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Abstract. Let E be a Banach function space based on a Maharam measure
µ. For each ϕ ∈ L∞(µ), the linear operator Mϕ of multiplication by ϕ
is continuous on E. Let U be a subalgebra of L∞(µ). We make a detailed
study of the relationship between ME(U) = {Mϕ : ϕ ∈ U}, the weak operator

closed algebra ME(U)w it generates, the bicommutant algebra ME(U)cc, and

the algebra ME(U∗), where U∗ is the weak-∗ closure of U in L∞(µ). When
E is fully symmetric it is shown that

ME(U) ⊆ ME(U)w ⊆ ME(U)cc ⊆ ME(U∗) ⊆ ME(L∞(µ)).

The inclusion ME(U)cc ⊆ ME(U∗) may fail if E is not fully symmetric.
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1. INTRODUCTION

Let (Ω,Σ, µ) be a Maharam measure space (i.e. µ is localizable and has the finite
subset property). Let E denote anyone of the Banach spaces Lp(µ), 1 6 p 6 ∞.

For a unital, norm-closed subalgebra U ⊆ L∞(µ) let ME(U) denote the algebra
of all multiplication operators in E by elements from U. For the moment U is
assumed to be conjugate closed. There are four natural commutative subalgebras
of the space L(E) of all bounded operators on E which are of interest. There is
ME(U) itself, the strong (resp. weak) operator closed subalgebra ME(U)s (resp.
ME(U)w) of L(E) generated by ME(U), the bicommutant ME(U)cc of ME(U),
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and the algebra ME(U∗) ⊆ L(E) of all multiplication operators by elements from
the weak-star closure U∗ ⊆ L∞(µ) of U. What are the connections between these
algebras? For 1 6 p <∞ it is shown in [18] that

(1.1) MLp(µ)(U) ⊆ MLp(µ)(U)w = MLp(µ)(U)cc = MLp(µ)(U∗).

Of course, the case p = 2 is well-known and corresponds to a particular version of
von Neumann’s bicommutant theorem.

The case p = ∞ is distinctly different. It turns out that

(1.2) ML∞(µ)(U)cc = ML∞(µ)(R(U))

where R(U) is the Dedekind closure of U, formed in the Dedekind complete Riesz
space L∞(µ); see [18] for the details. For instance, if µ is Lebesgue measure in
Ω = [0, 1] and U = C([0, 1]), then U∗ = L∞([0, 1]) whereas R(U) is the space
of all (bounded) Riemann integrable functions on [0, 1]. It is routine to check
that the operator norm and strong operator topologies of L(L∞(µ)) coincide on
ML∞(µ)(U) and hence, ML∞(µ)(U) = ML∞(µ)(U)s. Furthermore, it is immediate
from the definition of Dedekind closure that U ⊆ R(U) and it is not difficult to
check that R(U) ⊆ U∗; see Section 2. So, for E = Lp(µ), 1 6 p 6 ∞, we see
immediately that

(1.3) ME(U) ⊆ ME(U)w ⊆ ME(U)cc ⊆ ME(U∗) ⊆ ME(L∞(µ)).

Of course, for 1 6 p <∞ the second and third containments are actually equalities
(cf. (1.1)). For p = ∞ the first containment is an equality. However, the example
mentioned above shows that the second and third containments may be strict in
the L∞-setting.

The aim of this article is to investigate further the possibility of (1.3) being
satisfied for a class of Banach spaces E which is larger than just the Lp-spaces,
thereby developing further and extending the results of [18]. A natural class of
spaces E to consider in this context is the class of Banach function spaces, firstly
because algebras of multiplication operators by elements from a unital, norm-closed
subalgebra U ⊆ L∞(µ), where E is based on (Ω,Σ, µ), are defined in such spaces
and secondly (as for Lp-spaces), the algebra ME(L∞(µ)) is maximal abelian in
L(E), i.e. ME(L∞(µ))c = ME(L∞(µ)); see Proposition 2.2. It was noted above
that always U ⊆ R(U) ⊆ U∗ ⊆ L∞(µ) and so

(1.4 (a)) ME(U) ⊆ ME(R(U)) ⊆ ME(U∗) ⊆ ME(L∞(µ)).
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It is shown in Section 2 that the additional containments

(1.4 (b)) ME(U) ⊆ ME(U)w ⊆ ME(U)cc ⊆ ME(L∞(µ))

and

(1.4 (c)) ME(U)w ⊆ ME(U∗)

are also satisfied in any Banach function space E. Moreover, if E has order

continuous norm, then (1.4 (c)) is an equality.

An examination of (1.4 (a))–(1.4 (c)) shows that they do “not quite” imply

(1.3). There is good reason for this since the inclusion ME(U)cc ⊆ ME(U∗) fails

in general. Indeed, in Section 3 we exhibit a Banach function space E (based on

a finite measure µ) and a unital, weak-star closed subalgebra U ⊆ L∞(µ) such

that ME(U) = ME(U∗) is a proper subalgebra of ME(U)cc. So, the class of all

Banach function spaces is too large to accomodate (1.3). However, it is shown in

Section 3 that the subclass of fully symmetric Banach function spaces (i.e. the

exact (L1, L∞)-interpolation spaces) has the property that

(1.5) ME(U)cc ⊆ ME(U∗).

Combining this with (1.4 (b)) shows that (1.3) is indeed satisfied for all fully

symmetric Banach function spaces E. We note that all spaces Lp(µ), 1 6 p 6 ∞,

are fully symmetric Banach function spaces. Moreover, if 1 6 p <∞, then Lp(µ)

has order continuous norm and so it follows from (1.3) and the remark immediately

after (1.4 (c)) that MLp(µ)(U)w = MLp(µ)(U)cc = MLp(µ)(U∗), i.e. we recover (1.1)

as a special case.

The final section deals with the special spaces (L1 + L∞)(µ) and (L1 ∩
L∞)(µ). The aim is to exhibit conditions on the subalgebra U ⊆ L∞(µ) which can

be used to determine when the various inclusions in (1.3) are actually equalities

(or are strict) and which can also be used to determine explicitly the various

subalgebras ME(U)w,ME(U)cc,ME(R(U)) and ME(U∗) for specific measures µ

and subalgebras U.
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2. PRELIMINARIES

In this section we establish some terminology and collect some facts which will
be used throughout the paper. It is always assumed that (Ω,Σ, µ) is a Maharam
measure space (in the sense of [7]), i.e., the associated measure algebra is a complete
Boolean algebra (so µ is localizable) and for every A ∈ Σ with µ(A) > 0 there exists
B ∈ Σ such that B ⊆ A and 0 < µ(B) <∞ (i.e., µ has the finite subset property).
By L0(µ) we denote the space of all (equivalence classes of) µ-a.e. finitely-valued
measurable functions on Ω. If it is necessary to distinguish explicitly between C or
R-valued functions we will denote the corresponding spaces by L0

C(µ) and L0
R(µ),

respectively.
A linear subspace E of L0(µ), equipped with a norm ‖·‖E , is called a Banach

function space if (E, ‖ · ‖E) is a Banach space and whenever g ∈ E and f ∈ L0(µ)
satisfy |f | 6 |g| it follows that f ∈ E and ‖f‖E 6 ‖g‖E ; so E is an order ideal
in L0(µ) and (E, ‖ · ‖E) is a Banach lattice. Without loss of generality it may
be assumed that for any A ∈ Σ with µ(A) > 0, there exists B ∈ Σ such that
B ⊆ A, 0 < µ(B) <∞ and χB ∈ E; this can be established by an exhaustion type
argument along the lines of §67 of [20]. Examples of Banach functions spaces are
of course the classical spaces Lp(µ), 1 6 p 6 ∞. Other examples are the spaces
(L1 ∩ L∞)(µ) and (L1 + L∞)(µ) equipped with the norms

‖f‖L1∩L∞ = max (‖f‖1, ‖f‖∞)

and

‖f‖L1+L∞ = inf{‖g‖1 + ‖h‖∞ : g ∈ L1(µ), h ∈ L∞(µ), f = g + h},

respectively. For computational purposes it is sometimes useful to have available
the following alternative description for elements of (L1 +L∞)(µ). Recall that for
f ∈ L0(µ) the decreasing rearrangement f∗ : (0,∞) → [0,∞] of |f | is defined by

f∗(t) = inf{λ > 0 : µ({w ∈ Ω : |f(w)| > λ}) > t}, t > 0.

Then a function f ∈ L0(µ) belongs to (L1 +L∞)(µ) if and only if

t∫
0

f∗(s)ds <∞

for all (equivalently, for some) t > 0, in which case ‖f‖L1+L∞ =

1∫
0

f∗(s)ds. These

statements and notions can be found in [2] and [13], for example; for more general
measure spaces we refer to [7].
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Most of the Banach function spaces E considered in this paper will be exact
(L1, L∞)-interpolation spaces and so, in particular, (L1 ∩ L∞)(µ) ⊆ E ⊆ (L1 +
L∞)(µ) for some Maharam measure µ. Such exact (L1, L∞)-interpolation spaces
are characterized by the property that whenever f ∈ L0(µ) and g ∈ E satisfy
f ≺≺ g, then f ∈ E and ‖f‖E 6 ‖g‖E ; here f ≺≺ g means that f is submajorized
by g in the sense of Hardy-Littlewood-Polya, i.e.,

t∫
0

f∗(s)ds 6

t∫
0

g∗(s)ds, t > 0

(see e.g. [2], [6], [13]). Function spaces E with this latter property will also be
called fully symmetric Banach function spaces. Note that Orlicz spaces, Lorentz
spaces and Marcinkiewicz spaces are all examples of fully symmetric Banach func-
tion spaces.

Assume that E is a Banach function space. The space of all bounded linear
operators on E is denoted by L(E). If ϕ ∈ L∞(µ), then the multiplication operator
Mϕ, defined by Mϕf = ϕf for all f ∈ E, satisfies Mϕ ∈ L(E) and ‖Mϕ‖ =
‖ϕ‖∞ (if we need to specify the space E on which the multiplication operator is
considered to be acting, then we will denote this operator byME

ϕ ). For a subalgebra
U ⊆ L∞(µ) let

ME(U) = {ME
ϕ ∈ L(E) : ϕ ∈ U},

which is a commutative subalgebra of L(E). In most cases U is assumed to be
unital and norm-closed in which case ME(U) is also unital and operator norm-
closed in L(E). As usual, the commutant and bicommutant of ME(U) in L(E)
are denoted by ME(U)c and ME(U)cc, respectively.

The following lemma, which for the case that E = L2(µ) is essentially the
Fuglede theorem for normal operators in Hilbert space, enables us to restrict our
attention to the case of R-valued functions only. The present proof, based on
Rosenblum’s proof of Fuglede’s theorem (see [5], Theorem 7.21), was pointed out
to us by Anton Schep.

Lemma 2.1. Let E ⊆ L0
C(µ) be a Banach function space. If ϕ ∈ L∞C (µ) and

T ∈ L(E) satisfy MϕT = TMϕ, then MϕT = TMϕ (where ϕ denotes the function
defined by ϕ(w) = ϕ(w), for w ∈ Ω).

Proof. Suppose that ψ ∈ L∞(µ). If p is a complex polynomial, then it
is clear that Mp◦ψ = p(Mψ) and hence exp(Mψ) = Mexp(ψ). Now assume that
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ϕ ∈ L∞(µ) and T ∈ L(E) are such that MϕT = TMϕ. Define the analytic
function f : C → L(E) by

f(z) = exp(−zMϕ)T exp(zMϕ), z ∈ C.

Since Mϕ and T commute we have exp(zMϕ)T = T exp(zMϕ), i.e., T =
exp(zMϕ)T exp(−zMϕ) for all z ∈ C. Hence,

f(z) = exp(zMϕ − zMϕ)T exp(zMϕ − zMϕ), z ∈ C.

By the above observation exp(zMϕ − zMϕ) is the operator of multiplication by
exp(zϕ− zϕ). Since the function zϕ− zϕ assumes only purely imaginary values it
follows that

‖ exp(zMϕ − zMϕ)‖L(E) = ‖ exp(zϕ− zϕ)‖∞ = 1

for all z ∈ C. Similarly

‖ exp(zMϕ − zMϕ)‖L(E) = 1

for all z ∈ C. Consequently, ‖f(z)‖ 6 ‖T‖ for all z ∈ C and so f is constant. In
particular, f ′(0) = 0 which yields TMϕ = MϕT.

As already mentioned, in virtue of the above lemma we may restrict ourselves
to considering only real function spaces. All results in this paper extend easily,
with the appropriate modifications, to spaces E of C-valued functions (see [18] for
more details). Therefore, from now on, all Banach function spaces considered will
consist of R-valued functions.

Let U be a unital norm-closed subalgebra of L∞(µ), in which case U is also
a sublattice of L∞(µ). The σ(L∞, L1)-closure of U is also a unital subalgebra
and sublattice and is denoted by U∗. We recall the definition of the Dedekind
closure (see Section 46 of [11], or [18] for more information). For ϕ ∈ L∞(µ)
define elements ϕ↑ and ϕ↓ of L∞(µ) by

ϕ↑ = sup{ψ ∈ U : ψ 6 ϕ} and ϕ↓ = inf{ψ ∈ U : ϕ 6 ψ},

where the supremum and infimum are taken in the Dedekind complete vector
lattice L∞(µ); of course, ϕ↑ and ϕ↓ depend on the algebra U. It is clear that
ϕ↑ 6 ϕ 6 ϕ↓. The Dedekind closure R(U) of U in L∞(µ) is defined by

R(U) = {ϕ ∈ L∞(µ) : ϕ↑ = ϕ↓}.
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Then U ⊆ R(U) and R(U) is a norm-closed unital subalgebra and sublattice of
L∞(µ). The weak-star topology σ(L∞, L1) is generated by the family of semi-

norms ψ 7→ pg(ψ) =
∣∣∣ ∫
Ω

ψgdµ
∣∣∣ as g varies through the non-negative elements

of L1(µ). These semi-norms have the property that pg(ψα) ↑ pg(ψ) for each
0 6 g ∈ L1(µ), whenever {ψα} is an upwards directed net in L∞(µ) satisfying
0 6 ψα ↑ ψ ∈ L∞(µ) (i.e., ψ is the supremum of {ψα} in the vector lattice L∞(µ)).
These observations show that ϕ↑ ∈ U∗ for all ϕ ∈ L∞(µ), and consequently that
R(U) ⊆ U∗. Hence, for any unital norm-closed subalgebra U of L∞(µ) we have the
inclusions

(2.1) U ⊆ R(U) ⊆ U∗ ⊆ L∞(µ).

In particular, if U is weak-star closed, then R(U) = U.
Next we collect some facts concerning the algebras ME(U) of multiplica-

tion operators acting on a Banach function space E. A basic result which will
be used throughout the paper is that ME(L∞(µ)) is maximal abelian in L(E),
i.e., ME(L∞(µ))c = ME(L∞(µ)). For special cases this result can be found in
the literature. However, for the general setting of this paper we were not able
to find an explicit reference. For convenience of the reader we include a proof,
actually of a slightly more general result (cf. Proposition 2.2 below) which will
be useful in the sequel. It is possible to give a quick proof of this result by an
appeal to some rather deep theorems, due to Yu. Abramovich, A.I. Veksler and
A.V. Koldunov, concerning band preserving operators on Banach lattices (see e.g.
[1], Theorem 15.4 and [17], Theorem 3.1.12), but we prefer to present a proof via
more elementary methods.

Proposition 2.2. Let E be a Banach function space on the Maharam mea-
sure space (Ω,Σ, µ). Suppose that Σ0 ⊆ Σ is a family of sets with the property that
for any B ∈ Σ with µ(B) > 0 there exists A ∈ Σ0 such that A ⊆ B and µ(A) > 0.
If T ∈ L(E) satisfies TMχA

= MχA
T for all A ∈ Σ0, then T ∈ ME(L∞(µ)). In

particular, ME(L∞(µ))c = ME(L∞(µ)).

Proof. For f, g ∈ E we write f ⊥ g if f and g are disjointly supported (i.e.,
|f |∧|g| = 0 in E). First we show that if T is as in the statement of the proposition,
then f ⊥ g in E implies that Tf ⊥ g. Suppose, on the contrary, that |Tf |∧|g| > 0.
Then there exists B ∈ Σ and ε > 0 such that µ(B) > 0 and |Tf | ∧ |g| > εχB .
Take A ∈ Σ0 such that A ⊆ B and µ(A) > 0. Since |g| > |Tf | ∧ |g| > εχB > εχA

and |f | ∧ |g| = 0 it follows that χAf = 0, and so χATf = T (χAf) = 0, which is
clearly a contradiction.
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We note that the property of T just established is equivalent to TMχA
=

MχA
T for all A ∈ Σ. Since the linear span of {χA : A ∈ Σ} is norm dense in

L∞(µ), it follows that TMϕ = MϕT for all ϕ ∈ L∞(µ), i.e., T ∈ ME(L∞(µ))c.
Given h ∈ L0(µ) let C(h) = {w ∈ Ω : h(w) 6= 0}. It was just established that

T commutes (in particular) with multiplication by χC(h) and so C(Th) ⊆ C(h) for
all h ∈ E. If ϕh = χC(h) · (Th/h), then it is clear that ϕh ∈ L0(µ) is the unique
function satisfying Th = ϕhh and C(ϕh) ⊆ C(h). For any f, g ∈ E we claim that
ϕf = ϕg on C(f) ∩ C(g). Indeed, let u = |f | ∨ |g|. Since |f | 6 u there exists
ϕ ∈ L∞(µ) such that f = ϕu. Hence Tf = ϕTu = ϕϕuu = ϕuf and so ϕf = ϕu

on C(f). Similarly ϕg = ϕu on C(g) and so ϕf = ϕg on C(f) ∩ C(g). It follows
from this property that |ϕf | 6 ‖T‖1l for all f ∈ E, where 1l denotes the function
constantly equal to 1 on Ω. Using the fact that L∞(µ) is a Dedekind complete
vector lattice (as (Ω,Σ, µ) is Maharam), it follows via a standard argument that
there exists ϕ0 ∈ L∞(µ) such that ϕ0 = ϕf on C(f) for all f ∈ E. Then Tf = ϕ0f

for all f ∈ E and we conclude that T = Mϕ0 ∈ ME(L∞(µ)).

Let U be a unital norm-closed subalgebra of L∞(µ). Then ME(L∞(µ)) ⊆
ME(U)c and so, by the above proposition, ME(U)cc ⊆ ME(L∞(µ)). Consequently,
ME(U)cc = ME(UEcc) for some unital norm-closed subalgebra UEcc of L∞(µ).

For any subset D ⊆ L(E) we denote the closure of D with respect to the
strong (respectively, weak) operator topology τs (respectively, τw) by Ds (respec-
tively, Dw). Recall that convex subsets (in particular, linear subspaces) of L(E)
have the same closures for τs and τw. Since the commutant of any subset of L(E)
is always τw-closed, it follows from Proposition 2.2 that ME(L∞(µ)) is τw-closed
in L(E). In particular, for any unital norm-closed subalgebra U ⊆ L∞(µ) we have
ME(U)s = ME(U)w ⊆ ME(L∞(µ)) and so we can write ME(U)w = ME(UEw) for
some unital norm-closed subalgebra UEw ⊆ L∞(µ). Since ME(U)cc is τw-closed, it
is clear that UEw ⊆ UEcc. Hence, for any unital norm-closed subalgebra U of L∞(µ)
we have the inclusions

(2.2) U ⊆ UEw ⊆ UEcc ⊆ L∞(µ).

Via the vector space isomorphism ϕ↔Mϕ between L∞(µ) and ME(L∞(µ))
we can transfer τw and τs to locally convex Hausdorff topologies on L∞(µ). We
denote these corresponding topologies on L∞(µ) by τEw and τEs , respectively (note
that convex subsets of L∞(µ) have the same closures for τEw and τEs ). It is clear
that UEw is the τEw -closure of U in L∞(µ). The next lemma gives the relation
between the topologies σ(L∞, L1) and τEw on L∞(µ). First we recall some facts
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concerning the Banach space dual E∗ of a Banach function space E. The associate
space E′ of E is defined by

E′ =
{
g ∈ L0(µ) :

∫
Ω

|fg|dµ <∞ for all f ∈ E
}
.

Any g ∈ E′ defines a linear functional ξg ∈ E∗ via

(2.3) 〈f, ξg〉 =
∫
Ω

fgdµ, f ∈ E.

Equipped with the norm ‖ · ‖E′ given by ‖g‖E′ = ‖ξg‖E∗ , it turns out that (E′,

‖ · ‖E′) is also a Banach function space. A linear functional ξ ∈ E∗ can be
represented as ξ = ξg for some g ∈ E′ if and only if ξ is order continuous, i.e.,
〈fα, ξ〉

α−→ 0 whenever {fα} is a downwards directed net in E satisfying fα ↓ 0. If
the norm on E is order continuous (i.e., fα ↓ 0 in E implies that ‖fα‖E ↓ 0), then
every ξ ∈ E∗ satisfies this last condition and hence ξ = ξg for some g ∈ E′ (so, in
this case, we may identify E∗ with E′). The above facts can be found in [6]; [7];
[20], for example.

Lemma 2.3. (i) For any Banach function space E, the topology τEw is stronger
than the σ(L∞, L1)-topology.

(ii) If E has order continuous norm, then the σ(L∞, L1)-topology coincides
with τEw .

Proof. The topology τEw is generated by the family of seminorms {pf,ξ : 0 6

f ∈ E, 0 6 ξ ∈ E∗}, where pf,ξ(ϕ) = |〈ϕf, ξ〉| for ϕ ∈ L∞(µ). The σ(L∞, L1)-
topology is generated by the family of seminorms {qh : 0 6 h ∈ L1(µ)}, where

qh(ϕ) =
∣∣∣ ∫
Ω

ϕhdµ
∣∣∣ for ϕ ∈ L∞(µ). We claim that {qh : 0 6 h ∈ L1(µ)} =

{pf,ξg
: 0 6 f ∈ E, 0 6 g ∈ E′}. Indeed, if 0 6 f ∈ E and 0 6 g ∈ E′, then

pf,ξg = qfg with 0 6 fg ∈ L1(µ). Conversely if 0 6 h ∈ L1(µ), then by a theorem
of Lozanovskii (see [8], [15], [19]) h can be factorized as h = fg with 0 6 f ∈ E

and 0 6 g ∈ E′. Accordingly, qh = pf,ξg
. From this claim and the remarks prior

to the lemma the statements (i) and (ii) follow.

For later reference we state explicitly the following consequence of the above
lemma.

Corollary 2.4. (i) If U ⊆ L∞(µ) is a norm-closed unital subalgebra and
E ⊆ L0(µ) is any Banach function space, then U∗ is τEw -closed and UEw ⊆ U∗.

(ii) If E has order continuous norm, then UEw = U∗.
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Remark 2.5. An alternative description of ME(U)w is possible. Given a
Banach space X and an algebra of operators B ⊆ L(X) we denote by Lat(B)
the collection of all closed subspaces Y ⊆ X satisfying BY ⊆ Y for every B ∈
B. Then AlgLat(B) denotes the subalgebra {T ∈ L(X) : TY ⊆ Y for all Y ∈
Lat(B)} of L(X).

Let E be a Banach function space on the Maharam measure space (Ω,Σ, µ)
and U ⊆ L∞(µ) be a unital norm-closed subalgebra. The claim is that ME(U)w =
AlgLat(ME(U)). Indeed, by Gelfand theory (over R; §17 of [3]) or Kakutani’s
theorem there is a compact Hausdorff space K and a bounded unital isomorphism
m of C(K) into L(E) such that m(C(K)) = ME(U). The conclusion then follows
from Theorem 7 of [9].

Finally, we formulate an extension theorem for lattice homomorphisms on
vector lattices (sharpening the Luxemburg-Schep extension theorem) which is
needed later on. Suppose that L and M are (Archimedean) vector lattices. A
linear mapping T : L → M is called a lattice homomorphism if |Tx| = T |x| for
all x ∈ L. As is well known, if T is a linear mapping from L∞(µ) into itself with
T1l = 1l, then T is a lattice homomorphism if and only if T is an algebra homomor-
phism. Now assume that M is Dedekind complete and K ⊆ L is a vector sublattice
which is majorizing (i.e., for every x ∈ L there exists y ∈ K such that x 6 y). The
Luxemburg-Schep extension theorem ([16]) states that whenever T0 : K →M is a
lattice homomorphism there exists a lattice homomorphism T : L→M such that
T |K = T0. For x ∈ L define

(2.4)
θ`(x) = sup{T0y : y ∈ K, y 6 x},
θu(x) = inf{T0y : y ∈ K,x 6 y}.

It is clear that any lattice homomorphism T : L → M which extends T0 must
satisfy θ`(x) 6 Tx 6 θu(x) for all x ∈ L. The proof of the following result, as
pointed out to us by Anton Schep, follows from a close inspection of the proof
(due to Z. Lipecki ([14])) of the Luxemburg-Schep extension theorem in the book
[17], Section 1.5. We leave the details to the reader.

Proposition 2.6. Let L and M be vector lattices with M being Dedekind
complete and let K ⊆ L be a majorizing vector sublattice. Let T0 : K → M be a
lattice homomorphism and define θ` : L → M and θu : L → M by (2.4). Then,
given any x0 ∈ L and y0 ∈M satisfying θ`(x0) 6 y0 6 θu(x0) there exists a lattice
homomorphism T : L→M such that T |K = T0 and Tx0 = y0.
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3. SOME GENERAL RESULTS

As before, E denotes a Banach function space on a Maharam measure space
(Ω,Σ, µ). Let U be a unital norm-closed subalgebra of L∞(µ). In this section
we will prove a number of results concerning the relationship between the algebras
in (2.1) and (2.2).

Theorem 3.1. If E is a fully symmetric Banach function space, then
UEcc ⊆ U∗.

Proof. The statement of the theorem is equivalent to the condition UEcc = U

for any σ(L∞, L1)-closed unital subalgebra U of L∞(µ). So assume that U ⊆
L∞(µ) is actually σ(L∞, L1)-closed.

First consider the case when µ is a finite measure. Since U is closed for µ-
a.e. pointwise convergence of bounded sequences (by the dominated convergence
theorem and the fact that U∗ = U) it is known that there exists a σ-subalgebra
Σ0 ⊆ Σ such that U = L∞(Σ0, µ); see e.g. [10], Chapter II. Let E( · |Σ0) be
the conditional expectation operator with respect to Σ0. Since E is fully symmet-
ric (or equivalently, an exact (L1, L∞)-interpolation space), E( · |Σ0) acts as a
bounded linear operator in E. Since each ϕ ∈ U is Σ0-measurable, it follows that
E(ϕf |Σ0) = ϕE(f |Σ0) for all f ∈ E and ϕ ∈ U showing that E( · |Σ0) ∈ ME(U)c.
Now take ψ ∈ UEcc. Then Mψ commutes, in particular, with E( · |Σ0), i.e.,
E(ψf |Σ0) = ψE(f |Σ0) for all f ∈ E. Noting that f = 1l ∈ L∞(µ) ⊆ E yields
E(ψ|Σ0) = ψ. Hence ψ ∈ L∞(Σ0, µ) = U.

The extension to an arbitrary Maharam measure space is obtained by the
same method of proof as that of Proposition 3.4 in [18], to which we refer the
reader for the details.

In view of Theorem 3.1, if E is a fully symmetric Banach function space and
U ⊆ L∞(µ) is a unital norm-closed subalgebra, then

(3.1) U ⊆ UEw ⊆ UEcc ⊆ U∗ ⊆ L∞(µ).

In combination with Corollary 2.4 this yields immediately the following result.

Corollary 3.2. If E is a fully symmetric Banach function space with order
continuous norm, then UEw = UEcc = U∗. In particular, ME(U)w = ME(U)cc, that
is, the bicommutant theorem holds.

We note, in particular, that reflexive Banach function spaces have order
continuous norm (see e.g. Theorem 2.4.15 of [17] and Theorem 114.8 of [21]) as
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do the spaces L1(µ). In particular, if E = Lp(µ), 1 6 p < ∞, then Corollary 3.2
contains Theorem 1.1 of [18] as a special case.

The assumption that E is fully symmetric cannot be omitted in the above
results, as is illustrated by the following example. This example is essentially due
to J. Dieudonné ([4]), and was constructed for a different but related purpose.

Example 3.3. ([4]) As the underlying measure space we take the interval
[0, 2] equipped with Lebesgue measure λ. Let w1 and w2 be two decreasing positive

functions on [0, 1] satisfying

1∫
0

w2
1dλ =

1∫
0

w2
2dλ = ∞ and

1∫
0

w1w2dλ <∞ (see [4]

for an explicit construction of such a pair of functions). For any fixed 1 6 p <∞
define the function norm ρ on L0([0, 2]) by

ρ(f) =
( 1∫

0

{(fχ[0,1])∗}pw1dλ
)1/p

+
( 1∫

0

{(fχ[1,2])∗}pw2dλ
)1/p

,

and let E = {f ∈ L0([0, 2]) : ρ(f) <∞}. Then E is a Banach function space when
equipped with the norm ρ (but not fully symmetric). Clearly ρ is order continuous
and if 1 < p < ∞, then E is even reflexive. Define the unital σ(L∞, L1)-closed
(proper) subalgebra U ⊆ L∞([0, 2]) by

U = {ϕ ∈ L∞([0, 2]) : ϕ(t) = ϕ(t− 1) for 1 6 t 6 2}.

It is shown in [4] that ME(U)c = ME(L∞([0, 2])) and so UEcc = L∞([0, 2]). Hence,
the conclusion of both Theorem 3.1 and Corollary 3.2 fail in this case.

The next result is more special. As shown in [18], if E = L∞(µ) and U ⊆
L∞(µ) is any unital norm-closed subalgebra, then UEcc = R(U), the Dedekind
closure of U. As noted in the Introduction the choice E = Lp([0, 1]), 1 6 p <

∞, and U = C([0, 1]) shows that this result does not hold in general. However,
for certain spaces E and for algebras U with special properties it turns out that
the inclusion UEcc ⊆ R(U) is valid. In the next section we will discuss examples
where these conditions are satisfied, and also exhibit examples showing that the
assumptions in the theorem below cannot be omitted in general.

Theorem 3.4. Let E be a Banach function space such that L∞(µ) ⊆ E ⊆
(L1 + L∞)(µ). Suppose that U ⊆ L∞(µ) is a unital norm-closed subalgebra satis-
fying U ∩ L1(µ) = {0}.

(i) The topology τEs restricted to U coincides with the norm topology of
L∞(µ) restricted to U. In particular, UEw = U.
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(ii) R(U) ∩ L1(µ) = {0}.
(iii) UEcc ⊆ R(U).

Proof. First observe that the inbeddings L∞(µ) ⊆ E ⊆ (L1 + L∞)(µ) are
necessarily continuous (by the closed graph theorem, for example).

(i) Note that U∩L1(µ) = {0} implies that µ({w ∈ Ω : |ϕ(w)| > 0}) = ∞ for
all 0 6= ϕ ∈ U. We claim, for each ϕ ∈ U, that ϕ∗(t) = ‖ϕ‖∞ for all t > 0. Indeed,
take ϕ ∈ U \ {0} and let 0 < λ < ‖ϕ‖∞. Then 0 < (|ϕ| − λ1l)+ ∈ U and hence,
µ({w ∈ Ω : |ϕ(w)| > λ}) = ∞. This implies that ϕ∗(t) > λ for all t > 0, from

which the claim follows. Since ‖ϕ‖L1+L∞ =

1∫
0

ϕ∗(t)dt, it follows, in particular,

that ‖ϕ‖L1+L∞ = ‖ϕ‖∞ for all ϕ ∈ U. Let {ϕα} be a net in U which converges
to ϕ ∈ L∞(µ) with respect to τEs , i.e., Mϕα

α−→ Mϕ with respect to τs in L(E).
Then ϕα = Mϕα

(1l) α−→Mϕ(1l) = ϕ with respect to ‖ · ‖E and hence, ϕα
α−→ ϕ in

the norm of (L1 +L∞)(µ). Since ‖ϕα −ϕ‖L1+L∞ = ‖ϕα −ϕ‖∞, this implies that
ϕα

α−→ ϕ for the norm in L∞(µ). This shows that U is τEs -closed in L∞(µ) and
the topologies τEs and ‖ · ‖∞ coincide on U.

(ii) Fix 0 6 ϕ ∈ L∞(µ) ∩ L1(µ). If 0 6 ψ 6 ϕ and ψ ∈ U, then 0 6 ψ ∈
U ∩ L1(µ) and so ψ = 0. Hence, ϕ↑ = 0. This shows that R(U) ∩ L1(µ) = {0}.

(iii) Define the linear subspace K of L∞(µ) by K = U⊕ (L1 ∩L∞)(µ). Each
f ∈ K has a unique decomposition f = f1+f2 with f1 ∈ U and f2 ∈ (L1∩L∞)(µ).
Define T0 : K → L∞(µ) by T0f = f1. The claim is that K is a vector sublattice
of L∞(µ) and that T0 : K → L∞(µ) is a lattice homomorphism. To see this take
f ∈ K and write f = f1 + f2 as above. Then

(3.2) |f | = |f1|+ (|f | − |f1|)

with |f1| ∈ U. Also
∣∣|f | − |f1|∣∣ 6 |f − f1| = |f2| ∈ (L1 ∩L∞)(µ) and so |f | − |f1| ∈

(L1 ∩ L∞)(µ). Hence, |f | ∈ K and so (3.2) is the unique decomposition of |f |.
Accordingly, T0|f | = |f1| = |T0f |, which proves the claim.

For f ∈ L∞(µ), let

(3.3)
θ`(f) = sup{T0g : g ∈ K, g 6 f},
θu(f) = inf{T0g : g ∈ K, f 6 g}.

Fix f0 ∈ L∞(µ) and suppose that h0 ∈ L∞(µ) satisfies θ`(f0) 6 h0 6 θu(f0). By
Proposition 2.6 there exists a lattice homomorphism T1 : L∞(µ) → L∞(µ) such
that T1|K = T0 and T1f0 = h0.

Now take f ∈ E and write f = f1 + f∞ with f1 ∈ L1(µ) and f∞ ∈ L∞(µ).
We define T : E → E by Tf = T1f∞. Since T1 ≡ 0 on L1(µ) ∩ L∞(µ), it is easy
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to see that T is well defined and, via a similar argument as in the beginning of the

proof of part (iii), it follows that T is a lattice homomorphism. In particular, as T

is positivity preserving it is norm bounded on E. The claim is that T ∈ ME(U)c.

Indeed, since T1 : L∞(µ) → L∞(µ) is a lattice homomorphism with T11l = 1l, it

follows that T1 is multiplicative. Take ϕ ∈ U and f ∈ E. Writing f = f1 + f∞ as

above we have that ϕf = ϕf1 +ϕf∞ with ϕf1 ∈ L1(µ) and ϕf∞ ∈ L∞(µ). Hence,

T (ϕf) = T1(ϕf∞) = T1ϕ · T1f∞ = ϕT1f∞ = ϕTf. This shows that TMϕ = MϕT

for all ϕ ∈ U, i.e., T ∈ ME(U)c.

Suppose now that f0 ∈ UEcc. Then TMf0 = Mf0T and so, in particular,

TMf01l = Mf0T1l, i.e. Tf0 = f0. Hence f0 = h0 which shows that θ`(f0) =

θu(f0) = f0. Since T0g ∈ U for all g ∈ K, it follows from (3.3) that θ`(f0) is a

supremum of elements in U and hence θ`(f0)↑ = θ`(f0). Similarly θu(f0)↓ = θu(f0).

Since f0 satisfies f0 = θ`(f0) = θu(f0), we have f0 = f↑0 = f↓0 and so f0 ∈ R(U).

We have thus shown that UEcc ⊆ R(U). The proof of the theorem is thereby

complete.

Observe that any fully symmetric Banach function space containing 1l auto-

matically satisfies the assumptions on E required by Theorem 3.4.

In the setting of Theorem 3.4 above the algebra UEcc is in some sense “small”.

There are also situations in which one can conclude that UEcc is “large”.

Proposition 3.5. Let E be a Banach function space on (Ω,Σ, µ) and let

U ⊆ L∞(µ) be a norm-closed unital subalgebra. Suppose there is a collection

Σ0 ⊆ Σ such that whenever B ∈ Σ satisfies µ(B) > 0 there exists A ∈ Σ0 such

that A ⊆ B and µ(A) > 0. If χA ∈ UEw for each A ∈ Σ0, then UEcc = L∞(µ).

Proof. Since UEw ⊆ UEcc, it follows from Proposition 2.2 that ME(U)c =

ME(L∞(µ)). Accordingly, UEcc = L∞(µ).

Note that the above result applies, in particular, if L1(µ) ∩ L∞(µ) ⊆ UEw .
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4. THE SPACES (L1 + L∞)(µ) AND (L1 ∩ L∞)(µ)

The aim of this final section is to consider the particular fully symmetric Banach
function spaces (L1 + L∞)(µ) and (L1 ∩ L∞)(µ) and specific subalgebras U ⊆
L∞(µ). The examples are chosen to be new and non-trivial, to illustrate the
variety of the phenomena of significance that can typically occur, and to show
the applicability of the general results developed in earlier sections to concrete
situations. Along the way we also establish some general results of interest in
their own right.

When µ is Lebesgue measure on the Lebesgue measurable subsets of R we will
denote (L1+L∞)(µ) and (L1∩L∞)(µ) simply by (L1+L∞)(R) and (L1∩L∞)(R),
respectively. Lebesgue measure itself will always be denoted by m.

Example 4.1. Let E = (L1 + L∞)(R) and U = Cb(R) be the algebra of
all bounded continuous functions on R. We first determine the algebra UEw , i.e.
the closure of U with respect to τEw . Recall that UEw is also the closure of U with
respect to τEs , where τEs is the topology generated by the family of semi-norms
ϕ 7→ ‖ϕf‖E as f varies in (L1 + L∞)(R). We will require the following result.

Proposition 4.1.1. Let (Ω,Σ, µ) be a Maharam measure space, U ⊆ L∞(µ)
be a unital norm-closed subalgebra and E = (L1 + L∞)(µ). Then

UEw = L∞(µ) ∩ clE(U),

where clE(U) denotes the norm closure of U in E.

Proof. Fix ϕ ∈ UEw and choose a net {ϕα} in U such that ϕα
α−→ ϕ with

respect to τEs . By the definition of τEs this implies, in particular, that ‖ϕα −
ϕ‖L1+L∞

α−→ 0. Hence, ϕ ∈ clE(U) which shows that UEw ⊆ L∞(µ) ∩ clE(U).
Now choose ϕ ∈ L∞(µ)∩ clE(U). Then there exists a sequence {ϕn}∞n=1 in U

such that ‖ϕn − ϕ‖L1+L∞ → 0 as n→∞. By replacing ϕn with (ϕn ∧ ‖ϕ‖∞1l) ∨
(−‖ϕ‖∞1l), if necessary, we may assume that |ϕn| 6 ‖ϕ‖∞1l for n = 1, 2, . . .. Now
write ϕn−ϕ = ψ′n+ψ′′n where ψ′n ∈ L1(µ) and ψ′′n ∈ L∞(µ) satisfy |ψ′n| 6 |ϕn−ϕ|
and |ψ′′n| 6 |ϕn − ϕ| and have the property that ‖ψ′n‖1 → 0 and ‖ψ′′n‖∞ → 0
as n → ∞. By passing to a subsequence we may further assume that ψ′n → 0
pointwise µ-a.e. as n→∞. Note that ψ′n ∈ (L1 ∩L∞)(µ) and |ψ′n| 6 2‖ϕ‖∞1l for
all n = 1, 2, . . .. Fix f ∈ (L1 + L∞)(µ). Then ψ′nf ∈ L1(µ) and so

‖(ϕn − ϕ)f‖L1+L∞ 6 ‖ψ′nf‖L1+L∞ + ‖ψ′′nf‖L1+L∞

6 ‖ψ′nf‖1 + ‖ψ′′n‖∞‖f‖L1+L∞ .
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Writing f = g + h, with g ∈ L1(µ) and h ∈ L∞(µ), we have ‖ψ′nf‖1 6 ‖ψ′ng‖1 +

‖ψ′n‖1‖h‖∞. By the dominated convergence theorem it follows that ‖ψ′ng‖1 → 0 as

n→∞. This shows that ‖ψ′nf‖1 → 0 as n→∞ and hence, that ‖(ϕn−ϕ)f‖1 → 0

as n→∞. Consequently, ϕn → ϕ with respect to τEs as n→∞ and we conclude

that ϕ ∈ UEw .

Returning to the example, where we recall that U = Cb(R), let A ⊆ R be

any Lebesgue measurable set. Choose a sequence ϕn ∈ Cb(R), for n = 1, 2, . . .,

satisfying 0 6 ϕn 6 1l (n = 1, 2, . . .) and ‖ϕn − χA‖1 → 0 as n → ∞. Then

‖ϕn − χA‖L1+L∞ → 0 as n → ∞ and so χA ∈ clE(U). Since any ϕ ∈ L∞(R) can

be approximated uniformly by step functions based on Lebesgue measurable sets,

it follows that L∞(R) ⊆ clE(U). This implies that clE(U) = (L1 + L∞)(R). From

Proposition 4.1.1 it now follows that UEw = L∞(R). The inclusions (3.1) then yield

U ⊆ UEw = UEcc = U∗ = L∞(R).

Example 4.2. Let E = (L1 + L∞)(R) and U = BUC(R) be the algebra of

all bounded uniformly continuous functions on R. In this case it is not so straight-

forward to compute UEw explicitly. First we show that UEw contains sufficiently

many functions to determine UEcc (via Proposition 3.5). For this purpose we re-

quire the following slightly more general result. Let C∞
c (R) denote the space of

all compactly supported C∞-functions on R.

Proposition 4.2.1. Let E = (L1 + L∞)(R) and suppose that U ⊆ L∞(R)

is any unital norm-closed subalgebra containing C∞
c (R). Then χA ∈ UEw for all

bounded Lebesgue measurable sets A ⊆ R. In particular, UEcc = L∞(R).

Proof. If A is a bounded Lebesgue measurable subset of R, then there exists

a sequence {ϕn}∞n=1 in C∞
c (R) such that ‖ϕn − χA‖1 → 0 as n → 0 and hence

also ‖ϕn − χA‖L1+L∞ → 0 as n → ∞. This shows that χA ∈ clE(U) and so, by

Proposition 4.1.1, χA ∈ UEw . The last statement of the lemma follows immediately

from Proposition 3.5.

Remark. We note that in E = (L1 + L∞)(R) the condition C∞
c (R) ⊆ U

actually implies that (L1∩L∞)(R) ⊆ UEw . This follows from Proposition 4.2.1 and

a routine approximation argument.
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Now we return to the situation of U = BUC(R) in Example 4.2. From
Proposition 4.2.1 and (3.1) it follows that

(4.1) U ⊆ UEw ⊆ UEcc = U∗ = L∞(R).

It is clear that the first inclusion in (4.1) is strict. We now show that the second
inclusion is also strict. From Proposition 4.1.1 we know that UEw = L∞(R)∩clE(U).
For any function ϕ ∈ (L1 + L∞)(R) and t ∈ R define the translated function ϕt

by ϕt(x) = ϕ(x − t). If ϕ ∈ U = BUC(R), then lim
t→0

‖ϕt − ϕ‖∞ = 0 and hence

lim
t→0

‖ϕt−ϕ‖L1+L∞ = 0. Consequently, lim
t→0

‖ϕt−ϕ‖L1+L∞ = 0 for all ϕ ∈ clE(U).

Define the function ψ ∈ L∞(R) by ψ =
∞∑

n=−∞
χ[2n,2n+1]. It is easy to see that

(ψt − ψ)∗(s) = 1 for all s > 0 and |t| < 1 and hence that ‖ψt − ψ‖L1+L∞ = 1
for all |t| < 1. Accordingly, ψ 6∈ UEw and we conclude that the second inclusion in
(4.1) is strict.

Although we cannot provide an explicit description of UEw it is possible to
give a characterization of UEw . In the argument above we observed that lim

t→0
‖ft −

f‖L1+L∞ = 0 whenever f ∈ clL1+L∞(BUC(R)). Actually, this property charac-
terizes functions in clL1+L∞(BUC(R)). Indeed, suppose that f ∈ (L1 + L∞)(R)
satisfies ‖ft − f‖L1+L∞ → 0 as t → 0. Fix any non-negative function ψ ∈ Cc(R)
and define ψn : x 7→ nψ(nx) for each n = 1, 2, . . .. Then the convolutions f ∗ψn be-
long to BUC(R) for all n = 1, 2, . . .. Using the assumption on f a routine argument
shows that ‖f − (ψn ∗ f)‖L1+L∞ → 0 as n → ∞. Hence f ∈ clL1+L∞(BUC(R)).
In combination with Proposition 4.1.1 this implies that

UEw = {ϕ ∈ L∞(R) : lim
t→0

‖ϕ− ϕt‖L1+L∞ = 0}

for the case of U = BUC(R) and E = (L1 + L∞)(R).

Example 4.3. Let E = (L1 + L∞)(R) and U = AP(R) be the real alge-
bra of all almost periodic functions on R, i.e., the norm-closure in L∞R (R) of the
real trigonometric polynomials. First observe that U ∩ L1(R) = {0}; this follows
from [12], Lemma VI.5.14, for example. Therefore, the conditions of Theorem 3.4
are satisfied. Moreover, U∗ = L∞(R) since U separates points of L1(R) by the
uniqueness theorem for Fourier transforms of L1-functions. Hence,

(4.2) U = UEw ⊆ UEcc ⊆ R(U) ⊆ U∗ = L∞(R),

where R(U) is the Dedekind closure of U in L∞(R). According to Theorem 3.4,
also R(U) ∩ L1(R) = {0} and so the last inclusion in (4.2) is clearly strict. Next
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we show that the first inclusion in (4.2) is also strict by exhibiting a class of non-
continuous functions in UEcc. Take any ψ ∈ U = AP(R) such that m({x ∈ R :
ψ(x) = 0}) = 0 and let A = {x ∈ R : ψ(x) > 0}. We claim that χA ∈ UEcc. Indeed,
let T ∈ ME(U)c. If f ∈ (L1 +L∞)(R) satisfies f ⊥ χA, then ψ+Tf = T (ψ+f) = 0
and so Tf ⊥ χA. Since R \ A = {x ∈ R : ψ(x) < 0} ∪ {x ∈ R : ψ(x) = 0}
with m({x ∈ R : ψ(x) = 0}) = 0, a similar argument shows that f ⊥ χR\A

implies Tf ⊥ χR\A. This implies that T is reduced by the projection MχA
, i.e.,

TMχA
= MχA

T. The claim is thereby proved.
At the present time we do not know if the second inclusion in (4.2) is strict.

We now wish to concentrate on the space E = (L1 ∩L∞)(µ). Before turning
our attention to specific examples we begin with a general description of UEcc in
this case. First we require some notation and terminology.

Let (Ω,Σ, µ) be a Maharam measure space. For any A ∈ Σ let L∞(A,µ)
denote the L∞-space on A with respect to the restriction of µ to A. Clearly
L∞(A,µ) can be identified with the closed subspace of L∞(µ) consisting of all
functions which vanish on Ω \ A. Let Σf = {A ∈ Σ : µ(A) < ∞}. Given a unital
norm-closed subalgebra U ⊆ L∞(µ) and A ∈ Σf we define the unital norm-closed
subalgebra UA = {ϕχA : ϕ ∈ U} of L∞(A,µ). The local Dedekind closure Rloc(U)
of U in L∞(µ) is now defined by

Rloc(U) = {ϕ ∈ L∞(µ) : ϕχA ∈ R(UA) for all A ∈ Σf};

here R(UA) denotes the Dedekind closure of UA in L∞(A,µ). It is easy to check
that R(U) ⊆ Rloc(U). In general this inclusion is strict (see Examples 4.7 and 4.10
below).

Theorem 4.4. Let (Ω,Σ, µ) be a Maharam measure space, E = (L1 ∩
L∞)(µ) and let U ⊆ L∞(µ) be a unital norm-closed subalgebra. Then UEcc =
Rloc(U).

Proof. First we show that Rloc(U) ⊆ UEcc. Take ϕ ∈ Rloc(U) and T ∈
ME(U)c. For A ∈ Σf define TA ∈ L(L∞(A,µ)) by TA(f) = χAT (f) for all
f ∈ L∞(A,µ). Is is easy to verify that TA ∈ ML∞(A,µ)(UA)c. By Theorem 1.2
in [18] we have that ML∞(A,µ)(UA)cc = ML∞(A,µ)(R(UA)). By hypothesis ϕχA ∈
R(UA) and so ϕχATA(f) = TA(ϕχAf) for all f ∈ L∞(A,µ). This shows that
χAϕT (χAf) = χAT (ϕχAf) for all f ∈ (L1 ∩ L∞)(µ) and all A ∈ Σf . Using
the density in (L1 ∩ L∞)(µ) of all step functions based on Σf it follows that
MϕT = TMϕ. This shows that ϕ ∈ UEcc.

To establish that UEcc ⊆ Rloc(U) let ϕ ∈ UEcc. By Theorem 1.2 in [18] and
the definition of Rloc(U) it suffices to show that MϕχA

∈ ML∞(A,µ)(UA)cc for all
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A ∈ Σf . To this end let A ∈ Σf and S ∈ ML∞(A,µ)(UA)c be given. Define the
operator T ∈ L(E) by Tf = S(χAf) for all f ∈ E. It is then routine to verify that
T ∈ ME(U)c. Since ϕ ∈ UEcc, this implies that MϕT = TMϕ. From the definition
of T it then follows that MϕχA

S = SMϕχA
. This completes the proof.

Example 4.5. Let E = (L1 ∩ L∞)(R) and U = Cb(R). It is then easy to
check that Rloc(U) = R(U) = R(R), where R(R) is the algebra of all bounded
Riemann measurable functions on R (cf. [18], Example 2.4). Hence, from (3.1)
and Theorem 4.4 it follows that

(4.3) U ⊆ UEw ⊆ UEcc = R(R) ⊆ U∗ = L∞(µ).

It remains to determine the algebra UEw for which we need the following result.

Lemma 4.5.1. Let E = (L1 ∩ L∞)(R). Then τEs coincides with the ‖ · ‖∞-
norm topology on Cb(R).

Proof. Recall that τEs is generated by the family of semi-norms ϕ 7→
‖ϕf‖L1∩L∞ as f varies in (L1 ∩ L∞)(R). Clearly τEs is weaker than the ‖ · ‖∞-
topology on L∞(R). It remains to show that on Cb(R) the ‖·‖∞-topology is weaker
than τEs . For this purpose it suffices to show that there exists f ∈ (L1 ∩ L∞)(R)
such that

{ϕ ∈ Cb(R) : ‖ϕf‖L1∩L∞ < 1} ⊆ {ϕ ∈ Cb(R) : ‖ϕ‖∞ < 1}.

Let A be any open dense subset of R with 0 < m(A) < ∞ and suppose that
ϕ ∈ Cb(R) is a non-zero function such that ‖ϕχA‖L1∩L∞ < 1. Take 0 < r < ‖ϕ‖∞.
Then {x ∈ R : |ϕ(x)| > r} ∩ A is open and non-empty and so r 6 ‖ϕχA‖∞ 6

‖ϕχA‖L1∩L∞ . Hence ‖ϕ‖∞ 6 ‖ϕχA‖L1∩L∞ < 1 and the proof is complete.

Since Cb(R) is ‖ · ‖∞-complete, the above lemma implies, in particular, that
U = Cb(R) is τEs -closed and hence that it is τEw -closed, i.e., UEw = U. So we conclude
in this case that

(4.4) U = UEw ⊆ UEcc = R(R) ⊆ U∗ = L∞(R)

with both inclusions strict.

Example 4.6. Let E = (L1∩L∞)(R) and U = BUC(R). From Lemma 4.5.1
it is clear that UEw = U. We again have that R(U) = Rloc(U) = R(R). Therefore,
the situation is exactly as in (4.4).
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Example 4.7. Let E = (L1 ∩L∞)(R) and U = AP(R). Again Lemma 4.5.1

implies that UEw = U. Furthermore, since the restriction to a closed bounded inter-

val in R of the almost periodic functions coincides with the space of all continuous

functions on this interval, it is clear that Rloc(U) = R(R). Hence, also UEcc = R(R)

by Theorem 4.4. However, R(U) is strictly contained in Rloc(U). Indeed, as ob-

served in Example 4.3 we have R(U)∩L1(R) = {0}. Accordingly, (4.4) is valid for

U = AP(R), but now the inclusion R(U) ⊆ Rloc(U) is strict.

Examples 4.1–4.7 have been chosen to be representative in the sense that they

illustrate (non-trivially) the variety of phenomena that occur. Of course, there are

other examples of algebras acting in (L1 + L∞)(R) and (L1 ∩ L∞)(R) which are

of interest for various reasons. For instance, the norm-closed unital subalgebra

C`(R) consisting of the continuous functions f for which lim
|x|→∞

f(x) exists can be

identified with (the real part of) the norm-closed unital algebra generated by the

subalgebra L̂1(R) = {ĝ : g ∈ L1(R)} and so is of interest from the viewpoint of

harmonic analysis. The same is true of M̂R(R), consisting of the real part of the

norm closure in L∞(R) of the algebra of all Fourier-Stieltjes transforms of finite

regular Borel measures on R. Then C`(R) ⊆ M̂R(R) ⊆ BUC(R) with all inclusions

strict. The algebra U of all even functions in L∞(R) shows that U need not always

be translation invariant or satisfy U∗ = L∞(R). If A is a Lebesgue measurable

subset of R with m(A) > 0, then the algebra consisting of all elements of L∞(R)

which are constant m-a.e. on A shows that not all algebras need have the property

that they contain x 7→ f(−x) whenever they contain f . And so on. The interested

reader may wish to pursue the details of such additional algebras (and many more,

of course).

We should also point out that algebras like C`(R) and Cb(R) have analogues

in the setting of (L1+L∞)(µ) and (L1∩L∞)(µ) for any regular Maharam measure

µ on the Borel sets of a σ-compact, locally compact Hausdorff space, for example.

Similarly, algebras like C`(R), M̂R(R),AP(R) and BUC(R) have analogues in (L1+

L∞)(µ) and (L1∩L∞)(µ) when µ is Haar measure on a σ-compact, locally compact

abelian group. By modifying appropriately the arguments used for m and R the

results and examples above can be carried over to these more general settings.

We end this section with some examples relevant to specific kinds of Maharam

measure spaces which, nevertheless, illustrate various points. We first collect some

elementary facts which are needed; their proofs are routine and so are omitted.
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Remark 4.8. (i) Let (Ω,Σ, µ) be a finite measure space. Then (L1 +
L∞)(µ) = L1(µ) with equivalence of norms and (L1 ∩ L∞)(µ) = L∞(µ) with
equivalence of norms.

(ii) Let Ω be a non-empty set, Σ = 2Ω be the σ-algebra of all subsets of
Ω and let µ be counting measure. Then (L1 + L∞)(µ) = `∞(Ω) with equality of
norms and (L1 ∩ L∞)(µ) = `1(Ω) with equality of norms.

(iii) Let E = L∞(µ), with (Ω,Σ, µ) an arbitrary Maharam measure space,
and U ⊆ L∞(µ) be an arbitrary unital norm-closed subalgebra. Then the topology
τEs restricted to U coincides with the ‖ · ‖∞-norm topology restricted to U. In
particular, UEw = U.

Example 4.9. Let Ω = N and µ be counting measure on Σ = 2N. Let
E = (L1 + L∞)(µ), i.e. E = `∞ (cf. Remark 4.8) and consider U = c, the unital
norm-closed subalgebra of `∞ = L∞(µ) consisting of all the convergent sequences.
Since U separates points of L1(µ) = `1 it follows that U∗ = `∞. By Theorem 1.2 in
[18] we have that UEcc = R(U). Also U = UEw (cf. Remark 4.8 (iii)). By Theorem 3.1
it follows that UEcc ⊆ U∗. If T ∈ ME(U)c then, in particular, TMχ{n} = Mχ{n}T

for each n ∈ N (since χ{n} ∈ c). Letting Σ0 denote the family of all singleton
subsets of N it follows from Proposition 2.2 that T ∈ ME(L∞(µ)). So, we have
shown that ME(U)c ⊆ ME(L∞(µ)) and hence, ME(U)c = ME(L∞(µ)). This
implies that UEcc = `∞. Combining all of these observations yields

c = U = UEw ⊆ UEcc = R(U) = U∗ = `∞,

where the indicated inclusion is strict.

Example 4.10. Let Ω = [0, 1] and µ be counting measure on Σ = 2Ω. Let
E = (L1 + L∞)(µ), i.e., E = `∞(Ω) (cf. Remark 4.8) and consider U = C([0, 1]),
the subalgebra of L∞(µ) = `∞(Ω) consisting of the continuous functions on [0, 1].
Theorem 1.2 in [18] shows that UEcc = R(U). Also U = UEw (cf. Remark 4.8(iii))
and Theorem 3.1 implies that UEcc ⊆ U∗. It is shown in Example 2.3 of [18] that
R(U) = U. These facts show that

(4.5) C([0, 1]) = U = UEw = R(U) = UEcc ⊂ U∗ = `∞([0, 1]).

The only point still to be verified is that U∗ = `∞([0, 1]), which follows from the
observation that C([0, 1]) separates the points of L1(µ) = `1([0, 1]). To see this, let
ϕ ∈ `1([0, 1]) and suppose that 〈ϕ, f〉 = 0 for all f ∈ C([0, 1]), i.e.,

∑
w∈A

ϕ(w)f(w) =

0 for all f ∈ C([0, 1]), where the set A = {w ∈ [0, 1] : ϕ(w) 6= 0} is countable. But,
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if ν denotes the finite regular Borel measure given by ν(E) =
∑
w∈A

ϕ(w)δw(E), for

each Borel set E ⊆ [0, 1] (where δw is the Dirac point measure at w), then∫
Ω

fdν =
∑
w∈A

f(w)ν({w}) =
∑
w∈A

f(w)ϕ(w) = 0, f ∈ C([0, 1]).

Accordingly, ν is the zero measure and so ϕ(w) = ν({w}) = 0, for all w ∈ A, i.e.,
ϕ = 0 in `1([0, 1]).

It was noted in Section 2 that R(U) = U whenever U is weak-star closed in
L∞(µ); see (2.1). We see from (4.5) that R(U) = U can also hold without U being
weak-star closed.

Now let F = (L1 ∩ L∞)(µ), i.e., F = L1(µ) = `1([0, 1]). Then Corollary 3.2
implies that UFw = UFcc = U∗. Accordingly,

C([0, 1]) = U = R(U) ⊂ UFw = UFcc = U∗ = L∞(µ).

Theorem 4.4 shows that Rloc(U) = UFcc = L∞(µ) and so we have another example
where the containment R(U) ⊆ Rloc(U) is strict.

Acknowledgements. The first author acknowledges the support of the Australian
Research Council and thanks the members of the School of Mathematics, University of
New South Wales, for their hospitality during his visits.

REFERENCES

1. C.D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, Orlando
1985.

2. C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, New York
1988.

3. F.F. Bonsall, J. Duncan, Complete Normed Algebras, Ergeb. Math. Grenzgeb.,
vol. 80, Springer-Verlag, Berlin–New York–Heidelberg 1973.
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