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Abstract. On a given C∗-algebra, the existence of a strong Feller semigroup
is equivalent to the existence of an approximation of the identity by weakly
compact completely positive endomorphisms. As a corollary, there are strong
Feller semigroups on any nuclear C∗-algebra, but one can find also strong
Feller semigroups on non nuclear C∗-algebras.
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1. INTRODUCTION

A non commutative strong Feller kernel is a completely positive endomorphism Φ
of a C∗-algebra A, the canonical extension of which maps the enveloping von
Neumann algebra into the algebra of multipliers [i.e., with obvious notations,
Φ∗∗(A∗∗) ⊂ M(A)]. At a very abstract level, to be strongly Feller is something
like a “regularizing kernel” property.

Strong Feller semigroups (i.e., one parameter semigroups of non commutative
strong Feller kernels) provide a geometrical structure on the underlying C∗-algebra,
and their generators can be viewed as a kind of non commutative elliptic operators.
This was the point of view in [7], where the strong Feller property was the crucial
one allowing to solve the Dirichlet problem in C∗-algebras.

A natural question is: on which C∗-algebras does there exist a strong Feller
semigroup?

A more general question is: on which C∗-algebras does there exist an ap-
proximation of the identity by strong Feller kernels?
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Our main result is that the two are equivalent: on a given separable C∗-
algebra A, there exists a strong Feller semigroup if and only if there exists an
approximation of the identity by strong Feller kernels, and also if and only if there
exists an approximation of the identity by weakly compact completely positive en-
domorphisms of A. This is a weak nuclearity requirement which can be interpreted
in two ways.

The first one is that we meet a “strong Feller” or “weakly compact ap-
proximation property”, analogous to other weakenings of nuclearity such as E.
Kirchberg’s exactness ([5]) or U. Haagerup’s completely bounded approximation
property (cf. [2], [1]), and which can raise intrinsic interest.

Another way to read this result is that, even in the nuclear case, it leads to an
approximation of the identity of A by completely positive endomorphisms which
mutually commute and which are infinitely divisible. Infinite divisibility (i.e., the
existence of a semigroup and its associated generator) provides at least a starting
point for a non commutative geometry on the C∗-algebra. And conversely, if one
requires infinite divisibility, the strong Feller property is the best one is allowed to
expect.

Anyway, the world of C∗-algebras splits in two parts: those which have and
those which have not a strong Feller semigroup. To the first category clearly belong
all nuclear C∗-algebras.

But there exist strong Feller semigroups on C∗-algebras which are not nu-
clear: for instance the canonical semigroup on the reduced C∗-algebra of a free
group with finitely or countably many generators. In a companion paper, more
focused on harmonic analysis, it will be shown that there exist strong Feller semi-
groups on the reduced C∗-algebras of groups which are usually considered as
“weakly amenable”, such as SL(2,Z), SL(2,R), SO(n, 1), SU(n, 1) or SL(2,Qp).

This paper is organized as follows: next section (Section 2) is devoted to
technical preliminaries, mainly on how to deduce a semigroup from an approxima-
tion of the identity. Section 3 deals with the connection between weakly compact
and strong Feller completely positive endomorphisms. Section 4 is the proof of
the main result: C∗-algebras on which there exists a strong Feller semigroup are
those on which there exists a weakly compact completely positive approximation
of the identity. Section 5 provides examples, comments, and a hint to the fact
that the approximation properties we meet behave well with respect to semi-split
extensions of C∗-algebras.

Last section is devoted to a more constructive approach of the existence
properties of Section 4. It provides canonical ways to deduce a strong Feller
semigroup from a semigroup which is strongly Feller only in the resolvent sense.
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What we show is that, if ∆ is the generator of the latter, then Log (Id + ∆) and
∆β (β ∈]0, 1[) are generators of strong Feller semigroups.

This has heuristic implications. For instance, if l is the canonical length
function on a free group G, then not only l but also Log (1+l), Log (1+Log (1+l)),
etc. generate a strong Feller semigroup on the reduced C∗-algebra of G, which
means that one cannot expect any control on the growth speed of the generator
of a strong Feller semigroup.

2. TECHNICAL PRELIMINARIES AND NOTATIONS

Lemma 2.1. There exists a universal constant K such that, if E is a Banach
space and T a linear endomorphism of E with ‖T‖ 6 1, then one has

‖(T − Id) exp[t(T − Id)]‖ 6 K · t−1/2

for any t in R∗+ ( Id is the identity automorphism of E).

Proof. Let E(t) be the integer part of t: one has

(Id− T ) exp(tT ) =
E(t)∑
k=0

(
1− k

t

)
tkT k

k!
−

∞∑
k=E(t)+1

(
k

t
− 1

)
tkT k

k!
.

With T = Id in the above formula, one obtains

E(t)∑
k=0

(
1− k

t

)
tk

k!
=

∞∑
k=E(t)+1

(
k

t
− 1

)
tk

k!

and for any T with ‖T‖ 6 1,

‖(Id− T ) exp(tT )‖ 6
E(t)∑
k=0

(
1− k

t

)
tk

k!
+

∞∑
k=E(t)+1

(
k

t
− 1

)
tk

k!

= 2 ·
E(t)∑
k=0

(
1− k

t

)
tk

k!
= 2 · t

E(t)

E(t)!
.

We have then

‖(T − Id) exp[t(T − Id)]‖ 6 2 · e−t · t
E(t)

E(t)!

which, by Stirling formula, provides the result.
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[By Stirling formula, there exists t0 > 1 such that, for t > t0:

E(t)! >
√

2πE(t)e−E(t)−1E(t)E(t)

hence

‖(Id−T ) exp[t(T − Id)]‖ 6
2e√

2πE(t)

(
E(t) + 1
E(t)

)E(t)

6
2e2√
2πE(t)

6
2e2√

2π(t− 1)

which allows to choose K such that 2e2√
2π(t−1)

6 K ·t−1/2 for t > t0 and 2·exp(2t) 6

K · t−1/2 for t 6 t0.]

2.2. Terminology.

2.2.1. All along this paper, the word “semigroup” stands for a one parameter
pointwise norm continuous semigroup of completely positive contractions of a C∗-
algebra.

2.2.2. Let us define the generator ∆ of such a semigroup {Φt}t∈R+ by the
formula

∆(a) = lim
t↘0

1
t
(a− Φt(a)),

its domain being the dense linear space of those a in A for which the limit exists.
With this convention, once can write Φt = e−t∆.

2.2.3. The resolvent maps will be completely positive contractions Rλ =

λ
∞∫
0

e−tλΦtdt = λ(λ · Id + ∆)−1(λ ∈ R+); each Rλ will be written shortly λ
λ+∆ .

We shall make a constant use of the obvious equality

Id− λ

λ+ ∆
=

∆
λ+ ∆

,

which implies that ∆
λ+∆ is a bounded endomorphism of A, with norm less than 2.

[Notice that [3] or [10] call ‘resolvent’ the maps (λ · Id + ∆)−1.]

2.2.4. It is more or less obvious that, if Ψ is a completely positive endo-
morphism of a C∗-algebra A with ‖Ψ‖ 6 α, then {exp[t(Ψ − α · Id)]}t∈R+ is a
semigroup of completely positive contractions of A.

In particular, ∆
λ+∆ is the generator of such a semigoup, as well as any finite

linear combination
∑
k

αk
∆

λ+∆ , with every αk positive.

Similarly, if {Ψ1, . . . ,Ψn} is a finite set of completely positive contractions of
A, then n·Id−Ψ1+· · ·+Ψn generates a semigroup {exp(t[Ψ1+· · ·+Ψn−n·Id])}t∈R+

of completely positive contractions of A.
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Lemma 2.3. Let A be a C∗-algebra and {Ψn}n∈N a sequence of completely
positive contractions of A. Suppose that:

(i) the {Ψn} commute, i.e., Ψm ◦Ψn = Ψn ◦Ψm, ∀n,m ∈ N;
(ii) the subspace A =

{
a ∈ A

∣∣ ∑
n
‖a−Ψn(a)‖ < +∞

}
is dense in A.

Then, there exists a semigroup {Φt}t∈R+ of completely positive contractions
of A such that, for any t in R+, the sequence of endomorphisms {exp[t(Ψ1 + · · ·+
Ψn − n · Id)]}n∈N converges pointwise to Φt.

Moreover, for any t > 0, one has lim
n→∞

‖(Id− 1
n (Ψ1 + · · ·+ Ψn)) ◦Φt‖ = 0 in

the Banach algebra of bounded endomorphisms of A.

Proof. Set Φn
t = exp[t(Ψ1 + · · · + Ψn − n · Id)] for t in R+ and n in N. For

n and m in N, m > n, set δn,m = (m − n)Id − (Ψn+1 + · · · + Ψm) and write
Φm

t = Φn
t ◦ exp[−tδn,m]. For a in A one has

‖Φm
t −Φn

t (a)‖ = ‖Φn
t (exp[−tδn,m](a)−a)‖ 6 ‖(exp[−tδn,m](a)−a)‖ 6 t‖δn,m(a)‖.

By definition of A, ‖δn,m(a)‖ tends to 0 when n→∞, uniformly in m, so that the
sequence {Φn

t (a)}n∈N is a Cauchy sequence for any a in A. By norm density of A,
this property extends to all a in A. We have proved the existence of the pointwise
norm limit semigroup {Φt}.

Its pointwise norm continuity comes from the inequality

‖Φt(a)− a‖ = lim
n
‖Φn

t (a)− a‖ 6 t · lim
n
‖(Ψ1 + · · ·+ Ψn − n · Id)(a)‖, ∀ a ∈ A.

For the last property, notice that one can write Φt = Φn
t ◦ lim

m
exp[−tδn,m], which

implies ∥∥∥(
Id− 1

n
(Ψ1 + · · ·+ Ψn)

)
◦ Φt

∥∥∥
6

∥∥∥(
Id− 1

n
(Ψ1 + · · ·+ Ψn)

)
◦ exp[t(Ψ1 + · · ·+ Ψn − n · Id)]

∥∥∥
6 K · (nt)−1/2

by Lemma 2.1.

Next lemma is a bit less obvious and more technical:

Lemma 2.4. Let A be a C∗-algebra and {Ψn}n∈N a sequence of completely
positive contractions of A. Let {an}n∈N be a dense sequence in A.

Suppose that:
‖(Id−Ψn)(x)‖ 6 2−n‖x‖
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for any n > 1, and any x in the (finite dimensional) subspace of A generated by
the {ψk

j (al) | 0 6 j, l < n; k 6 n2}.
Then the sequence {{exp[t(Ψ1 + · · ·+ Ψn − n · Id)]}t∈R+}n∈N of semigroups

on A converges in the resolvent sense towards a semigroup {Φt}t∈R+ of completely
positive contractions of A.

More precisely, if ∆ is the generator of {Φt}t∈R+ , then one has

lim
n→∞

[Id + α(n · Id− (Ψ1 + · · ·+ Ψn))]−1(a) = [Id + α∆]−1(a)

for any α in R∗+ and any a in A (where [Id + α∆]−1 = 1
α

∞∫
0

e−t/αΦt dt is the

resolvent map R1/α).

Proof. Set θn = 1
n (Ψ1+· · ·+Ψn) and ∆n = n·Id−(Ψ1+· · ·+Ψn) = n(Id−θn).

Compute, for n, p > 0 and l 6 n:

(Id−Ψn+p)[Id+α∆n]−1(al) = (Id−Ψn+p)
1

1 + nα

∑
k

(
nα

1 + nα

)k

θk
n(al) = A+B

with

A = (Id−Ψn+p)
1

1 + nα

(n+p)2∑
k=0

(
nα

1 + nα

)k

θk
n(al)

=
1

1 + nα

(n+p)2∑
k=0

(
nα

1 + nα

)k

(Id−Ψn+p)θk
n(al)

and

B = (Id−Ψn+p)
1

1 + nα

∑
k=(n+p)2+1

(
nα

1 + nα

)k

θk
n(al).

The assumptions imply ‖A‖ 6 2−n−p‖al‖. Moreover, one has

‖B‖ 6
2

1 + nα
‖al‖

∑
k=(n+p)2+1

(
nα

1 + nα

)k

6 2
(

nα

1 + nα

)(n+p)2

‖al‖.

Fix α0 > 0 and α in ]0, α0]. It is easy to check that, for n large enough, one has(
nα

1+nα

)n

6 e−1/2α0 and

(
nα

1 + nα

)(n+p)2

6

(
nα

1 + nα

)n(n+p)

6 e−(n+p)/2α0 ;

hence the inequality

‖(Id−Ψn+p)[Id + α∆n]−1(al)‖ 6 2‖al‖(2−n−p + e−(n+p)/2α0).
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For fixed l, for n large enough and m > n, one has

‖(Id + α∆m)[Id + α∆n]−1(al)− al‖ = α
∥∥∥ m−n∑

p=1

(Id−Ψn+p)[Id + α∆n]−1(al)
∥∥∥

6 C(2−n + e−n/2α0)

and, as [Id + α∆m]−1 is a contraction,

‖[Id + α∆m]−1(al)− [Id + α∆n]−1(al)‖ 6 C(2−n + e−n/2α0),

where the constant C depends only on α and ‖al‖.
The sequence n → [Id + α∆n]−1(al) is a Cauchy sequence for any l in N;

by density, for any a in A, the sequence n → [Id + α∆n]−1(a) has the Cauchy
property and ρα(a) = lim

n→∞
[Id + α∆n]−1(a) exists.

For fixed a = al, the convergence above is uniform for α in ]0, α0], so that
lim
α→0

ρα(a) = a for a = al, then for all a in A.

Moreover, the {ρα} satisfy the same resolvent equation

αρα − βρβ = (α− β)ραρβ , ∀α, β in R∗+

than the {[Id+α∆n]−1}, which in particular implies that all the ρα have the same
kernel and the same range D. Making α tending to zero, one sees that the ρα

are one to one and that D is dense, so that ∆ = 1
α (ρ−1

α − Id) is a densely defined
closed operator, which clearly does not depend on α. Every ρα = [Id + α∆]−1 is
a contraction, which by Hille-Yoshida theorem implies that ∆ is the generator of
a continuous semigroup {Φt} of contractions of A (cf. [3], Corollary 12.3 at page
263 and [10], IX.7, Corollary), with Φt = lim

n→∞
(ρt/n)n completely positive.

3. STRONG FELLER KERNELS AND WEAKLY COMPACT ENDOMORPHISMS

3.1. Let A be a C∗-algebra. Its enveloping von Neumann algebra will be
denoted A∗∗; its multipliers algebra is

M(A) = {x ∈ A∗∗ | xa ∈ A and ax ∈ A, ∀ a ∈ A}.

M(A) contains A as a two-sided ideal. If A has a unit, then M(A) = A. (For the
multipliers algebra and its topology, cf. [6].)
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If Ψ is a completely positive endomorphism of A, then by double duality Ψ
extends to a completely positive normal endomorphism Ψ∗∗ of A∗∗ with the same
norm.

3.2. Definitions.

1. An endomorphism of a C∗-algebra A is weakly compact if the image of
the unit ball A1 of A is a σ-(A,A∗) relatively compact subset of A.

2. A completely positive endomorphism Ψ of A will be said to have the strong
Feller property, and will be called a strong Feller completely positive endomorphism
of A, if its canonical extension maps the enveloping von Neumann algebra into the
multipliers algebra, i.e.

Ψ∗∗[A∗∗] ⊂M(A).

[Heuristically, it turns “Borel functions” into “continuous functions”.]
3. A strong Feller approximation of the identity on a C∗- algebra A is a net

{Ψα} of strong Feller completely positive endomorphisms of A such that

lim
α
‖Ψα(a)− a‖ = 0, ∀ a ∈ A.

4. A strong Feller semigroup on A is a semigroup {Φt}t∈R+ of completely
positive endomorphisms of A such that Φt has the strong Feller property for every
t in R∗+.

Lemma 3.3. Let Φ be a completely positive endomorphism of A. Then the
following properties are equivalent:

(i) Φ∗∗(A∗∗) ⊂ A;
(ii) Φ is weakly compact;
(iii) Φ∗∗ is continuous from A∗∗ equipped with the Mackey-Arens topology

into A with the norm topology;
(iv) Φ is continuous from the unit ball of A equipped with the restriction of

the σ-strong topology of A∗∗, into A with the norm topology.

Proof. (i) ⇒ (ii) The unit ball of A∗∗ is σ-(A∗∗,A∗) compact.
(ii) ⇒ (i) By Kaplansky density theorem, if Φ is weakly compact then Φ∗∗

maps the unit ball of A∗∗ into the σ-weak closure of Φ(A1) in A∗∗, which is still
contained in A.

(i) ⇒ (iii) If (i) is satisfied, then the image by the transposed map Φ∗ of the
unit ball of A∗ is σ-(A∗,A∗∗) compact; hence (iii) by definition of the Mackey-
Arens topology (cf. [9], Chapter III, Section 5, p. 153).

(iii) ⇒ (iv) is Theorem 5.7 in [9], Chapter III.
(iv) ⇒ (i) Use again Kaplansky density theorem.
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Remark 3.4. Suppose that there exists a strong Feller approximation of
the identity on a separable C∗-algebra A; then there exists a sequence {Ψn}n∈N of
completely positive weakly compact contractions of A which converges pointwise
to the identity.

Proof. Start with a sequence {Ψn}n∈N of completely positive strong Feller
endomorphisms ofA which converges pointwise to the identity. If {bm} is a positive
increasing approximate unit for A, then by the previous lemma,{
bmΨm(bn · bn)bm
‖bmΨm(b2n)bm‖

}
n,m∈N

is a set of weakly compact completely positive con-

tractions of A from which it is not difficult to extract a sequence which converges
norm pointwise to the identity:

Choose E a finite subset in A and ε > 0, then n ∈ N such that ‖bn‖2 > 1− ε
and ‖bnabn − a‖ 6 ε ∀ a ∈ E ; notice that, when m tends to infinity, one has for
any a in E .

lim
m
‖Ψm(bnabn)− bnaBn‖ = lim

m
‖bm(bnabn)bm − bnabn‖ = 0

hence

lim sup
m

‖bmΨm(bnabn)bm − a‖ 6 ε

and, as lim
m
‖bmΨm(b2n)bm‖ = ‖b2n‖ > 1− ε,

lim sup
m

∥∥∥∥bmΨm(bnabn)bm
‖bmΨm(b2n)bm‖

− a

∥∥∥∥ 6
2ε

1− ε
, ∀ a ∈ E .

4. WEAKLY COMPACT APPROXIMATION OF THE IDENTITY
AND STRONG FELLER SEMIGROUPS

Proposition 4.1. Let A be a separable C∗-algebra. Then the following
properties are equivalent:

(i) there exists an approximation of the identity of A by weakly compact
completely positive endomorphisms of A;

(ii) there exists on A a strong Feller approximation of the identity;
(iii) there exists on A a strong Feller semigroup of completely positive con-

tractions.

The proposition will be an immediate application of the following lemma:
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Lemma 4.2. Let A be a separable C∗-algebra. Then the following properties
are equivalent:

(i) there exists on A a strong Feller approximation of the identity;
(i′) there exists an approximation of the identity of A by weakly compact

completely positive endomorphisms of A;
(ii) there exists a commuting sequence of strong Feller completely positive

contractions of A which converges to the identity; commuting means: Ψn ◦Ψm =
Ψm ◦Ψn,∀n,m ∈ N;

(iii) there exists a semigroup {Φt}t∈R+ of completely positive contractions of

A, of which the resolvent maps Rλ = λ
∞∫
0

e−λtΦtdt have the strong Feller property,

for all λ in R∗+;
(iv) there exists a strong Feller semigroup of completely positive contractions

of A.

Proof. (i) ⇔ (i′) by Lemma 3.3 and Remark 3.4.
Implications (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) are obvious.
We shall prove (i) ⇒ (iii) and (ii) ⇒ (iv). We start with the second (an

easier) one.
(ii) ⇒ (iv) By replacing if required the (commuting) sequence of strong Feller

completely positive contractions of A approximating the identity of A by a sub-
sequence, one can suppose that there exists a sequence {Ψn}n∈N of strong Feller
completely positive contractions of A such that

1. the {Ψn} commute: Ψm ◦Ψn = Ψn ◦Ψm, ∀n,m ∈ N;
2. the subspace A =

{
a ∈ A

∣∣ ∑
n
‖a−Ψn(a)‖ <∞

}
is dense in A.

By Lemma 2.3, there exists a semigroup {Φt}t∈R+ of completely positive
contractions of A such that, for any t in R+, the sequence of endomorphisms
{exp[t(Ψ1 + · · ·+ Ψn − n · Id)]}n∈N converge pointwise to Φt.

Moreover, the same lemma implies Φt = norm lim
n→∞

1
n (Ψ1 + · · ·+ Ψn) ◦ Φt for

any t > 0, so Φt has the strong Feller property, as a norm limit in the Banach
spaces L(A) and L(A∗∗) of the strong Feller endomorphisms 1

n (Ψ1 + · · ·+Ψn)◦Φt,
hence the semigroup {Φt}t∈R+ is a strong Feller semigroup.

(i) ⇔ (iii) The proof is divided into several steps.

Step 1. By assumption (i) and Remark 3.4, there exists a sequence {Ψn}
of weakly compact completely positive contractions approximating the identity of
A, such that Ψ∗∗n (A∗∗) ⊂ A for any n.

Fix a dense countable subset {al}l∈N of A and replace the sequence {Ψn} by
a subsequence, in such a way that the assumptions of Lemma 2.4 are satisfied, i.e.
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‖(Id−Ψn)(x)‖ 6 2−n‖x‖ for any n > 1, and any x in the subspace of A generated
by the {ψk

j (al) | 0 6 j, l < n; k 6 n2}.
Then, by Lemma 2.4, there exists a semigroup {Φt}t∈R+ with generator ∆

such that

lim
n→∞

[Id− α(Ψ1 + · · ·+ Ψn − n · Id)]−1(a) = [Id + α∆]−1(a) = R1/α(a)

for any α in R∗+ and any a in A.

Step 2. Moreover, let 1A be the unit in A∗∗ (which is also the unit in the
multiplier algebra M(A)). Set [Id− α(Ψ1 + · · ·+ Ψn − n · Id)]−1(1A) = yn (from
now on, we shall not distinguish between a completely positive endomorphism of
A and its canonical extension to A∗∗). One has

yn =
1

n+ 1
1A +

α

n+ 1
(Ψ1 + · · ·+ Ψn)(yn) ∈M(A).

As Ψj(1A∗∗) belongs to A, one could have assumed also, in Step 1 above,

‖(Id−Ψn)Ψk
j (1A∗∗)‖ 6 2−n, ∀ j = 1, . . . , n− 1; ∀ k = 1, . . . , n2.

One can then easily prove, just as in the proof of Lemma 2.4, that the sequence
{[Id−α(Ψ1 + · · ·+Ψn−n · Id)]−1(1A∗∗)} is norm-converging to [Id+α∆]−1(1A∗∗),
which implies that [Id + α∆]−1(1A∗∗) is a multiplier of A.

Notice that, for a completely positive contraction Ψ of A, one has Ψ∗∗[M(A)]
⊂ M(A) if and only if Ψ∗∗(1A∗∗) ∈ M(A). What we have proved in fact is
[Id + α∆]−1[M(A)] ⊂M(A) (see Remark 4.3.2 below).

Step 3. Set now, for n < m in N∗:

θn =
1
n

(Ψ1 + · · ·+ Ψn);

∆n = n · Id− (Ψ1 + · · ·+ Ψn);

δnm = ∆m −∆n = (m− n) · Id− (Ψn+1 + · · ·+ Ψm).

For x in A∗∗, define ynm = [Id + α∆n]−1[Id + α
αn+1δnm]−1(x) and compute, for α

in R∗+:

x =
[
Id +

α

αn+ 1
δnm

]
[Id + α∆n]ynm

=
[
Id +

α

αn+ 1
δnm

]
[(αn+ 1)Id− α(Ψ1 + · · ·+ Ψn)]ymn

=
[
(αn+ 1)Id− αδnm − α(Ψ1 + · · ·+ Ψn)− α2n

αn+ 1
δnmθn

]
ymn

=
[
Id + α∆m − α2n

αn+ 1
δnmθn

]
ymn;
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hence

[Id + α∆m]−1x

= ymn − [Id + α∆m]−1

[
α2n

αn+ 1
δnmθn

]
ymn

= [Id + α∆n]−1

[
Id +

α

αn+ 1
δnm

]−1

x

− [Id + α∆m]−1

[
α2n

αn+ 1
δnmθn

]
[Id + α∆n]−1

[
Id +

α

αn+ 1
δnm

]−1

x

and

[Id + α∆m]−1 − [Id + α∆n]−1

[
Id +

α

αn+ 1
δnm

]−1

= [Id + α∆m]−1

[
α2n

αn+ 1
δnmθn

]
[Id + α∆n]−1

[
Id +

α

αn+ 1
δnm

]−1

=
α2n

αn+ 1
[Id + α∆m]−1[∆m −∆n][Id + α∆n]−1θn

[
Id +

α

αn+ 1
δnm

]−1

=
αn

αn+ 1
(
[Id + α∆n]−1 − [Id + α∆m]−1

)
θn

[
Id +

α

αn+ 1
δnm

]−1

.

Step 4. Apply Lemma 2.4 to the sequence {Ψn,Ψn+1, . . .}, thus there exists

a semigroup with generator δn such that the sequence m→
[
Id + α

αn+1δnm

]−1

of
completely positive endomorphisms of A converge pointwise to the completely

positive contraction
[
Id + α

αn+1δn

]−1

, and the formula above becomes, when m

goes to infinity:

[Id + α∆]−1 − [Id + α∆n]−1

[
Id +

α

αn+ 1
δn

]−1

=
αn

αn+ 1
(
[Id + α∆]−1 − [Id + α∆n]−1

)
θn

[
Id +

α

αn+ 1
δn

]−1

.

By Step 2 above,

αn

αn+ 1
(
[Id + α∆]−1 − [Id + α∆n]−1

)
θn

[
Id +

α

αn+ 1
δn

]−1

is a difference of two strong Feller completely positive endomorphisms of A.
One checks

‖(Id− θn)[Id + α∆n]−1‖ =
1
αn

‖α∆n[Id + α∆n]−1‖ 6
2
αn

,
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which implies

∥∥∥(Id− θn)[Id + α∆n]−1

[
Id +

α

αn+ 1
δn

]−1 ∥∥∥ 6
2
αn

,

so that∥∥∥[Id + α∆]−1 − θn[Id + α∆n]−1

[
Id +

α

αn+ 1
δn

]−1

− αn

αn+ 1
(
[Id + α∆]−1 − [Id + α∆n]−1

)
θn

[
Id +

α

αn+ 1
δn

]−1 ∥∥∥ 6
2
αn

.

It follows that

θn[Id + α∆n]−1

[
Id +

α

αn+ 1
δn

]−1

− αn

αn+ 1
(
[Id + α∆]−1 − [Id + α∆n]−1

)
θn

[
Id +

α

αn+ 1
δn

]−1

is a bounded linear endomorphism of A, the canonical extension of which maps
A∗∗ into M(A). As n goes to infinity, we get the same property for [Id + α∆]−1.
The proof is complete.

4.3. Remarks.

4.3.1. Notice that, for a given semigroup, all the resolvent maps have the
strong Feller property if and only if one resolvent map has the strong Feller prop-
erty. (For any pair λ, µ in R∗+, λ+∆

µ+∆ is bounded endomorphism of A; see 2.2.2
above.)

4.3.2. Let Φ be a 2-positive endomorphism of A. Its canonical extension
Φ∗∗ maps M(A) into M(A) if and only if Φ∗∗(1A∗∗) is a multiplier of A.

Proof. The ‘only if’ part is trivial. Suppose Φ∗∗(1A∗∗) ∈M(A) and let {bα}
be a positive increasing approximate unit for A; fix a in A, then {a∗Φ∗∗(1A∗∗ −
bα)a} is a decreasing net in A which converges weakly, hence in norm to 0. Replac-
ing {bα} by {b−1/2

α } we get that the net {a∗Φ∗∗[(1A∗∗−bα)2]a} is norm convergent
to 0, as well as the net {a∗Φ∗∗(1A∗∗ − bα)x(1A∗∗ − bα)]a} for any x in M(A); this
proves that a∗Φ∗∗(x)a is an element of A, as the norm limit of the net

a∗Φ(bαx+ xbα + bαxbα)a.
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5. STRONG FELLER APPROXIMATION PROPERTY AND NUCLEARITY

As an obvious corollary of Proposition 4.1, we get:

Proposition 5.1. There exists a strong Feller semigroup on any separable
nuclear C∗-algebra.

The converse is not true: the following example shows that there exist strong
Feller semigroups on separable non-nuclear C∗-algebras.

Proposition 5.2. There exists a strong Feller semigroup on the reduced
C∗-algebra of a free group with finitely many generators.

Proof. Let G = Fn be the free group with n generators, and l be the “length
of the word” function. It is known (cf. [2], Lemma 1.2) that l is a conditionally
negative type function. As a consequence, there exists a semigroup {Φt}t∈R+

of completely positive unit preserving endomorphisms of the reduced C∗-algebra
A = C∗red(G) characterized by

Φt[λ(f)] = λ(e−tlf) for f in C(G), t in R+.

Lemma 1.4 of [2] implies that, for f a function of G with finite support,

‖Φt[λ(f)]‖ = ‖λ(e−tlf)‖ 6
∑

n

(n+ 1)e−tn‖f · χn‖2

where χn is the characteristic function of the subset of G of elements with length
n, and ‖ · ‖2 is the l2-norm.

As ‖f‖22 =
∑
n
‖f · χn‖22, we get the inequality:

‖Φt[λ(f)]‖2 6 Ct · ‖f‖22 with Ct =
[ ∑

n

(n+ 1)2e−2tn
]1/2

which implies assumption (iv) of Lemma 3.3 above.

Lemma 5.3. Let A be a separable C∗-algebra, and B an hereditary sub-C∗-
algebra. Suppose that there exists a strong Feller semigroup on A. Then there
exists a strong Feller semigroup on B.

Proof. Applying Lemma 4.2, to a weakly compact completely positive ap-
proximation {Ψn}n∈N of the identity of A and an approximate unit {βn}n∈N

for B, one can associate a weakly compact completely positive approximation
{B 3 b→ β∗nΨn(b)βn}n∈N of the identity of B.
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Lemma 5.4. Let I be a closed ideal of the separable C∗-algebra A, and sup-

pose that there exists a completely positive lifting for the canonical projection from

A onto A/I.

Then there exists a strong Feller semigroup on A if and only if there exists

a strong Feller semigroup on both C∗-algebras I and A/I.

Proof. Let π be the canonical projection from A onto A/I, and ∧ a com-

pletely positive map from A/I into A such that π ◦ ∧ = IdA/I .

Let {Ψn}n∈N be a weakly compact completely positive approximation of the

identity of A. Then Lemma 5.3 provides the existence of a strong Feller semigroup

on I, and {π ◦ Ψn ◦ ∧}n∈N is obviously a weakly compact approximation of the

identity of A/I.

Conversely, let {Φn}n∈N a weakly compact approximation of the identity of

the quotient algebra A/I, {θn}n∈N a weakly compact approximation of the identity

of I, and {βn}n∈N an increasing approximate unit for I which is quasi-central in A.

It is not difficult then to extract from the family

{A 3 a→ θk(β1/2
l aβ

1/2
l ) + (1− βl)1/2 ∧ (Φm(π(a)))(1− βl)1/2}k,l,m∈N

of weakly compact completely positive endomorphisms of A, a sequence which

converges norm pointwise to the identity of A.

5.5. Remarks and questions.

5.5.1. Proposition 5.2 shows that a strong Feller completely positive en-

domorphism of a C∗-algebra is not always a pointwise norm limit of completely

positive endomorphisms with finite rank. Is it a pointwise norm limit of completely

bounded endomorphisms with finite rank?

5.5.2. Let I be a closed ideal of a C∗-algebra A on which there exists a

weakly compact completely positive approximation of the identity. Does there

always exist a completely positive lifting for the canonical projection from A onto

A/I ? (Cf. [7] for sufficient conditions, which are based on a good relationship

between the ideal I and a strong Feller semigroup {Φt} on A.)
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6. GENERATION OF STRONG FELLER SEMIGROUPS

In this section, we start with a semigroup with generator ∆, {Φt = e−t∆}t∈R+ , on
a separable C∗-algebra, and we show that Log (Id+∆), as well as ∆β for any β in
]0, 1[, are again generators of a semigroup, which has the strong Feller property
as soon as the resolvent maps of Φ have the strong Feller property.

For β in ]0, 1[, let us define the constant

Kβ =

[ ∞∫
0

1
t+ 1

t−β dt

]−1

=
sin(βπ)

π
.

Lemma 6.1. For β in ]0, 1[, the formula (cf. [6], or [4], V.3.11, 3.50)

(Id + ∆)−β = Kβ

∞∫
0

1
t+ 1 + ∆

t−β dt

defines a completely positive contraction of A, which has the strong Feller property
whenever the resolvent maps of Φ have the strong Feller property.

Proof. One can write

∞∫
0

1
t+ 1 + ∆

t−β dt =

∞∫
0

∞∫
0

t−βe−s(t+1)Φs dsdt,

which defines a completely positive endomorphism of A with norm less than

∞∫
0

∞∫
0

t−βe−s(t+1) dsdt = K−1
β ;

hence one infers the complete positivity and contractivity of (Id + ∆)−β .
The strong Feller property comes from the fact that we have a norm abso-

lutely convergent integral of strong Feller kernels.

6.2. The strong feller semigroup generated by Log(Id + ∆). The usual
properties of functional integrals insure that, for β and γ in R∗+ such that β+γ < 1,
one has (Id + ∆)−β ◦ (Id + ∆)γ = (Id + ∆)−β+γ . So, we can define a semigroup
{(Id + ∆)−β}β∈R+ by extending the previous family through the formula

∀β ∈ R+ (Id + ∆)−β = [(Id + ∆)−β/n]n, ∀n ∈ N, n > β.
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Define Log (Id + ∆) as the generator of this semigroup, which is a strong Feller
semigroup as soon as the resolvent of Φ are strong Feller endomorphisms of A.
Notice that the converse implication is true: if (Id + ∆)−1/2 has the strong Feller
property, the same is true for its square (Id+∆)−1, and for all the resolvent maps
of Φ by Remark 4.3.

6.3. Tentative definition of ∆β. For β in ]0, 1[, let us define the operator
∆β by the formula

∆β = K1−β

∞∫
0

∆
t+ ∆

tβ−1 dt.

(Cf. [4], V.3.50.)
Notice that, for a in A, ‖ ∆

t+∆ (a)‖ is smaller than 2‖a‖ so there is no problem
of convergence at the neighbourhood of 0, and the domain of ∆β is the space of a

in A for which lim
T→∞

T∫
0

∆
t+∆ (a)tβ−1dt exists in A.

Notice also that, for a in the domain of ∆, one has ‖ ∆
t+∆ (a)‖ 6 1

t ‖∆a‖, so
that the integral is absolutely convergent:

K1−β

∞∫
0

∥∥∥ ∆
t+ ∆

(a)
∥∥∥tβ−1dt < +∞.

In particular, one has dom(∆) ⊂ dom(∆β), which proves that ∆β has a dense
domain.

Proposition 6.4. The operator ∆β is closable and its closure ∆β is the
generator of a semigroup.

If the resolvent maps of Φ have the strong Feller property, then {e−t∆β} is a
strong Feller semigroup.

Proof. For ε and T in R, 0 < ε < T , define ∆β
ε,T = K1−β

T∫
ε

∆
t+∆ t

β−1 dt. This

is a bounded linear endomorphism of A, which can be written as αε,T Id − Ψε,T ,

where αε,T = β−1K1−β [T β − εβ ] belongs to R∗+ and Ψε,T = K1−β

T∫
ε

1
t+∆ t

β dt is a

completely positive endomorphism of A, with norm less than αε,T . It follows that

{Φ(β),ε,T
t = e−t∆β

ε,T } is (cf. 2.2.3) a semigroup of completely positive contractions
of A.

For fixed t > 0 and 0 < ε′ < ε < T , we have

‖Φ(β),ε,T
t − Φ(β),ε′,T

t ‖ = ‖Φ(β),ε,T
t ◦ (Id− Φ(β),ε′,ε

t )‖

6 ‖Id− Φ(β),ε′,ε
t )‖ 6 t‖∆β

ε,ε′‖ 6 2tK1−βε
β/β
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which tends to 0 with ε, uniformly in ε′ and T .
This implies the esistence of the semigroup {Φ(β),T

t = lim
ε→0

Φ(β),ε,T
t }, where

the limit is a norm limit in the Banach algebra of endomorphisms of A.
For T < T ′ and a in the domain of ∆β , compute

‖[Φ(β),T ′

t − Φ(β),T
t ](a)‖ = ‖Φ(β),T

t ◦ (Id− Φ(β),T,T ′

t )(a)‖

6 ‖(Id− Φ(β),T,T ′

t )(a)‖ 6 t‖∆β
T,T ′(a)‖

with tends to 0 as T tends to infinity, uniformly in T ′.
For any a in the domain of ∆β ,and by density for any a in A, Φ(β)

t (a) =
lim

T→∞
Φ(β),T

t (a) exists, and we get a one parameter semigroup {Φ(β)
t }t>0 of com-

pletely positive contractions of A.
Fix again a in the domain of ∆β ; one has ∆βa = lim

T→∞
lim
ε→0

∆β
ε,Ta and can

compute

a− Φ(β)
t (a) = lim

T→∞
lim
ε→0

a− Φ(β),ε,T
t (a) = lim

T→∞
lim
ε→0

t∫
0

Φ(β),ε,T
s (∆β

ε,Ta)

= lim
T→∞

lim
ε→0

t∫
0

Φ(β),ε,T
s (∆βa) =

t∫
0

Φ(β)
s (∆βa)

by Lebesgue dominated convergence theorem.
From which we deduce that the generator of the semigroup Φ(β) is an ex-

tension of ∆β , which implies firstly that it has a dense domain, so that Φ(β) is
pointwise norm continuous, and secondly that ∆β is closable.

Let us denote ∆β the generator of the semigroup Φ(β); the resolvent map
(Id + ∆β)−1 is a completely positive contraction of A which commutes with all
the resolvent maps λ

λ+∆ of the semigroup Φ.
Let a belong to the domain of ∆β and define b = a + ∆βa, so that a =

(Id + ∆β)−1(b). We have then λ
λ+∆ (a) = (Id + ∆β)−1 λ

λ+∆ (b), which means

λ

λ+ ∆
(b) =

λ

λ+ ∆
(a) + ∆β λ

λ+ ∆
(a).

From lim
λ→∞

λ
λ+∆ (a) = a and lim

λ→∞
λ

λ+∆ (b) = b, we get lim
λ→∞

∆β λ
λ+∆ (a) = ∆βa. As

every λ
λ+∆ (a) belongs to the domain of ∆, we deduce that the domain of ∆ is a

core for ∆β , and so is the domain of ∆β which is larger; we have proved that ∆β

is the closure of ∆β .
We suppose now that all the resolvent maps of the semigroup Φ have the

strong Feller property, and we come back to the notations of the beginning of
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this proof: ∆β
ε,T = αε,T Id−Ψε,T , where Ψε,T = K1−β

t∫
ε

1
t+∆ t

β dt is a completely

positive strong Feller endomorphism of A, as a convergent integral of strong Feller

endomorphisms.

Notice that, as above, one can build a semigroup {Φ(β),T,+∞
t = lim

T ′→∞
Φ(β),T,T ′

t }
(pointwise norm limit) and that we have

‖(Id− (αε,T )−1Ψε,T ) ◦ Φ(β)
t ‖

= ‖(Id− (αε,T )−1Ψε,T ) ◦ Φ(β),ε,T
t ◦ Φ(β),ε

t ◦ Φ(β),T,+∞
t ‖

6 ‖(Id− (αε,T )−1Ψε,T ) ◦ Φ(β),ε,T
t ‖

= ‖(Id− (αε,T )−1Ψε,T ) ◦ et[αε,T Id−Ψε,T ]‖ 6 K(tαε,T )−1/2

by Lemma 2.1.

As lim
T→∞

lim
ε→0

αε,T = +∞, we have, for all t > 0

Φ(β)
t = lim

T→∞
lim
ε→0

(αε,T )−1Ψε,T ◦ Φ(β)
t

(norm limit in the Banach algebra of bounded endomorphism of A), which implies

the strong Feller property for the semigroup Φ(β).
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