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Abstract. In this paper small transverse vibrations of a string of inhomo-
geneous stiffness in a damping medium with the left end fixed and the right
end equipped with a concentrated mass are considered. By means of the Li-
ouville transformation the corresponding differential equation is reduced to
a Sturm–Liouville problem with parameter-dependent boundary conditions
and parameter-dependent potential. This problem is considered as a spec-
tral problem for the corresponding quadratic operator pencil. The inverse
problem, i.e. the determination of the potential and the boundary conditions
by the given spectrum and length of the string, is solved for weakly damped
strings (having no purely imaginary eigenvalues). Uniqueness of the solution
in an appropriate class is proved.
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1. INTRODUCTION

The boundary-value problem
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describes small transverse vibrations of a string of stiffness A(s) and with a con-

stant damping coefficient p > 0. Here u(s, t) is the transverse displacement and

l > 0 is the length of the string. The left end of the string is fixed and the right

end is equipped with a ring of mass µ > 0 moving in the direction orthogonal

to the equilibrium position of the string. The damping coefficient of the ring is

ν > 0. Substituting u(s, t) = v(λ, s)eiλt into (1.1)–(1.3) we obtain the system for

the amplitude function v(λ, s):

(A(s)v′(λ, s))′ + λ2v(λ, s)− ipλv(λ, s) = 0,(1.4)

v(λ, 0) = 0,(1.5)

v′(λ, l) + iνλv(λ, l)− µλ2v(λ, l) = 0.(1.6)

The problem for a string with damping at the right end (ν > 0, p = 0) and

with the left end free (vs(s, t)|s=0 = 0) was considered in [1], [7], [14], [15] and

[21]. Basis properties of the eigenfunctions of such problems were discussed in

[3] and [27]. The problem generated by equation (1.4) on a semiaxis with p(s)

depending on s was considered in [8], where an algorithm for the determination

of the parameters if the spectrum is given was deduced. But the conditions on

the spectral data were given in an implicit form. Inverse problems for p(s) purely

imaginary were solved for a semiaxis in [9] and for a finite interval in [5]. In the

present paper we assume that p = const. > 0, A(s) > 0 for s ∈ [0, l] and A(s) ∈

W 2
2 (0, l) and we investigate the spectrum of the problem (1.4)–(1.6). The question

of interest is if it is enough to know the spectrum to determine all the parameters,

i.e. the set {A(s), l, p, ν, µ}. The answer is negative due to the invariance of the

problem (1.4)–(1.6) under the transformation s′ = rs, l′ = rl, A′(s′) = r2A(s),

ν′ = r−1ν, µ′ = r−1µ, p′ = p, where r is an arbitrary positive number. But it

is shown in the present paper that the set {A(s), p, ν, µ} may be found by the

spectrum and the length l of the string for the case of a so-called weakly damped

string, i.e. one having no purely imaginary eigenvalues. It is proved that then the

solution is unique in an appropriate class.
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2. AUXILIARY RESULTS

Assume that A(s) > 0 for s ∈ [0, l] and A(s) ∈ W 2
2 (0, l). This enables us to apply

the Liouville transformation [2]

x(s) =

s∫
0

(A(s′))−
1
2 ds′,(2.1)

y(λ, x) = (A[x])
1
4 v[λ, x].(2.2)

Here v[λ, x] = v(λ, s(x)) and A[x] = A(s(x)). Substituting (2.1) and (2.2) into
(1.4)–(1.6) we obtain

y′′(λ, x) + (λ2 − iλp− q(x))y(λ, x) = 0,(2.3)

y(λ, 0) = 0,(2.4)

y′(λ, a) + (−mλ2 + iαλ + β)y(λ, a) = 0,(2.5)

where

q(x) = (A[x])−
1
4

d2

dx2
(A[x])

1
4 ,(2.6)

m = µ (A[a])
1
2 ,(2.7)

α = ν (A[a])
1
2 ,(2.8)

β = −1
4

(A[a])−1 dA[x]
dx

∣∣∣∣
x=a

,(2.9)

a =

l∫
0

(A(s))−
1
2 ds.(2.10)

We identify the spectrum of the problem (1.4)–(1.6), i.e. the spectrum of the
problem (2.3)–(2.5), with the spectrum of the operator pencil L(iλ) defined by
(A.8) (see the Appendix). An isolated eigenvalue λ0 of finite algebraic multiplicity
is said to be normal if the image ImL(λ0) is closed. This definition coincides with
the definition introduced in [6] for the linear case.

Lemma 2.1. The spectrum of the problem (2.3)–(2.5) consists only of normal
eigenvalues which accumulate at infinity. All eigenvalues have geometric multiplic-
ity one, i.e. each eigensubspace is one-dimensional.
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Proof. Equation (2.3) admits a unique solution satisfying (2.4) and the con-
dition y′(λ, 0) = 1. This solution is of the form (cf. [20], p. 23)

(2.11) S[λ, x] = S(τ(λ), x) =
sin τ(λ)x

τ(λ)
+

x∫
0

K(x, t)
sin τ(λ)t

τ(λ)
dt,

where τ(λ) =
√

λ2 − ipλ, K(x, 0) = 0 and K(x, t) belongs to W 1
2 (0, a) as a func-

tion of each variable when the other variable is fixed. The set of the eigenvalues
of the problem (2.3)–(2.5) coincides with the set of the zeros of the entire function

(2.12) χ(λ) = S′[λ, a] + (−mλ2 + iαλ + β)S[λ, a].

Now the assertions of Lemma 2.1 follow.

Let {λk} be a countable set of complex not necessarily different points sym-
metric with respect to the imaginary axis. If a point λk occurs n times, then we
call n the multiplicity of λk. Let us assume that the multiplicities of symmetrically
located points coincide and the number of purely imaginary points (counted with
multiplicities) is even. Then a way of numbering is called proper if

(i) Re λk+1 > Re λk;
(ii) there exist two points of zero index (λ+0, λ−0);
(iii) λ−k = −λk for all not purely imaginary λk;
(iv) a point of multiplicity m is considered as m coinciding points.

This way of numbering may be arbitrary in other respects.

Definition 2.2. (cf. [16]) An entire function s(λ) of exponential type σ > 0
is said to be of sinus type if

(i) all the zeros of s(λ) lie in a horizontal strip |Im λ| < h < ∞;
(ii) there exists a real number h1 such that the inequalities

0 < m 6 |s(λ)| 6 M < ∞

are valid for |Im λ| = h1;
(iii) the function s(λ) is of the same type in the upper and the lower halfplane.

Lemma 2.3. Let χ(λ) be an entire function of exponential type 6 a having
the form

(2.13)

χ(λ) = B0

(
(τ + iB1 + B2τ

−1 + iB3τ
−2) sin τa

+ (A1 + iA2τ
−1 + A3τ

−2) cos τa
)

+ Ψ1(τ)δ1(τ)τ−2 + Ψ2(τ)δ2(τ)τ−2,
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where τ =
√

λ2 − ipλ, p ∈ R, Ak ∈ R (k = 1, 3), Bk ∈ R, (k = 0, 3), A1 6= 0,

B0 6= 0, Ψ1(τ) =
a∫
0

eiτxf1(x)dx, Ψ2(τ) =
a∫
0

e−iτxf2(x)dx, fk ∈ L2(0, a), and δk(τ)

(k = 1, 2) are bounded functions. Then the properly numbered zeros λn of χ(λ)
have the following asymptotics

(2.14) λn =
n→∞

πn

a
+

ip
2

+
p1

n
+

ip2

n2
+

p3

n3
+

bn

n3

where {bn} ∈ l2,

p1 = −A1π
−1 − p2a(8π)−1,(2.15)

p2 = aπ−2(B1A1 −A2),(2.16)

p3 = ap2p1(8π2)−1 − a3π−3p4(128)−1 + a2π−3(−A3 + A1B2

−A2B1 + A1(3B2
1 + A2

1)− a−1A1B1).(2.17)

Proof. It is clear that the function χ(λ)(λ − λk)−1, where λk is any zero of
χ(λ), is of sinus-type and it has an infinite set of zeros. The first step is to prove
the equality

λn =
πn

a
+

ip
2

+ o(1).

Let χ(λn) = 0, |λn| −→
n→∞

∞. If |Im τ(λn)| → ∞, then

(B0τ(λn))−1
χ(λn)e−|Im τ(λn)|a + o(1) = 0.

This equality is false because lim
n→∞

| sin τ(λn)a|e−|Im τ(λn)|a = 1
2 . Hence, there

exists a number M > 0 such that |Im τ(λn)| 6 M < ∞. Then

B−1
0 (τ(λn))−1

χ(λn) = sin τ(λn)a + o(1)

and
τ(λn) =

πn

a
+ o(1)

or
λn =

πn

a
+

ip
2

+ o(1).

Set τn :=
√

λ2
n − ipλn (we choose the branch of the root such that λn −√

λ2
n − ipλn = O(1)), then

(2.18)
B−1

0 τ−1
n χ(λn) = sin τna

(
1 + iB1τ

−1
n + B2τ

−2
n + iB3τ

−3
n

)
+ cos τna

(
A1τ

−1
n + iA2τ

−2
n + A3τ

−3
n

)
+ b̃nτ−3

n = 0
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where
{

b̃n

}
∈ l2. Expressing e2iτna from (2.18) and substituting τn = πn

a +4n

(4n = o(1)), we obtain

e2i4na =
[
− ĩbnτ−3

n +
(
− b̃2

nτ−6
n +

(
1 + i (B1 + A1) τ−1

n

+ (B2 −A2) τ−2
n + i (B3 + A3) τ−3

n

)(
1 + i (B1 −A1) τ−1

n

+ (B2 + A2) τ−2
n + i (B3 −A3) τ−3

n

)) 1
2
]2 (

1 + i (B1 + A1) τ−1
n

+ (B2 −A2) τ−2
n + i (B3 + A3) τ−3

n

)−2
,

and consequently

(2.19)

2i4n a = ln
[
1 + i (B1 −A1)

(
πna−1 +4n

)−1

+ (B2 + A2)
(
πna−1 +4n

)−2

+ i (B3 −A3)
(
πna−1 +4n

)−3
]

− ln
[
1 + i (B1 + A1)

(
πna−1 +4n

)−1

+ (B2 −A1)
(
πna−1 +4n

)−2

+ i (B3 + A3)
(
πna−1 +4n

)−3
]

+ o(n−3).

Decomposition of the right hand side of (2.19) into a power series implies

(2.20) 4n = −A1

πn
+4(1)

n ,

where 4(1)
n = o(n−1). Substitution of (2.20) into (2.19) yields

(2.21) 4(1)
n =

ia2

π2n2
(B1A1 −A2) +4(2)

n ,

where 4(2)
n = O(n−3). Then substituting (2.21) and (2.20) into (2.19) we obtain

4(2)
n =

a2

π3n3

(
−A3 + A1B2 −A2B1 + A1

(
3B2

1 + A2
1

)
−A1B1a

−1
)

+ n−3b(2)
n ,

where {b(2)
n } ∈ l2. Now it is easy to get (2.14) using the formula λn = ip

2 +√
τ2
n −

p2

4 .
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3. THE DIRECT PROBLEM

In this paragraph we present the description of the spectrum of the problem (2.3)–
(2.5) which is the same as that of problem (1.4)–(1.6).

Theorem 3.1. Let A(s) ∈ W 4
2 (0, l), A(s) > 0 (s ∈ [0, l]), µ > 0, ν > 0,

l > 0, p > 0. Then the spectrum of (2.3)–(2.5) coincides with the set Λ = {λn}
satisfying the following conditions:

(i) the set Λ is symmetric with respect to the imaginary axis and symmetric
points have the same multiplicities;

(ii) the number of purely imaginary points, counted with multiplicities, is
even;

(iii) Im λk > 0 for all k;

(iv)(a) if νµ−1 > p, then all not purely imaginary and all multiple points are

located in the strip p
2 < Im λk < ν

2µ ;

(iv)(b) if νµ−1 < p, then all not purely imaginary and all multiple points are

located in the strip ν
2µ < Im λk < p

2 ;

(iv)(c) if νµ−1 = p, then all not purely imaginary points are located on the
axis Im λ = p

2 and if ip
2 ∈ Λ, then its multiplicity is equal to 2; all other points of

Λ are simple;
(v)(a) if νµ−1 > p, then for every λk ∈

(
0, ip

2

]
there exists λ−k ∈

(
ip
2 ,i∞

)
such that Im(λk + λ−k) > p;

(v)(b) if νµ−1 < p, then for every λk ∈
[

ip
2 ,i∞

)
there exists λ−k ∈

(
0, ip

2

)
such that Im (λk + λ−k) < p;

(v)(c) if νµ−1 = p, then Λ is symmetric with respect to the axis Im λ = p
2 ;

(vi) under proper numbering

(3.1) λn =
n→∞

πn

a
+

ip
2

+
p1

n
+

ip2

n2
+

p3

n3
+

bn

n3
,

where a =
l∫
0

(A(s))−1/2 ds, pi ∈ R, {bn} ∈ l2, p2 >
6

0 when p <
>

νµ−1.

Proof. Assertion (i) follows from the symmetry of the problem, i.e. from the
identity v(−λ, s) = v(λ, s), where v(λ, s) is a solution of (1.4)–(1.6). Assertion (ii)
may be proved by applying Lemma A.8 to the pencil L̃(iλ) defined by (A.7) (see
Appendix). Assertion (iii) is a consequence of the results of [13] applied to the
pencil L̃(iλ). To prove assertions (iv)(a), (iv)(b), (iv)(c) it is sufficient to apply
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Lemmas A.9 and A.10 to the pencil L̃(iλ). To prove assertion (v)(a) we apply
Theorem A.6 to the operator pencil

L̃1(iλ) = L̃
(
iλ− p

2

)
= −λ2M̃ + iλ

(
K̃ − pM̃

)
+ Ã +

p2

4
M̃ − p

2
K̃

(see Appendix). To prove assertion (v)(b) we apply Theorem A.6 to the pencil
L1(−iλ). Now let p = νµ−1. Then L(λ) = τ2M̃ + Ã. Hence, assertion (v)(c)
follows from the self-adjointness of Ã and the symmetry of M̃ . Now in order to
prove assertion (vi) we substitute (2.11) into (2.12) and obtain

(3.2)

χ(λ) = cos τa + K(a, a)
sin τa

τ
+

a∫
0

Kx(a, t)
sin τt

τ
dt

+ (−mλ2 + iαλ + β)

(
sin τa

τ
+

a∫
0

K(a, t)
sin τt

τ
dt

)
.

Due to A(s) ∈ W 4
2 (0, l) and A(s) > 0, definition (2.6) implies q(x) ∈ W 2

2 (0, a),
and consequently ([20], p. 23) K(x, t) has all partial derivatives up to third order
inclusive. The partial derivatives of third order belong to L2(0, a) as functions
of one variable when the other one is fixed, in particular Kttt(x, t). Hence, it is
possible to integrate three times by parts in (3.2):

(3.3)

χ(λ) = cos τa + K(a, a)
sin τa

τ
−Kx(a, a)

cos τa

τ2
+

a∫
0

Kxt(a, t)
cos τt

τ2
dt

+
(
−mλ2 + iαλ + β

)( sin τa

τ
− K(a, a)

τ2
cos τa

+ Kt(a, a)
sin τa

τ3
+ Ktt(a, a)

cos τa

τ4
−

a∫
0

Kttt(a, t)
cos τt

τ4
dt

)
.

The function χ(λ) satisfies the conditions of Lemma 2.3 and consequently
the zeros of χ(λ), numbered in a proper way, satisfy equality (2.14) with

p1 =
1

πm
+

K(a, a)
π

− p2a

8π
,(3.4)

p2 =
a

π2m

( α

m
− p
)

,(3.5)

p3 =
p2a2p2

1

8π2
− p4a3

128π3
+

a2

π3

(
−A3 + A1B2 −A2B1

+ A1

(
3B2

1 + A2
1

)
−A1B1a

−1
)
,(3.6)
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(3.7)

B1 = p− α

m
,

B2 = −K(a, a)
m

+ Kt(a, a)− β

m
− p

2

(
p− α

m

)
,

B3 = B1

(
Kt(a, a)− p2

8

)
,

A1 = − 1
m
−K(a, a),

A2 = −K(a, a)
(
p− α

m

)
A3 = −Kx(a, a)

m
−Ktt(a, a) + K(a, a)

(
β

m
+

p

2

(
p− α

m

))
.

So Theorem 3.1 is proved.

Remark 3.2. Purely imaginary eigenvalues λk and λ−k mentioned in (v)(a)

and (v)(b) of Theorem 3.1 may be chosen in such a way that each of the correspond-

ing eigenfunctions yk(x) and y−k(x) of the problem (2.3)–(2.5) (and consequently

each of the eigenfunctions vk(s) and v−k(s) of the problem (1.4)–(1.6)) has exactly

k zeros in the interval (0, a] (in (0, l], respectively). This assertion may be proved

in quite the same way as in [23].

Remark 3.3. Problem (2.3)–(2.5) with p = 0 was considered in [25].

Definition 3.4. A smooth string (A(s) > 0, A(s) ∈ W 2
2 (0, l)) is said to be

weakly damped if for every v(s) ∈ W 2
2 (0, l) with v(0) = 0 and v(s) not equal to 0

identically the following inequality holds

(
p

l∫
0

|v|2 ds + νA(l)|v(l)|2
)2

< 4

( l∫
0

|v|2 ds + µA(l)|v(l)|2
) l∫

0

A(s)|v′|2 ds.

Remark 3.5. It is easy to verify that a string is weakly damped if and

only if the corresponding operator pencil L̃(λ) (see (A.7)) or, which is the same,

the operator pencil L(λ) (see (A.8)) is weakly damped ([13]). The pencil L̃(λ) is

weakly damped if and only if it has no real eigenvalues ([13]). Hence the string is

weakly damped if and only if its spectrum has no purely imaginary points.
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4. INVERSE STURM-LIOUVILLE PROBLEM WITH A POTENTIAL AND BOUNDARY

CONDITIONS DEPENDING ON THE SPECTRAL PARAMETER

We consider here the inverse problem for (2.3)–(2.5) assuming the string to be

weakly damped. First we prove the inverse assertion to Lemma 2.3.

Lemma 4.1. Let Λ = {λk} be a sequence satisfying the conditions (i), (ii),

(iii) in Theorem 3.1 and having the asymptotics (3.1) with a > 0 and p > 0. Then

the entire function

(4.1) χ(λ) = lim
n→∞

n∏
k=+0

(
1− λ

λk

) −0∏
k=−n

(
1− λ

λk

)

may be represented in the form (2.13).

Proof. Using (3.1) we can find

a = lim
n→∞

πn

λn
,(4.2)

p = −2i lim
n→∞

(
λn −

πn

a

)
,(4.3)

p1 = lim
n→∞

n

(
λn −

πn

a
− ip

2

)
,(4.4)

p2 = −i lim
n→∞

n2

(
λn −

πn

a
− ip

2
− p1

n

)
,(4.5)

p3 = lim
n→∞

n3

(
λn −

πn

a
− ip

2
− p1

n
− ip2

n2

)
.(4.6)

Let us consider an auxiliary problem denoted by (2.3(1))–(2.5(1)), i.e. the

problem (2.3)–(2.5) with a obtained by (4.2), p obtained by (4.3) and with real

q(x) = q(1)(x) ∈ W 2
2 (0, a) such that 1

2

a∫
0

q(1)(x) dx 6= −p1 − p2a
8π (q(1)(x) is arbi-

trary in other respects). Set m(1) :=
(

p2a
8π + p1 + 1

2

a∫
0

q(1)(x) dx
)−1

and α(1) :=

m(1)
(
p + m(1)π2

a p2

)
and let β(1) be the solution of the equation

(4.7)

p3 =
p2ap1

8π2
− p4a3

128π3
+

a2

π3

(
−A

(1)
1 B

(1)
1

a
+ A

(1)
1

(
3B

(1)2

1 + A
(1)2

1

)
− A

(1)
2 B

(1)
1 + A

(1)
1 B

(1)
2 −A

(1)
3

)
,
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where

(4.8)

B
(1)
1 = p− α(1)

m(1)
,

B
(1)
2 = −K(1)(a, a)

m(1)
+ K

(1)
t (a, a)− β

m(1)
− p

2

(
p− α(1)

m(1)

)
,

B
(1)
3 = B

(1)
1

(
K

(1)
t (a, a)− p2

8

)
,

A
(1)
1 = − 1

m(1)
−K(1)(a, a),

A
(1)
2 = −K(1)(a, a)

(
p− α(1)

m(1)

)
,

A
(1)
3 =

−K
(1)
x (a, a)
m(1)

−K
(1)
tt (a, a) + K(1)(a, a)

(
β

m(1)
+

p

2

(
p− α(1)

m(1)

))
.

Here K(1)(x, t) is the kernel of the integral representation (2.11) for the case
of q(x) = q(1)(x), i.e.

(4.9)

χ(1)(λ) = cos τa + K(1)(a, a)
sin τa

τ
−K(1)

x (a, a)
cos τa

τ2

+

a∫
0

K
(1)
xt (a, t)

cos τt

τ2
dt +

(
−m(1)λ2 + iα(1)λ + β(1)

)
·

·

(
sin τa

τ
−K(1)(a, a)

cos τa

τ2
+ K

(1)
t (a, a)

sin τa

τ3

+ K
(1)
tt (a, a)

cos τa

τ4
−

a∫
0

K
(1)
ttt (a, t)

cos τa

τ4
dt

)
.

Under proper numbering, the zeros λ
(1)
n of the function χ(1)(λ) have the

following asymptotics

(4.10) λ(1)
n =

πn

a
+

ip
2

+
p1

n
+

ip2

n2
+

p3

n3
+

b
(1)
n

n3
,

where
{
b
(1)
n

}
∈ l2.

Then

(4.11) χ(1)(λ) = Cλ2r lim
n→∞

n∏
−n

(
1− λ

λ
(1)
k

)
.
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Here the nonnegative even number 2r is the multiplicity of λ = 0 considered as
a zero of χ(1)(λ). We include the factors corresponding to all λ

(1)
k 6= 0 (k =

±r,±(r + 1), . . .) into the infinite product in (4.11). Let λ
(1)
j 6= 0 be a zero of

χ(1)(λ). Set

χ
(1)
1 (λ) :=

(
1− λ

λ
(1)
j

)−1

χ(1)(λ).

Due to Lemma 2.3 all zeros of χ
(1)
1 (λ) are located in the strip |Im λ| <

sup
k
|Im λ

(1)
k | and for λ belonging to the axis Im λ = sup

k
|Im λk| + c (c > 0) the

inequalities
0 < inf |χ(1)

1 (λ)|, sup |χ(1)
1 (λ)| < ∞

hold. So the function χ
(1)
1 (λ) is of sinus-type. Formula (4.10) compared with (3.1)

yields

λn = λ(1)
n +

b̃n(
λ

(1)
n

)3 , for λ(1)
n 6= 0,

where {b̃n} ∈ l2. Then using the results of [17], Lemma 5, we have

χ(λ)
(

1− λ

λj

)−1

= χ
(1)
1 (λ)

(
T0 +

T1

λ
+

T2

λ2
+

T3

λ3

)
+

ϕ(λ)
λ3

,

where Tk ∈ C (k = 0, 3), ϕ(λ) is an entire function of exponential type 6 a

belonging to L2(−∞,∞) when λ ∈ R. Hence

(4.12)

χ(λ) = χ(1)(λ)
λ

(1)
j

λj

(
1 +

λj − λ
(1)
j

λ
(1)
j − λ

)(
T0 +

T1

λ
+

T2

λ2
+

T3

λ3

)

+
Ψ(λ)
λ3

(
1− λ

λj

)
= χ(1)(λ)

(
T01 +

T11

λ
+

T21

λ2
+

T31

λ3

)
+

Ψ1(λ)
λ3

where Tk1 ∈ C and Ψ1(λ) is an entire function of exponential type 6 a belonging
to L2(−∞,∞). Substituting (4.9) into (4.12) we obtain (2.13).

Assumption I. The set Λ = {λk} of complex numbers, where no λk is
purely imaginary, satisfies conditions (i) and (ii) in Theorem 3.1.

Assumption II. Being properly numbered, the sequence {λk} satisfies equa-
tion (3.1) with a > 0 and p > 0.
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Let the function χ(λ) be defined by (4.1) where Λ = {λk} satisfies the As-

sumptions I and II. Then, according to Lemma 4.1, it is of the form (2.13). Hence,

we can find the constants involved. Set

θn =
ip
2

+

√( π
2 + 2πn

a

)2

− p2

4

(Re θn > 0 for n large enough). Then using (2.13) we obtain

B0 = lim
n→∞

(
χ(θn)

a

2πn

)
,(4.13)

B1 = −i lim
n→∞

(
B−1

0 χ(θn)− 1
a

(
2πn +

π

2

))
,(4.14)

B2 = lim
n→∞

2πn

a

(
B−1

0 χ(θn)− 1
a

(
2πn +

π

2

)
− iB1

)
,(4.15)

B3 = −i lim
n→∞

(
2πn

a

)2(
B−1

0 χ(θn)− 1
a

(
2πn+

π

2

)
−iB1−

aB2

2πn+ π
2

)
.(4.16)

Set

ξn =
ip
2

+

√(
2πn

a

)2

− p2

4
,

(Re ξn > 0 for n large enough). Then

A1 = B−1
0 lim

n→∞
χ(ξn),(4.17)

A2 = −i lim
n→∞

2πn

a

(
B−1

0 χ(ξn)−A1

)
,(4.18)

A3 = lim
n→∞

(
2πn

a

)2(
B−1

0 χ(ξn)−A1 −
iaA2

2πn

)
.(4.19)

Assumption III(a). Let Im λk > p
2 for all λk ∈ Λ.

Assumption III(b). Let Im λk ∈
(
0, p

2

)
for all λk ∈ Λ.

Assumption III(c). Let Im λk = p
2 for all λk ∈ Λ.

Lemma 4.2. Under the Assumptions I, II, III(a) (III(b)) the constants given

by (4.13), (4.14) satisfy the inequalities B0 < 0, B1 > 0 (B0 < 0, B1 < 0).
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Proof. The function χ(λ) defined by (4.1) may be represented as follows

(4.20)

χ(λ) =
sin τa lim

n→∞

n∏
+0

(
1− λ

λk

) −0∏
−n

(
1− λ

λk

)
aτ

∞∏
k=1

(
1− τ2a2

π2k2

)
=

τ sin τa

a

(
1
τ2

+
1

λ0λ−0
− λ(λ0 + λ−0 − ip)

τ2λ0λ−0

)

× lim
n→∞

n∏
k=1

(
1
τ2 + 1

λkλ−k
− λ(λk+λ−k−ip)

τ2λkλ−k

)
(

1
τ2 − a2

π2k2

)
where τ =

√
λ2 − ipλ and a is given by (4.2). Substituting now λ = θn, τ(θn) =

1
a

(
2πn + π

2

)
into (4.20) we obtain

χ(θn) =
τn

a

(
1
τ2
n

+
1

λ0λ−0
− θn

τ2
n

(
λ0 + λ−0 − ip

λ0λ−0

))

× lim
j→∞

j∏
k=1

(
1
τ2

n
+ 1

λkλ−k
− θn

τ2
n

(
λk+λ−k−ip

λkλ−k

))
(

1
τ2

n
− a2

π2k2

)
and consequently

(4.21) B0 = lim
n→∞

χ(θn)
τn

=
1

aλ0λ−0
lim

j→∞

j∏
k=1

π2k2

(−λkλ−ka2)
.

Due to the symmetry of the problem, λkλ−k < 0 for all k ∈ N∪ {0}. Hence,
(4.21) implies B0 < 0. Using (4.21) we obtain from (4.14):

B1 = −i lim
n→∞

(
B−1

0 χ(θn)− τn

)
= i

∞∑
k=0

(λk + λ−k − ip) .

Assumption III(a), III(b) implies Im (λk + λ−k − ip) > 0 (Im (λk + λ−k − ip) < 0)
and consequently B1 < 0 (B1 > 0).

Lemma 4.3. The Assumptions I, II, III(a) (III(b)) imply A1B1 > A2 (A1B1 <

A2), where A1, A2, B1 are defined by (4.14), (4.17), (4.18).

Proof. We apply Lemma 2.3 to the function χ(λ) and obtain B1A1 − A2 =
π2

a p2. Then the Assumption III(a) (III(b)) implies p2 > 0 (p2 < 0).
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Set

m = B1 (A2 −A1B1)
−1

,(4.22)

α = m (p−B1) ,(4.23)

β = B2m + 8−1p2m + 2−1p(α−mp) + A2B
−1
1 −mB3B

−1
1 .(4.24)

Lemmas 4.2 and 4.3 imply the following corollaries.

Corollary 4.4. Under Assumptions I, II, and III(a) or III(b) the inequality

m > 0 holds.

Corollary 4.5. Under Assumptions I, II, III(a) (III(b)) the inequality α >

mp (α < mp) holds.

Set

(4.25) g1(τ) def=
−m

(
χ

(
ip
2 +

√
τ2 − p2

4

)
− χ

(
ip
2 −

√
τ2 − p2

4

))
2B0i(α−mp)

√
τ2 − p2

4

,

(4.26)

g2(τ) def= − m

B0
χ

(
ip
2

+

√
τ2 − p2

4

)

+

(
mτ2 − i(α−mp)

√
τ2 − p2

4
− β +

p

2
(α−mp)

)
g1(τ).

Lemma 4.6. Under Assumptions I, II and III(a) or III(b), g1(τ) and g2(τ)

are entire functions of τ and admit the representations

g1(τ) =
sin τa

τ
+

A2

B1

cos τa

τ2
+

B3

B1

sin τa

τ3
+

Ψ1(τ)
τ3

(4.27)

g2(τ) = cos τa− A2

B1

sin τa

τ
+

Ψ2(τ)
τ

,(4.28)

where Ψk(τ) (k = 1, 2) are entire functions of exponential type 6 a belonging to

L2(−∞,∞).

Proof. It follows from (4.25) and (4.26) that g1(τ) and g2(τ) are entire func-

tions of τ . Substituting (2.13) into (4.25) and (4.26) we obtain (4.27) and (4.28).
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Corollary 4.7. The zeros νn and µn of the functions g1(τ) and g2(τ) have
the following asymptotics

νn =
πn

a
− A2

πB1n
+

b1n

n
,

µn =
π(n− 1

2 )
a

− A2

πB1n
+

b2n

n
,

where n ∈ N, {bkn}∞n=1 ∈ l2, k = 1, 2.

Proof. Applying Lemma 3.4.2 of [20], p. 225 to the functions g1(τ) and g2(τ)
we get the assertion.

Consider the auxiliary problem

y′′ +
(
λ2 − iλp− q2

)
y = 0,(4.29)

y(λ, 0) = 0,(4.30)

y′(λ, a) + (−mλ2 + impλ + β)y(λ, a) = 0,(4.31)

where q2 = constant > 0.

Lemma 4.8. For arbitrary p > 0, a > 0, β ∈ R it is possible to choose q2 > 0
such that the operator A1 defined by (A.9) (see Appendix) satisfies the condition
A1 >

(
p
2 + ε

)
I, (ε > 0).

Proof. Evidently,

((
A1 −

(p

2
+ ε
)

I
)

Y, Y
)

= −
a∫

0

y′′y dx + q2

a∫
0

|y|2 dx + y′(a)y(a) + β|y(a)|2

−
(p

2
+ ε
)
|y(a)|2 −

(p

2
+ ε
) a∫

0

|y|2 dx

=

a∫
0

|y′|2 dx +
(
q2 −

p

2
− ε
) a∫

0

|y|2 dx

+
(
β − p

2
− ε
)
|y(a)|2.

As y(0) = 0 we obtain

|y(a)|2 =

a∫
0

(y′y + yy′) dx 6 2

a∫
0

|y′||y|dx 6
1
c2

a∫
0

|y′|2 dx + c2

a∫
0

|y|2 dx
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with any real c 6= 0. Choosing c2 >
∣∣β − p

2 − ε
∣∣ , q2 > p

2 + ε +
∣∣β − p

2 − ε
∣∣ c2 >

p
2 +

(
β − p

2 − ε
)2 + ε we obtain

(
−p

2
+ β − ε

)
|y(a)|2 6

∣∣∣β − ε− p

2

∣∣∣ a∫
0

(y′y + yy′) dx

6
∣∣∣β − ε− p

2

∣∣∣ c−2

a∫
0

|y′|2 dx +
∣∣∣β − ε− p

2

∣∣∣ c2

a∫
0

|y|2 dx

<

a∫
0

|y′|2 dx +
(
q2 −

p

2
− ε
) a∫

0

|y|2 dx.

The lemma is proved.

It is possible to rewrite the system (4.29)–(4.31) as follows

y′′ + τ2y − q2y = 0,(4.32)

y(τ, 0) = 0,(4.33)

y′(τ, a) + (−mτ2 + β)y(τ, a) = 0.(4.34)

We assume in what follows q2 to be so large that A1 >
(

p
2 + ε

)
I. Denote by

τ
(2)
n the eigenvalues of the problem (4.32)–(4.34) and by λ

(2)
n those of (4.29)–(4.31).

It is clear that τ
(2)
n =

√
λ

(2)2
n − ipλ

(2)
n . The set

{
τ

(2)
n

}
is real and symmetric with

respect to the origin.

Set S2(τ, x) = sin
√

τ2−q2x√
τ2−q2

and S′2(τ, x) = cos
√

τ2 − q2x. Denote by ν
(2)
n

the zeros of S2(τ, a) and by µ
(2)
n the zeros of S′2(τ, a) (µ−n = −µn, ν−n = −νn).

Evidently, νn =
√

π2n2

a2 + q2 and µn =
√(

πn− π
2

)2
a−2 + q2 and

(4.35) 0 < µ
(2)
1 < ν

(2)
1 < · · · < µ(2)

n < ν(2)
n < µ

(2)
n+1 < ν

(2)
n+1 < · · · .

Introduce the function

(4.36) χ(λ, η) = lim
n→∞

n∏
+0

(
1− λ

λ
(2)
k +η(λk−λ

(2)
k )

) −0∏
−n

(
1− λ

λ
(2)
k +η(λk − λ

(2)
k )

)
.

Denote by λk(η) = λ
(2)
k + η(λk − λ

(2)
k ) the zeros of χ(λ, η). Under Assump-

tion I Re λk 6= 0 and by Lemma 4.8 Re λ
(2)
k 6= 0. Therefore Re λk(η) 6= 0 for any

η ∈ [0, 1].
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Lemma 4.9. There exists a neighbourhood Ω ⊂ C of the interval [0, 1] such
that the function χ(λ, η) is an entire function of λ at any fixed η ∈ Ω and χ(λ, η)
is holomorphic on Ω at any fixed λ ∈ C.

Proof. Applying Theorem 3.1 to the problem (4.32)–(4.34) we obtain

(4.37) λ(2)
n =

πn

a
+

ip
2

+ o(1)

and consequently

(4.38) λn − λ(2)
n = o(1).

Hence, the limit in (4.36) exists and χ(λ, η) is an entire function of λ at any fixed
η ∈ Ω. Now if λ 6= λ

(2)
k we rewrite (4.36) as follows

(4.39) χ(λ, η) = lim
n→∞

n∏
0

(λ(2)
k − λ)(λ(2)

−k − λ)
(

1 + η
λk−λ

(2)
k

λ
(2)
k
−λ

)(
1 + η

λ−k−λ
(2)
−k

λ
(2)
−k
−λ

)
λ

(2)
k λ

(2)
−k

(
1 + η

λk−λ
(2)
k

λ
(2)
k

)(
1 + η

λ−k−λ
(2)
−k

λ
(2)
−k

) .

If λ = λ
(2)
k then the corresponding factor is of the form η(λk − λ

(2)
k ). Due to

(4.37), (4.38) it follows from (4.39) that χ(λ, η) is holomorphic on Ω at any fixed
λ ∈ C.

Lemma 4.10. Under Assumptions I, II and III(a) or III(b) for any η ∈ (0, 1]
there exist the limits

B0(η) = lim
n→∞

(
χ(θn, η)

a

2πn

)
6= 0,(4.40)

B1(η) = −i lim
n→∞

(
B−1

0 (η)χ(θn, η)− 1
a

(
2πn +

π

2

))
,(4.41)

B2(η) = lim
n→∞

2πn

a

(
χ(θn, η)B−1

0 (η)− 1
a

(
2πn +

π

2

)
− iB1(η)

)
,(4.42)

B3(η) = −i lim
n→∞

(
2πn

a

)2
(

B−1
0 (η)χ(θn, η)

− 1
a

(
2πn +

π

2

)
− iB1(η)− aB2(η)

2πn + π
2

)
,(4.43)

A1(η) = B−1
0 (η) lim

n→∞
χ(θn, η),(4.44)

A2(η) = −i lim
n→∞

2πn

a

(
B−1

0 (η)χ(ξn, η)−A1(η)
)
,(4.45)

A3(η) = lim
n→∞

((
2πn

a

)2(
B−1

0 (η)χ(ξn, η)−A1(η)− iaA2(η)
2πn

))
,(4.46)
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where

θn =
ip
2

+

√( π
2 + 2πn

a

)2

− p2

4
, ξn =

ip
2

+

√(
2πn

a

)2

− p2

4
.

Proof. The function χ(λ, η) satisfies all the conditions of Lemma 4.1 for any
η ∈ (0, 1]. Thus χ(λ, η) is of the form (2.13) with Ak and Bk depending on η.
Then the assertions of the lemma follow.

Remark 4.11. From the proof of Lemma 5 of [17] it follows that Ak(η) and
Bk(η) are analytic in some complex neighbourhood of the interval [0, 1].

Corollary 4.12. Under Assumptions I, II and III(a) (III(b)) the coeffi-
cients B0(η) and B1(η), defined by (4.40), (4.41), satisfy the inequalities B0(η) < 0,
B1(η) > 0, (B0(η) < 0, B1(η) < 0) for all η ∈ (0, 1].

Proof. The function χ(λ, η) satisfies the conditions of Lemma 4.2. Therefore
the assertion of Corollary 4.12 follows.

The proof of the next corollary is analogous.

Corollary 4.13. Under the Assumptions I, II, III(a) (III(b)) the coeffi-
cients A1(η), A2(η), B1(η), defined by (4.41), (4.44), (4.45), satisfy the inequalities
A1(η)B1(η) > A2(η) (A1(η)B1(η) < A2(η)) for any η ∈ (0, 1].

Set

m(η) = B1(η) (A2(η)−A1(η)B1(η))−1
,

α(η) = m(η) (p−B1(η)) ,

β(η) =
(

B2(η)− B3(η)
B1(η)

+
p2

8

)
m(η) +

p

2
(α(η)−m(η)p) +

A2(η)
B1(η)

,

g1(τ, η) :=
−m(η)

(
χ

(
ip
2 +

√
τ2 − p2

4 , η

)
− χ

(
ip
2 −

√
τ2 − p2

4 , η

))
2iB0(η)(α(η)−m(η)p)

√
τ2 − p2

4

,

g2(τ, η) :=
−m(η)
B0(η)

χ

(
ip
2

+

√
τ2 − p2

4
, η

)

+

(
mτ2 − i(α−mp)

√
τ2 − p2

4
− β +

p

2
(α−mp)

)
g1(τ, η).

Denote by νn(η) and µn(η) the zeros of g1(τ, η) and g2(τ, η), respectively
(ν−n(η) = −νn(η), µ−n(η) = −µn(η)). It is clear that νn(0) = ν

(2)
n and µn(0) =

µ
(2)
n .
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Lemma 4.14. Under Assumptions I, II and III(a) or III(b) for any η ∈ [0, 1],
νn(η) 6= µk(η) is valid, and if n 6= ±k, then νn(η) 6= νk(η), µn(η) 6= µk(η).

Proof. For given n and small enough η > 0 the zeros νn(η) and µn(η) are
real due to (4.35) and to the symmetry of the problem. They can lose analyt-
icity with respect to η only when they collide. Hence, if real νn(η0) = µk(η0)
at η0 ∈ (0, 1], then g1(µk(η0), η0) = g2(µk(η0), ν0) = 0, and consequently χ

(
ip
2 +√

µ2
k(η0)− p2

4 , η0

)
= 0. This means that there exists a λj(η0) = ip

2 +
√

µ2
k(η0)− p2

4

with Im λj(η0) = p
2 , which contradicts III(a) or III(b). Hence, νn(η) 6= µk(η). The

proofs of the other assertions are analogous.

Corollary 4.15. For any η ∈ [0, 1]

µ2
1(η) < ν2

1(η) < · · · < µ2
n(η) < ν2

n(η) < µ2
n+1(η) < ν2

n+1(η) < · · · .

Denote by N+ (N−) the class of sets {q(x), a, p,m, α, β} satisfying the fol-
lowing conditions:

(1) a > 0, m > 0, α > mp > 0, (0 < α < mp), β ∈ R, q(x) ∈ L2(0, a) is real;
(2) the operator A acting in L2(0, a) defined by q(x) and β according to the

formulae

(4.47)
Ay = −y′′ + q(x)y,

D(A) =
{
y : y ∈ W 2

2 (0, a), y(0) = y′(a) + βy(a) = 0
}

is strictly positive;
(3) the operator pencil L(λ) defined by (A.8) (see Appendix) is weakly dam-

ped.

Theorem 4.16. Let Λ = {λk} be a set of complex numbers satisfying As-
sumptions I, II, III(a). Then there exists a unique set {q(x), a, p,m, α, β} from N+

such that Λ is the spectrum of the problem (2.3)–(2.5) with {q(x), a, p, m, α, β}.

Proof. Under the conditions of Theorem 4.16 there exist the limits (4.2) and
(4.3). Hence, we can find a > 0 and p > 0, and the function χ(λ) by (4.1). Now
find the constants Bk and Ak from (4.13)–(4.19), m from (4.22), α from (4.23),
and β from (4.24). By Corollary 4.4, m > 0 and by Corollary 4.5, α > mp > 0.
Then we construct the functions g1(τ) and g2(τ) using (4.25) and (4.26). By
Corollaries 4.7 and 4.15 the sets {νk} and {µk} of the zeros of g1(τ) and g2(τ)
satisfy all the conditions of Theorem 3.4.1 of [20]. Hence, there exists a unique
real q(x) ∈ L2(0, a) such that the corresponding Sturm-Liouville problems

(4.48) τ2y + y′′ − q(x)y = 0,
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(4.49) y(0) = y(a) = 0

and

(4.48′) τ2y + y′′ − q(x)y = 0,

(4.49′) y(0) = y′(a) = 0

have the spectra {νk} and {µk}, correspondingly.
We can construct q(x) in the following way (cf. [20]). Without loss of gener-

ality let us assume that µ2
1 > 0. The function

e(τ) = e−iτa (g2(τ) + iτg1(τ))

is the so-called Jost function of the corresponding Sturm-Liouville problem pro-
longed on the semiaxis. In our case this function has no zeros in the closed lower
halfplane. Introduce the so-called S-matrix ([20])

S(τ) =
e(τ)

e(−τ)

and the function

F (x) =
1
2π

∞∫
−∞

(1− S(τ))eiτx dτ.

The Marchenko integral equation

K(x, t) + F (x + t) +

∞∫
x

K(x, s)F (s + t) ds = 0

possesses a unique solution K(x, t) and

q̃(x) = −2
dK(x, x)

dx

is the potential of the Sturm–Liouville problem on the semiaxis prolonged. We
have to prove now that the projection q(x) = q̃(x) (x ∈ [0, a]) is the unknown
function (potential) we are looking for.

Now if we solve the direct problems (4.48), (4.49) and (4.48′), (4.49′) with
q(x) obtained, we can find g1(τ) and g2(τ) coinciding with the ones defined by
(4.25) and (4.26). Then the function

χ(λ) = −B0

m

(
g2(τ) + (−mλ2 + iαλ + β)g1(τ)

)
coincides with the one obtained from the set Λ when substituted into (4.1). Hence,
the set of zeros of χ(λ) coincides with Λ. Then it follows from [24] that the operator
A defined by (4.47) is strictly positive. The pencil L(λ) is weakly damped because
Re λk 6= 0 for all k. Theorem 4.16 is proved.
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Theorem 4.17. Let Λ = {λk} be a set of complex numbers satisfying As-
sumptions I, II, III(b) and let B1 < p, where B1 is defined by (4.14). Then there
exists a unique set {q(x), a, p,m, α, β} from N− such that Λ is the spectrum of the
problem (2.3)–(2.5) with the parameters {q(x), a, p,m, α, β}.

The proof of this theorem is quite the same as that of Theorem 4.16.

Remark 4.18. Under Assumptions I, II, III(c) there exists a set {q(x), a, p,

m, α = mp, β} corresponding to the spectrum Λ, but the set is not unique. In
this case we need two spectra to solve the inverse problem and the situation is
the same as in [19] (see also [18]). Such inverse problem will be considered in a
forthcoming publication.

5. INVERSE PROBLEM FOR A STRING

Now consider the problem of the determination of the set of the parameters
{A(s), p, µ, ν} by given Λ and l > 0. Denote by A+

l , (A−l ) the class of sets
{A(s), p, µ, ν} such that A(s) ∈ W 2

2 (0, l), A(s) > 0 for s ∈ [0, l], p > 0, µ > 0,
ν > pµ (0 < ν < pµ) and such that the corresponding string is weakly damped
(see Definition 3.4).

Theorem 5.1. Let Λ = {λk} be a set of complex numbers satisfying the
conditions of Theorem 4.16 (Theorem 4.17). Then for any l > 0 there exists
a unique set {A(s), p, µ, ν} from A+

l (from A−l ) such that the spectrum of the
corresponding problem (1.4)–(1.6) coincides with Λ.

Proof. It is enough to prove that the formulae (2.6)–(2.10) perform a one–to–
one correspondence between the class A+

l (A−l ) and the class of sets {q(x), a,m,

α, p, β, l} where {q(x), a,m, α, p, β} ∈ N+(N−) and l > 0. Rewrite (2.6), (2.9) as
follows

d2

dx2

(
A[x]

) 1
4 − q(x)

(
A[x]

) 1
4 = 0,

dA[x]
dx

∣∣∣∣
x=a

+ 4βA[a] = 0.

Consider the Cauchy problem

f ′′ − q(x)f = 0(5.1)

f ′(a) = −β(5.2)

f(a) = 1.(5.3)
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As q(x) ∈ L2(0, a) the problem (5.1)–(5.3) possesses a unique solution f(x) ∈
W 2

2 (0, a) and f(x) > 0 for x ∈ [0, a] because A � 0 [10]. It is clear that

A[x] = C
(
f(x)

)4
.

The constant C may be found from the equation

a∫
0

(
A[x]

) 1
2 dx = l

which is a consequence of (2.1).
Thus

C = l2

( a∫
0

(
f(x)

)2

dx

)−2

and

(5.4) A[x] = l2

( a∫
0

(
f(x)

)2 dx

)−2(
f(x)

)4
.

Then (2.7) and (2.8) yield

µ = m
(
A[a]

)− 1
2 > 0(5.5)

ν = α
(
A[a]

)− 1
2 > 0.(5.6)

In order to find A(s) we use the equation

(5.7)

x∫
0

(
A[x′]

) 1
2 dx′ = s

which follows from (2.1). We can find x = x(s) using (5.7) and can find A(s) as
A[x(s)]. Hence,

A(s) = l2

( a∫
0

(
f(x)

)2 dx

)−2(
f(x(s))

)4
.

It is clear that A(s) ∈ W 2
2 (0, l) and A(s) > 0. By (5.5), (5.6) and Theo-

rem 4.16 (4.17) we find {A(s), µ, p, ν} ∈ A+
l (A−l ).

The theorem is proved.
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6. APPENDIX

Consider the quadratic operator pencil

L(λ) = λ2M + λK + A

with the domain D(L(λ)) = D(A) acting in a separable Hilbert space H. The
space H is a complexification of a real Hilbert space and the operators M,K, A

are real. Consequently, the spectrum of L(λ) is symmetric with respect to the real
axis. Let the operators satisfy the conditions: M � 0, K > 0, A∗ = A > −κI,
κ > 0 and suppose that there exists a number κ1 > κ such that (A + κ1I)−1 is
compact. Here I is the identity operator, M and K are bounded. For the sake of
simplicity let us assume that the geometric multiplicity, i.e. the dimension of the
eigensubspace, of every eigenvalue of the pencil

(A.1) L(λ, η) = λ2M + ληK + A

at any η ∈ [0, 1] is equal to 1. This condition is satisfied by the pencils associated
with the problems (1.4)–(1.6), (2.3)–(2.5). The spectrum of the pencil L(λ, η)
consists of normal eigenvalues only ([11]).

Lemma A.1. If λk is a nonreal or a multiple eigenvalue of L(λ), then

Re λk ∈ [−ζ2, 0], where ζ2 = 1
2 sup

y 6=0

(Ky,y)
(My,y) .

Proof. Let λk be an eigenvalue and yk the corresponding eigenvector. Then
(L(λk)yk, yk) = 0 and

(A.2) 2Re λkIm λk (Myk, yk) + Im λk (Kyk, yk) = 0.

If Im λk 6= 0, then (A.2) implies

(A.3) Re λk = − (Kyk, yk)
2 (Myk, yk)

.

Thus the first assertion of the lemma follows.
Let y

(1)
k be the first associated vector of the chain, then

L(λk)y(1)
k + L′(λk)yk = 0

and if Im λk = 0, then

(L(λk)y(1)
k , yk) + (L′(λk)yk, yk) = (y(1)

k , L(λk)yk) + (L′(λk)yk, yk)

= 2λk(Myk, yk) + (Kyk, yk) = 0

and λk satisfies (A.3).
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Lemma A.2. The real eigenvalues of L(λ) are located on the interval[
− ζ2 −

√
ζ2
2 + |a|,

√
|a|
]
, where a = inf

y 6=0

(Ay,y)
(My,y) .

Proof. Let λk be a real eigenvalue, then

λ2
k(Myk, yk) + λk(Kyk, yk) + (Ayk, yk) = 0

and

λk = − (Kyk, yk)
2(Myk, yk)

±
(

(Kyk, yk)2

4(Myk, yk)2
− (Ayk, yk)

(Myk, yk)

) 1
2

.

Then the assertion of the lemma follows.

Consider the pencil L(λ, η) defined by (A.1). It is clear that L(λ, 0) = λ2I+A

and L(λ, 1) = L(λ).

Lemma A.3. Let λ = 0 be an eigenvalue of A. Then λ = 0 is an eigenvalue
of L(λ, η) for any η ∈ [0, 1] and

(i) if KerA ∩KerK = {0}, then the algebraic multiplicity of λ = 0 is equal
to 2 for η = 0 and is equal to 1 for η ∈ (0, 1];

(ii) if dim(KerA ∩ KerK) = 1, then the algebraic multiplicity of λ = 0 is
equal to 2 for all η ∈ [0, 1].

Proof. Let y 6= 0 and Ay = 0. Then L(0, 0)y = 0 and

∂L(λ, 0)
∂λ

∣∣∣∣
λ=0

y + L(0, 0)y = 0.

That means that the first associated vector of the chain may be chosen equal
to y. Due to the identity ∂2L(λ,0)

∂λ2 = 2M , we obtain for the second vector y2 of the
chain

1
2

∂2L(λ, 0)
∂λ2

∣∣∣∣
λ=0

y +
∂L(λ, 0)

∂λ

∣∣∣∣
λ=0

y + L(0, 0)y2 = 0,

i.e.

My + Ay2 = 0

and consequently

(My, y) + (Ay2, y) = (My, y) + (y2, Ay) = 0.

The last equality is false because Ay = 0 and y 6= 0. It means that if η = 0
and λ = 0 is an eigenvalue, then its algebraic multiplicity is equal to 2. Now let
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η > 0, then λ = 0 remains an eigenvalue of L(λ, η). Let y be a corresponding
eigenvector and y1 the first associated vector of the chain. Then

L(0, η)y1 +
∂L(λ, η)

∂λ

∣∣∣∣
λ=0

y = 0,

i.e.
Ay1 + ηKy = 0.

If Ky = 0, then y1 = y. If Ky 6= 0, then (Ay1, y) + η(Ky, y) = η(Ky, y) = 0
which is impossible for η > 0. The absence of the second associated vector of the
chain may be proved analogously.

It was proved in [22] that the spectrum of L(λ) located in the right half-plane
is real and semisimple (i.e. associated vectors are absent).

Lemma A.4. Let K > 0 and let θ0 ∈ R\{0} be an eigenvalue of the operator-
function Q(λ, θ) = I + θ(λ−1K− 1

2 AK− 1
2 + λK− 1

2 MK− 1
2 ) at λ = λ0 ∈ R\{0}.

Then this eigenvalue is holomorphic in some neighbourhood λ ∈ (λ0 − ε, λ0 + ε)
(ε > 0):

(A.4) θ(λ) = θ0 +
∞∑

k=p

bk(λ− λ0)k,

where p ∈ N, bp ∈ R\{0}.

Proof. The spectrum of Q(λ0, θ) in the domain C\{0} consists only of normal
eigenvalues since Q(λ0, θ) is a relatively compact perturbation of Q0(λ0, θ) = I +
θλ−1

0 K− 1
2 AK− 1

2 . The geometric multiplicity of any eigenvalue of Q(λ0, θ) is equal
to 1 because it coincides with that of the corresponding eigenvalue of L(λ0, θ) =
λ0K

1
2 Q(λ0, θ)K

1
2 . Now it is possible to apply the Rellich-Nagy theorem ([26]).

In what follows we use the method of [12].

Lemma A.5. Let λ0 be a negative eigenvalue of L(λ, η0), (η0 > 0), then in
some neighbourhood of (λ0, η0) {(λ, η) : |λ − λ0| < ε, |η − η0| < δ, ε > 0, δ > 0}
all the eigenvalues are given by the formula

(A.5) λj(η) = λ0 +
∞∑

k=1

βk

(
(η − η0)

1
r
j

)k
, j = 1, r,

where β1 6= 0 is real or purely imaginary, (η − η0)
1
r
j , (j = 1, r) means all the

branches of the root.

Proof. After the inversion of (A.4) with η = θ−1 we obtain (A.5).
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Theorem A.6. Let K > 0, then for every nonnegative eigenvalue λk of
L(λ) there exists an eigenvalue λ−k such that

λk + λ−k < 0.

Proof. The eigenvalues of L(λ, η) are piecewise holomorphic functions of η.
They may lose analyticity only when they collide. This follows from [24] (the
generalization of the results of [4] for unbounded operators). Positive eigenvalues
being holomorphic functions of η > 0 [24], they move left along the real axis when
η grows. We identify λ−k as the one satisfying the condition λ−k(0) = −λk(0).
For small enough η > 0 and λ−k(η) such that λ−k(0) < 0 the formula

(A.6) λ′−k(η) =
−λ−k(η) (Ky−k(η), y−k(η))

2λ−k(η)
∥∥M 1

2 y−k(η)
∥∥2 + η (Ky−k(η), y−k(η))

implies λ′−k(η) 6 0. Let λk(0) = 0, then Lemma A.3 implies λ−k(0) = 0 and
λ−k(η) 6= 0 for any η ∈ (0, ε) where ε is some positive number. The equality
Im λ−k(η) = 0 for small enough η > 0 follows from the independence of the
total algebraic multiplicity of the positive spectrum on η > 0 ([22], [24]). Hence,
λ−k(η) < 0 for η ∈ (0, ε), (ε > 0). The assertion of Theorem A.6 is proved for
sufficiently small η > 0. While η > 0 grows, λ′−k(η) may change its sign only
when the denominator of the right hand side of (A.6) vanishes, i.e. under collision.
If a collision takes place on the negative halfaxis, then the eigenvalues behave
according to the formula (A.5). Collisions occur to be of three types. The first
one is with r odd (see (A.5)). In this case we identify the eigenvalue negative
after the collision as the one which was negative before the collision. A collision is
said to be of the second type if r is even and β1 6= 0 is purely imaginary. In that
case two new negative eigenvalues move in opposite directions. The third type
collisions have even r and real β1 6= 0. Let λ−k(η) take part in a collision of the
third type at η = η0 ∈ (0, 1]. Then a collision of the second type indeed happened
at some η ∈ (0, η0) in some λ1 ∈ (−∞, λ−k(η0)). The eigenvalue appeared after
this collision and moves to the left, we identify as λ−k(η).

Remark A.7. Theorem A.6 remains true in the case when the geometric
multiplicity of the eigenvalues is not equal to 1. In this case we have to consider
an eigenvalue of geometric multiplicity m as m coinciding simple eigenvalues.

Lemma A.8. The total algebraic multiplicity of the real spectrum of L(λ) is
even.
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Proof. Consider the auxiliary operator pencil L0(λ) = λ2M+A. As L0(−λ) =
L0(λ) the spectrum of L0(λ) is symmetric with respect to the origin and, conse-
quently, symmetric with respect to the real and to the imaginary axes. If λk = 0
then λ−k = 0 (see Lemma A.3). Hence the total algebraic multiplicity of the real
spectrum of L0(λ) is even. When η ∈ (0, 1] grows, the real spectrum of L(λ, η)
remains in a finite domain (Lemma A.2), so the total algebraic multiplicity of the
real spectrum of L(λ, η) may be changed if eigenvalues come onto the real axis
from the complex plane. But collisions of all three types change (if they do) the
total algebraic multiplicity of the real spectrum by an even number because of the
symmetry of the problem.

Consider the operator pencils

(A.7) L̃(λ) = λ2M̃ + λK̃ + Ã, (D(L̃(λ)) = D(Ã))

acting in L2(0, l)⊕ C where

D(Ã) =

{(
v(s)

v(l)

)
: v(s) ∈ W 2

2 (0, l), v(0) = 0

}

ÃY = Ã

(
v(s)

v(l)

)
=
(
−(A(s)v′(s))′

A(l)v′(l)

)
,

K̃ =
(

pI 0
0 A(l)νI

)
, M̃ =

(
I 0
0 A(l)µI

)
,

and

(A.8) L(λ) = λ2M1 + λK1 + A1

acting in L2(0, a)⊕ C, where

D(L) = D(A1) =
{(

y(x)
y(a)

)
: y(x) ∈ W 2

2 (0, a), y(0) = 0
}

(A.9) A1

(
y(x)
y(a)

)
=
(
−y′′ + q(x)y
y′(a) + βy(a)

)
and

K1 =
(

pI 0
0 αI

)
, M1 =

(
I 0
0 mI

)
.
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The spectrum of L(λ) coincides with the spectrum of L̃(λ). It is easy to
check that Ã∗ = Ã � 0, K̃ � 0, M̃ � 0. The spectrum of L̃(λ) is located in the
open left half-plane ([13]). Consider the pencil

L̃1(λ) = L̃
(
λ− p

2

)
= λ2M̃ + λ(K̃ − pM̃) +

p2

4
M̃ − p

2
K̃ + Ã.

Let ν
µ > p, i.e. K̃ > pM̃ , then applying Lemma A.1 to the pencil L̃1(λ)

we obtain that all nonreal and all multiple eigenvalues are located in the strip
− 1

2

(
ν
µ − p

)
6 Re λ 6 0 and all multiple and nonreal eigenvalues of L̃(λ) lie in the

strip − ν
2µ 6 Re λ 6 −p

2 .

Lemma A.9. Let ν
µ > p, then all nonreal and all multiple eigenvalues of

L̃(λ) are located in the strip − ν
2µ < Re λk < −p

2 .

Proof. Let Im λk 6= 0, Re λk = −p
2 , then (A.2) yields

p
l∫
0

|vk(s)|2 ds + A(l)ν|vk(l)|2

2
( l∫

0

|vk(s)|2 ds + A(l)µ|vk(l)|2
) =

p

2

and, consequently, vk(l) = 0. In this case

λ2
kM̃Yk + λkK̃Yk + ÃYk = 0,

i.e.

λ2
k

(
I 0
0 A(l)µI

)(
vk(s)
vk(l)

)
+ λk

(
pI 0
0 A(l)µI

)(
vk(s)
vk(l)

)
+
(
−(A(s)v′k(s))′

v′k(l)

)
= 0

and, consequently, vk(l) = v′k(l) = 0 which is impossible. Now let Im λk 6= 0,
Re λk = − ν

2µ , then

p
l∫
0

|vk(s)|2 ds + A(l)ν|vk(l)|2

2
( l∫

0

|vk(s)|2 ds + A(l)µ|vk(l)|2
) =

ν

2µ

and, consequently,
l∫
0

|vk(s)|2 ds = 0. Hence |vk(l)|2 =
l∫
0

|vk(s)|2 ds = 0 and Yk =

0 what is impossible. It is easy to prove using Lemma A.1 that all multiple
eigenvalues are located in the strip − ν

2µ < Re λk < −p
2 .
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Lemma A.10. If p = ν
µ , then all nonreal eigenvalues of L̃(λ) are located on

the axis Re λ = −p
2 . The only possible multiple eigenvalue (of multiplicity 2) is

λ = −p
2 .

To prove Lemma A.10 it is sufficient to apply Lemma A.3 to the pencil L0(τ),

where τ =
√

λ2 + λp.

It should be mentioned that another approach to inverse problems of such

type was developed in [28].
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