〉.

Let x, y ∈ C. To show that gx = gy we choose a function h ∈ H∞(B) with
C(x+ y) = Φ(h)(x+ y), and we observe that Φ(gx − h)x = Φ(h− gy)y. Since the
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restrictions of Φ to Yx and Yy are isometric, we conclude that Φ(gx − h)x = 0 if
and only if gx = h, and that Φ(h− gy)y = 0 if and only if h = gy. To prove that
gx = gy we may therefore assume that gx 6= h and h 6= gy.

By Lemma 3.5 the vector u = Φ(gx − h)x belongs to C, and since Yu ⊂ Yx,
the uniqueness part of Proposition 3.6 implies that gu = gx. But in exactly the
same way we obtain that u = Φ(h − gy)y has the associated function gu = gy.
Therefore gx = gy, and the reflexivity proof is complete.

The Chaumat decomposition carried out in the proof of Theorem 1.11 can
be used to prove the reflexivity for subnormal tuples with rich spectrum in the
unit ball.

Theorem 3.8. Each subnormal tuple T ∈ L(H)n with σ(T ) ⊂ B and σ(T )
dominating in B is reflexive.

Proof. As shown in the proof of Theorem 1.11, there is an orthogonal de-
composition H = HS ⊕ H0 (H0 = HB ⊕ H2 in the notation of Theorem 1.11)
that is reducing for T such that T |HS is normal, T |H0 possesses an isometric
w∗-continuous H∞(B)-functional calculus and

AT = W ∗(T |HS)⊕ A(T |H0).

Let C∈Alg Lat(T ). Then C|HS ∈ Alg Lat(T |HS) and C|H0 ∈ Alg Lat(T |H0).
By [18] we know that C|HS ∈ W ∗(T |HS) and from Theorem 3.7 we deduce that
C|H0 ∈ A(T |H0). Therefore

C = (C|HS)⊕ (C|H0) ∈ AT

as was to be shown.
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