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Abstract. In this paper, we prove that a tensor product tuple R = (S ⊗
I, I⊗T ) possesses Bishop’s property (β), supposed that the commuting tuples
S and T of Hilbert space operators have property (β). As an application, we
show that the Hardy space H2(Dn) over the polydisc in Cn is quasicoherent.
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1. INTRODUCTION

Let H be a Hilbert space and let T = (T1, . . . , Tn) ∈ L(H)n be a commuting tuple
of bounded linear operators on H. We say that T has Bishop’s property (β), if a
certain transversality relation holds, namely:

T̂or
O(Cn)

p (H,O(U))
{

is Hausdorff, for p = 0,
= 0, for p > 1;

for all Stein open sets U ⊆ Cn (cf. [2], [3] and [6]). In the situation of this paper,
a different characterization of property (β) is more useful.

Definition 1.1. We call a finite exact sequence

(1.1) 0 → H
ε−→ H0 d0

−→ H1 d1

−→ · · ·

consisting of Hilbert spaces H,Hj (j = 0, 1, . . .) and bounded linear operators
ε : H → H0, dj : Hj → Hj+1 a decomposable resolution of T , if for every
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j = 0, 1, . . . there is a decomposable tuple T (j) = (T (j)
1 , . . . , T

(j)
n ) ∈ L(Hj)n, such

that (1.1) intertwines the tuples T, T (0), T (1), . . . componentwise.

We refer to [2] for an introduction into the theory of decomposable tuples.
The connection between property (β) and decomposability is illustrated in the
next theorem.

Theorem 1.2. (i) The tuple T is decomposable if and only if both T and the
tuple T ∗ = (T ∗1 , . . . , T ∗n) of Hilbert space adjoints have property (β).

(ii) The tuple T has property (β) if and only if it admits a decomposable
resolution.

Now let S = (S1, . . . , Sm) ∈ L(H)m and T = (T1, . . . , Tn) ∈ L(K)n be two
commuting tuples of bounded linear Hilbert space operators and let H⊗̂K̂ denote
the Hilbert space tensor product of H and K. We then have:

Theorem 1.3. (Satz 6.3 in [1]) The tensor product tuple

R ∈ L(H⊗̂K)m+n,

R = (S ⊗ I, I ⊗ T ) := (S1 ⊗ I, . . . , Sm ⊗ I, I ⊗ T1, . . . , I ⊗ Tn)

is decomposable if and only if S and T are decomposable.

In Section 2 of this paper, a corresponding result for Bishop’s property (β) is
derived by constructing a decomposable resolution for R from the given resolutions
of S and T .

2. PROPERTY (β) FOR TENSOR PRODUCT TUPLES

We now state and prove the main theorem of this paper.

Theorem 2.1. Suppose that H and K are Hilbert spaces and suppose that
S = (S1, . . . , Sm) ∈ L(H)m and T = (T1, . . . , Tn) ∈ L(K)n are two commuting tu-
ples of bounded linear operators. If S and T have property (β), then the commuting
tuple R ∈ L(H⊗̂K)m+n,

R = (S ⊗ I, I ⊗ T ) = (S1 ⊗ I, . . . , Sm ⊗ I, I ⊗ T1, . . . , I ⊗ Tn)

has property (β).

We postpone the proof of Theorem 2.1 for a moment in order to mention a
result that is more useful in applications (cf. Theorem 3.2). This corollary can be
proved by a straightforward induction over N .
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Corollary 2.2. Let H1, . . . ,HN be Hilbert spaces and for 1 6 j 6 N let
Tj ∈ L(Hj) be a bounded linear operator on Hj. If all the operators Tj have
property (β), then the commuting tuple T ∈ L(H)N ,

H = H1⊗̂ · · · ⊗̂HN

and
T = (T1 ⊗ I ⊗ · · · ⊗ I, . . . , I ⊗ · · · ⊗ I ⊗ TN )

has property (β).

Proof of Theorem 2.1. Because S and T have property (β), they admit
decomposable resolutions

(2.1) 0 → H
ε|−→ H0

d0
|−→ H1

d1
|−→ · · ·

and

(2.2) 0 → K
ε‖−→ K0

d0
‖−→ K1

d1
‖−→ · · ·

by Theorem 1.2. From these resolutions, we construct the double complex

...
...xI⊗d1

‖

xI⊗d1
‖

0 → H0⊗̂K1
d0
|⊗I
−→ H1⊗̂K1

d1
|⊗I
−→ · · ·xI⊗d0

‖

xI⊗d0
‖

0 → H0⊗̂K0
d0
|⊗I
−→ H1⊗̂K0

d1
|⊗I
−→ · · ·

↑ ↑
0 0

in which all the rows and columns are exact in all degrees except 0. Let (X•, d•)
denote the totalization of this double complex. With

ε : H⊗̂K → X0 = H0⊗̂K0, ε = ε| ⊗ ε‖

we obtain the following finite sequence

(2.3) 0 → H⊗̂K
ε−→ X0 d0

−→ X1 d1

−→ · · ·

consisting of Hilbert spaces and bounded linear operators, and it remains to show
that (2.3) is a decomposable resolution of R.
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Lemma 2.3. The sequence (2.3) is exact.

Proof. The operator ε is injective because ε| and ε‖ are injective and have
closed ranges. Because im d0

| , im dj
‖ are closed and the diagram

ker(d0
| ⊗ I) ∼=== (ker d0

| )⊗̂Kj+1xI⊗d0
‖

xI⊗d0
‖

ker(d0
| ⊗ I) ∼=== (ker d0

| )⊗̂Kj

is commutative, we obtain for all j > 0 the canonical isomorphisms:

ker
(
I ⊗ dj

‖ : ker(d0
| ⊗ I) → ker(d0

| ⊗ I)
)

∼=ker
(
I ⊗ dj

‖ : (ker d0
| )⊗̂Kj → (ker d0

| )⊗̂Kj+1
) ∼= (ker d0

| )⊗̂(ker dj
‖)

and
(I ⊗ dj

‖)
(
ker(d0

| ⊗ I)
) ∼= (I ⊗ dj

‖)
(
(ker d0

| )⊗̂Kj
)

∼= (ker d0
| )⊗̂(im dj

‖) = (ker d0
| )⊗̂(ker dj+1

‖ ).

In particular, we have for j > 1 the identity:

ker
(
I ⊗ dj

‖ : ker(d0
| ⊗ I) → ker(d0

| ⊗ I)
)

= (I ⊗ dj−1
‖ )

(
ker(d0

| ⊗ I)
)
.

The proof of Lemma 2.3 is now completed by using the fact that the homology
spaces of (2.3) can be identified with certain iterated homology spaces
(cf. Lemma A2.6 in [2]).

If j = 0, then we have

ker d0 = H0(X) = ker
(
I ⊗ d0

‖ : ker(d0
| ⊗ I) → ker(d0

| ⊗ I)
)

∼= (ker d0
| )⊗̂(ker d0

‖) = (im ε|)⊗̂(im ε‖) ∼= im (ε| ⊗ ε‖) = im ε,

and for j > 1 the j-th homology space satisfies:

Hj(X) ∼=
ker

(
I ⊗ dj

‖ : ker(d0
| ⊗ I) → ker(d0

| ⊗ I)
)

(I ⊗ dj−1
‖ )

(
ker(d0

| ⊗ I)
) = 0.

Let S(p) ∈ L(Hp)m and T (q) ∈ L(Kq)n (p, q = 0, 1, . . .) be the decomposable
tuples such that the resolutions (2.1) and (2.2) intertwine S, S(0), S(1), . . . and
T, T (0), T (1), . . . componentwise. In order to construct a decomposable resolution
of R ∈ L(H⊗̂K)m+n, we define:

R(p,q) := (S(p) ⊗ I, I ⊗ T (q)) ∈ L(Hp⊗̂Kq)m+n

and
R(j) :=

⊕
p+q=j

R(p,q) ∈ L(Xj)m+n.

Because decomposability is stable under forming direct sums, every tuple R(j)

is decomposable by Theorem 1.3. In view of Theorem 1.2, the following lemma
completes the proof of Theorem 2.1.
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Lemma 2.4. The sequence (2.3) is a decomposable resolution of R.

Proof. We only have to show that the resolution (2.3) intertwines the tuples
R,R(0), R(1), . . . componentwise. On H⊗̂K we have:

ε ◦R = (ε| ⊗ ε‖) ◦ (S ⊗ I, I ⊗ T ) =
(
(ε| ◦ S1)⊗ ε‖, . . . , ε| ⊗ (ε‖ ◦ Tn)

)
=

(
(S(0)

1 ◦ ε|)⊗ ε‖, . . . , ε| ⊗ (T (0)
n ◦ ε‖)

)
= R(0) ◦ ε,

and on Hp⊗̂Kq with p + q = j and 1 6 µ 6 m the following holds:

dj ◦ (S(p)
µ ⊗ I) =

(
(dp

| ⊗ I) + (−1)p(I ⊗ dq
‖)

)
◦ (S(p)

µ ⊗ I)

= (dp
| ◦ S(p)

µ )⊗ I + (−1)p(S(p)
µ ⊗ dq

‖)

= (S(p+1)
µ ◦ dp

| )⊗ I + (−1)p(S(p)
µ ⊗ dq

‖)

= (S(p+1)
µ ⊗ I) ◦ (dp

| ⊗ I) + (S(p)
µ ⊗ I) ◦

(
(−1)p(I ⊗ dq

‖)
)
.

The operators dj ◦ (I ⊗ T
(q)
ν ) with 1 6 ν 6 n are treated in an analogues manner,

and from this we conclude:

dj ◦Rj = Rj+1 ◦ dj for j > 0.

3. APPLICATION TO THE HARDY SPACE OVER THE POLYDISC

We denote the unit disc in C by D and the unit polydisc in Cn by Dn. T is the
topological boundary of D and Tn is the n-fold cartesian product of T, i.e. Tn is
the distinguished boundary of Dn.

The Hardy space H2(Dn) is defined as the space of all holomorphic functions
u in Dn that satisfy:

‖u‖2 := sup
0<r<1

( ∫
Tn

|u(rz)|2 dλn(z)
)1/2

< ∞.

Here, λn denotes the Lebesgue measure on Tn. It is well-known, that the expres-
sion ‖ · ‖2 defines a norm on H2(Dn) that turns this space into a Hilbert space
(cf. [4] and [5]). Via non-tangential limits, the Hardy space H2(Dn) can be iso-
metrically embedded into L2(Tn). H∞(Dn) is the Banach algebra of all bounded
holomorphic functions in Dn, equipped with the supremum norm. If f ∈ H∞(Dn),
then multiplication with f defines a bounded linear operator Tf on H2(Dn), a so
called Toeplitz operator (cf. [6] and [7]).
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Now suppose that u1, . . . , un belong to H2(D). We then define the holomor-
phic function U in Dn by

U(z1, . . . , zn) = u1(z1)u2(z2) · · ·un(zn).

By Fubini’s theorem, we have for all 0 < r < 1:∫
Tn

|U(rz)|2 dλn(z) =
n∏

j=1

∫
T

|uj(rz)|2 dλ1(z)

and therefore:

U ∈ H2(Dn) and ‖U‖2 = ‖u1‖2 · · · ‖un‖2.

Here, we used the fact that the supremum defining the norm ‖ · ‖2 is in fact a
monotone limit.

Lemma 3.1. The map

Φ0 : H2(D)× · · · ×H2(D) → H2(Dn), Φ0(u1, . . . , un) = U

induces an isometric isomorphism:

H2(D)⊗̂ · · · ⊗̂H2(D) ∼= H2(Dn).

Proof. The multilinear map Φ0 factors through the algebraic tensor product
and the induced linear map Φ̂0 :

⊗
H2(D) → H2(Dn) satisfies by Fubini’s theorem:

〈Φ̂0(u1 ⊗ · · · ⊗ un), Φ̂0(v1 ⊗ · · · ⊗ vn)〉 = 〈u1 ⊗ · · · ⊗ un, v1 ⊗ · · · ⊗ vn〉.

Hence, Φ̂0 extends to an isometric operator Φ : ⊗̂H2(D) → H2(Dn). Because
Φ is isometric, it is injective and has a closed range and since the holomorphic
polynomials are dense in H2(Dn), its range is dense. Thus, Φ is surjective.

We now can use this identification to derive the following result from Theo-
rem 2.1.

Theorem 3.2. Suppose that f1, . . . , fn ∈ H∞(D) and define the functions
Fj ∈ H∞(Dn) for 1 6 j 6 n by:

Fj(z1, . . . , zn) = fj(zj).

Then the commuting tuple (TF1 , . . . , TFn) of bounded linear operators on H2(Dn)
has property (β).
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Proof. Because the Hardy space H2(D) can be regarded as a closed subspace
of L2(T), the Toeplitz operators Tfj

are subnormal and therefore have property
(β). The statement of Theorem 3.2 now follows from Corollary 2.2, because we
have:

I ⊗ · · ·Tfj
· · · ⊗ I = TFj

.

In [3] and [6] it was shown that the Hardy space H2(bΩ) over a bounded
weakly pseudoconvex domain Ω ⊆ Cn has a localization property known as quasi-
coherence. It follows directly from the definitions that a Hardy space is quasi-
coherent if and only if the tuple (Tz1 , . . . , Tzn

) of multiplication operators with the
coordinate functions has property (β). We therefore obtain the following corollary.

Corollary 3.3. The Hardy space H2(Dn) over the unit polydisc in Cn is
quasi-coherent.
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