BISHOP'S PROPERTY (β) FOR TENSOR PRODUCT TUPLES OF OPERATORS

ROLAND WOLFF

Communicated by Florian-Horia Vasilescu

ABSTRACT. In this paper, we prove that a tensor product tuple $R = (S \otimes I, I \otimes T)$ possesses Bishop's property (β) , supposed that the commuting tuples S and T of Hilbert space operators have property (β) . As an application, we show that the Hardy space $H^2(\mathbb{D}^n)$ over the polydisc in \mathbb{C}^n is quasicoherent.

KEYWORDS: Bishop's property (beta), Hardy spaces, Toeplitz operator. MSC (2000): 47A13.

1. INTRODUCTION

Let H be a Hilbert space and let $T = (T_1, \ldots, T_n) \in L(H)^n$ be a commuting tuple of bounded linear operators on H. We say that T has Bishop's property (β) , if a certain transversality relation holds, namely:

$$\widehat{\operatorname{Tor}}_{p}^{\mathcal{O}(\mathbb{C}^{n})}(H,\mathcal{O}(U)) \begin{cases} \text{is Hausdorff,} & \text{for } p = 0, \\ = 0, & \text{for } p \ge 1; \end{cases}$$

for all Stein open sets $U \subseteq \mathbb{C}^n$ (cf. [2], [3] and [6]). In the situation of this paper, a different characterization of property (β) is more useful.

DEFINITION 1.1. We call a finite exact sequence

(1.1) $0 \to H \xrightarrow{\varepsilon} H^0 \xrightarrow{d^0} H^1 \xrightarrow{d^1} \cdots$

consisting of Hilbert spaces H, H^j (j = 0, 1, ...) and bounded linear operators $\varepsilon : H \to H^0, d^j : H^j \to H^{j+1}$ a decomposable resolution of T, if for every

 $j = 0, 1, \ldots$ there is a decomposable tuple $T^{(j)} = (T_1^{(j)}, \ldots, T_n^{(j)}) \in L(H^j)^n$, such that (1.1) intertwines the tuples $T, T^{(0)}, T^{(1)}, \ldots$ componentwise.

We refer to [2] for an introduction into the theory of decomposable tuples. The connection between property (β) and decomposability is illustrated in the next theorem.

THEOREM 1.2. (i) The tuple T is decomposable if and only if both T and the tuple $T^* = (T_1^*, \ldots, T_n^*)$ of Hilbert space adjoints have property (β) .

(ii) The tuple T has property (β) if and only if it admits a decomposable resolution.

Now let $S = (S_1, \ldots, S_m) \in L(H)^m$ and $T = (T_1, \ldots, T_n) \in L(K)^n$ be two commuting tuples of bounded linear Hilbert space operators and let $H \widehat{\otimes} \hat{K}$ denote the Hilbert space tensor product of H and K. We then have:

THEOREM 1.3. (Satz 6.3 in [1]) The tensor product tuple

$$R \in L(H\widehat{\otimes}K)^{m+n},$$

$$R = (S \otimes I, I \otimes T) := (S_1 \otimes I, \dots, S_m \otimes I, I \otimes T_1, \dots, I \otimes T_n)$$

is decomposable if and only if S and T are decomposable.

In Section 2 of this paper, a corresponding result for Bishop's property (β) is derived by constructing a decomposable resolution for R from the given resolutions of S and T.

2. PROPERTY (β) FOR TENSOR PRODUCT TUPLES

We now state and prove the main theorem of this paper.

THEOREM 2.1. Suppose that H and K are Hilbert spaces and suppose that $S = (S_1, \ldots, S_m) \in L(H)^m$ and $T = (T_1, \ldots, T_n) \in L(K)^n$ are two commuting tuples of bounded linear operators. If S and T have property (β) , then the commuting tuple $R \in L(H \otimes K)^{m+n}$,

$$R = (S \otimes I, I \otimes T) = (S_1 \otimes I, \dots, S_m \otimes I, I \otimes T_1, \dots, I \otimes T_n)$$

has property (β) .

We postpone the proof of Theorem 2.1 for a moment in order to mention a result that is more useful in applications (cf. Theorem 3.2). This corollary can be proved by a straightforward induction over N.

372

Bishop's property (β) for tensor product tuples

COROLLARY 2.2. Let H_1, \ldots, H_N be Hilbert spaces and for $1 \leq j \leq N$ let $T_j \in L(H_j)$ be a bounded linear operator on H_j . If all the operators T_j have property (β), then the commuting tuple $T \in L(H)^N$,

$$H = H_1 \widehat{\otimes} \cdots \widehat{\otimes} H_N$$

and

$$T = (T_1 \otimes I \otimes \cdots \otimes I, \dots, I \otimes \cdots \otimes I \otimes T_N)$$

has property (β) .

Proof of Theorem 2.1. Because S and T have property (β) , they admit decomposable resolutions

(2.1)
$$0 \to H \xrightarrow{\varepsilon_{|}} H^0 \xrightarrow{d_{|}^0} H^1 \xrightarrow{d_{|}^1} \cdots$$

and

(2.2)
$$0 \to K \xrightarrow{\varepsilon_{\parallel}} K^0 \xrightarrow{d_{\parallel}^0} K^1 \xrightarrow{d_{\parallel}^1} \cdots$$

.

by Theorem 1.2. From these resolutions, we construct the double complex

.

in which all the rows and columns are exact in all degrees except 0. Let $(X^{\bullet}, d^{\bullet})$ denote the totalization of this double complex. With

$$\varepsilon: H\widehat{\otimes} K \to X^0 = H^0\widehat{\otimes} K^0, \quad \varepsilon = \varepsilon_{\scriptscriptstyle \parallel} \otimes \varepsilon_{\scriptscriptstyle \parallel}$$

we obtain the following finite sequence

(2.3)
$$0 \to H \widehat{\otimes} K \xrightarrow{\varepsilon} X^0 \xrightarrow{d^0} X^1 \xrightarrow{d^1} \cdots$$

consisting of Hilbert spaces and bounded linear operators, and it remains to show that (2.3) is a decomposable resolution of R.

LEMMA 2.3. The sequence (2.3) is exact.

Proof. The operator ε is injective because ε_{\parallel} and ε_{\parallel} are injective and have closed ranges. Because im d_{\parallel}^0 , im d_{\parallel}^j are closed and the diagram

$$\begin{split} & \ker(d^0_{\scriptscriptstyle \parallel} \otimes I) \quad \stackrel{\sim}{=\!\!\!=\!\!\!=} \quad (\ker d^0_{\scriptscriptstyle \parallel}) \widehat{\otimes} K^{j+1} \\ & \uparrow^{I \otimes d^0_{\scriptscriptstyle \parallel}} \qquad \qquad \uparrow^{I \otimes d^0_{\scriptscriptstyle \parallel}} \\ & \ker(d^0_{\scriptscriptstyle \parallel} \otimes I) \quad \stackrel{\sim}{=\!\!\!=\!\!\!\!=} \quad (\ker d^0_{\scriptscriptstyle \parallel}) \widehat{\otimes} K^j \end{split}$$

is commutative, we obtain for all $j \ge 0$ the canonical isomorphisms:

 $\ker \left(I \otimes d^j_{\parallel} : \ker(d^0_{\parallel} \otimes I) \to \ker(d^0_{\parallel} \otimes I) \right)$

$$\cong \ker \left(I \otimes d^{j}_{\parallel} : (\ker d^{0}_{\parallel}) \widehat{\otimes} K^{j} \to (\ker d^{0}_{\parallel}) \widehat{\otimes} K^{j+1} \right) \cong (\ker d^{0}_{\parallel}) \widehat{\otimes} (\ker d^{j}_{\parallel})$$

and

$$(I \otimes d^{j}_{\parallel}) \big(\ker(d^{0}_{\parallel} \otimes I) \big) \cong (I \otimes d^{j}_{\parallel}) \big((\ker d^{0}_{\parallel}) \widehat{\otimes} K^{j} \big) \\ \cong (\ker d^{0}_{\parallel}) \widehat{\otimes} (\operatorname{im} d^{j}_{\parallel}) = (\ker d^{0}_{\parallel}) \widehat{\otimes} (\ker d^{j+1}_{\parallel}).$$

In particular, we have for $j \ge 1$ the identity:

$$\ker \left(I \otimes d^j_{\scriptscriptstyle \parallel} : \ker(d^0_{\scriptscriptstyle \parallel} \otimes I) \to \ker(d^0_{\scriptscriptstyle \parallel} \otimes I) \right) = (I \otimes d^{j-1}_{\scriptscriptstyle \parallel}) \big(\ker(d^0_{\scriptscriptstyle \parallel} \otimes I) \big).$$

The proof of Lemma 2.3 is now completed by using the fact that the homology spaces of (2.3) can be identified with certain iterated homology spaces (cf. Lemma A2.6 in [2]).

If
$$j = 0$$
, then we have

$$\ker d^{0} = H^{0}(X) = \ker \left(I \otimes d^{0}_{\parallel} : \ker(d^{0}_{\parallel} \otimes I) \to \ker(d^{0}_{\parallel} \otimes I) \right)$$
$$\cong \left(\ker d^{0}_{\parallel} \right) \widehat{\otimes} \left(\ker d^{0}_{\parallel} \right) = \left(\operatorname{im} \varepsilon_{\parallel} \right) \widehat{\otimes} \left(\operatorname{im} \varepsilon_{\parallel} \right) \cong \operatorname{im} \left(\varepsilon_{\parallel} \otimes \varepsilon_{\parallel} \right) = \operatorname{im} \varepsilon,$$

and for $j \ge 1$ the *j*-th homology space satisfies:

$$H^{j}(X) \cong \frac{\ker \left(I \otimes d^{j}_{\mathbb{H}} : \ker(d^{0}_{\mathbb{H}} \otimes I) \to \ker(d^{0}_{\mathbb{H}} \otimes I) \right)}{(I \otimes d^{j-1}_{\mathbb{H}}) \left(\ker(d^{0}_{\mathbb{H}} \otimes I) \right)} = 0. \quad \blacksquare$$

Let $S^{(p)} \in L(H^p)^m$ and $T^{(q)} \in L(K^q)^n$ (p, q = 0, 1, ...) be the decomposable tuples such that the resolutions (2.1) and (2.2) intertwine $S, S^{(0)}, S^{(1)}, ...$ and $T, T^{(0)}, T^{(1)}, ...$ componentwise. In order to construct a decomposable resolution of $R \in L(H \widehat{\otimes} K)^{m+n}$, we define:

$$R^{(p,q)} := (S^{(p)} \otimes I, I \otimes T^{(q)}) \in L(H^p \widehat{\otimes} K^q)^{m+n}$$

and

$$R^{(j)} := \bigoplus_{p+q=j} R^{(p,q)} \in L(X^j)^{m+n}.$$

Because decomposability is stable under forming direct sums, every tuple $R^{(j)}$ is decomposable by Theorem 1.3. In view of Theorem 1.2, the following lemma completes the proof of Theorem 2.1.

BISHOP'S PROPERTY (β) for tensor product tuples

LEMMA 2.4. The sequence (2.3) is a decomposable resolution of R.

Proof. We only have to show that the resolution (2.3) intertwines the tuples $R, R^{(0)}, R^{(1)}, \ldots$ componentwise. On $H \widehat{\otimes} K$ we have:

$$\varepsilon \circ R = (\varepsilon_{|} \otimes \varepsilon_{||}) \circ (S \otimes I, I \otimes T) = ((\varepsilon_{|} \circ S_{1}) \otimes \varepsilon_{||}, \dots, \varepsilon_{|} \otimes (\varepsilon_{||} \circ T_{n}))$$
$$= ((S_{1}^{(0)} \circ \varepsilon_{||}) \otimes \varepsilon_{||}, \dots, \varepsilon_{|} \otimes (T_{n}^{(0)} \circ \varepsilon_{||})) = R^{(0)} \circ \varepsilon,$$

and on $H^p \widehat{\otimes} K^q$ with p + q = j and $1 \leq \mu \leq m$ the following holds:

$$\begin{split} d^{j} \circ (S_{\mu}^{(p)} \otimes I) &= \left((d_{|}^{p} \otimes I) + (-1)^{p} (I \otimes d_{||}^{q}) \right) \circ (S_{\mu}^{(p)} \otimes I) \\ &= (d_{|}^{p} \circ S_{\mu}^{(p)}) \otimes I + (-1)^{p} (S_{\mu}^{(p)} \otimes d_{||}^{q}) \\ &= (S_{\mu}^{(p+1)} \circ d_{|}^{p}) \otimes I + (-1)^{p} (S_{\mu}^{(p)} \otimes d_{||}^{q}) \\ &= (S_{\mu}^{(p+1)} \otimes I) \circ (d_{|}^{p} \otimes I) + (S_{\mu}^{(p)} \otimes I) \circ \left((-1)^{p} (I \otimes d_{||}^{q}) \right). \end{split}$$

The operators $d^j \circ (I \otimes T_{\nu}^{(q)})$ with $1 \leq \nu \leq n$ are treated in an analogues manner, and from this we conclude:

$$d^j \circ R^j = R^{j+1} \circ d^j \quad \text{for } j \ge 0. \quad \blacksquare$$

3. APPLICATION TO THE HARDY SPACE OVER THE POLYDISC

We denote the unit disc in \mathbb{C} by \mathbb{D} and the unit polydisc in \mathbb{C}^n by \mathbb{D}^n . \mathbb{T} is the topological boundary of \mathbb{D} and \mathbb{T}^n is the *n*-fold cartesian product of \mathbb{T} , i.e. \mathbb{T}^n is the distinguished boundary of \mathbb{D}^n .

The Hardy space $H^2(\mathbb{D}^n)$ is defined as the space of all holomorphic functions u in \mathbb{D}^n that satisfy:

$$||u||_2 := \sup_{0 < r < 1} \left(\int_{\mathbb{T}^n} |u(rz)|^2 \, \mathrm{d}\lambda_n(z) \right)^{1/2} < \infty.$$

Here, λ_n denotes the Lebesgue measure on \mathbb{T}^n . It is well-known, that the expression $\|\cdot\|_2$ defines a norm on $H^2(\mathbb{D}^n)$ that turns this space into a Hilbert space (cf. [4] and [5]). Via non-tangential limits, the Hardy space $H^2(\mathbb{D}^n)$ can be isometrically embedded into $L^2(\mathbb{T}^n)$. $H^{\infty}(\mathbb{D}^n)$ is the Banach algebra of all bounded holomorphic functions in \mathbb{D}^n , equipped with the supremum norm. If $f \in H^{\infty}(\mathbb{D}^n)$, then multiplication with f defines a bounded linear operator T_f on $H^2(\mathbb{D}^n)$, a so called Toeplitz operator (cf. [6] and [7]).

Now suppose that u_1, \ldots, u_n belong to $H^2(\mathbb{D})$. We then define the holomorphic function U in \mathbb{D}^n by

$$U(z_1,...,z_n) = u_1(z_1)u_2(z_2)\cdots u_n(z_n).$$

By Fubini's theorem, we have for all 0 < r < 1:

$$\int_{\mathbb{T}^n} |U(rz)|^2 \,\mathrm{d}\lambda_n(z) = \prod_{j=1}^n \int_{\mathbb{T}} |u_j(rz)|^2 \,\mathrm{d}\lambda_1(z)$$

and therefore:

$$U \in H^2(\mathbb{D}^n)$$
 and $||U||_2 = ||u_1||_2 \cdots ||u_n||_2.$

Here, we used the fact that the supremum defining the norm $\|\cdot\|_2$ is in fact a monotone limit.

LEMMA 3.1. The map

$$\Phi_0: H^2(\mathbb{D}) \times \cdots \times H^2(\mathbb{D}) \to H^2(\mathbb{D}^n), \quad \Phi_0(u_1, \dots, u_n) = U$$

induces an isometric isomorphism:

$$H^2(\mathbb{D})\widehat{\otimes}\cdots\widehat{\otimes}H^2(\mathbb{D})\cong H^2(\mathbb{D}^n).$$

Proof. The multilinear map Φ_0 factors through the algebraic tensor product and the induced linear map $\widehat{\Phi}_0 : \bigotimes H^2(\mathbb{D}) \to H^2(\mathbb{D}^n)$ satisfies by Fubini's theorem:

$$\langle \widehat{\Phi}_0(u_1 \otimes \cdots \otimes u_n), \widehat{\Phi}_0(v_1 \otimes \cdots \otimes v_n) \rangle = \langle u_1 \otimes \cdots \otimes u_n, v_1 \otimes \cdots \otimes v_n \rangle.$$

Hence, $\widehat{\Phi}_0$ extends to an isometric operator $\Phi : \widehat{\otimes} H^2(\mathbb{D}) \to H^2(\mathbb{D}^n)$. Because Φ is isometric, it is injective and has a closed range and since the holomorphic polynomials are dense in $H^2(\mathbb{D}^n)$, its range is dense. Thus, Φ is surjective.

We now can use this identification to derive the following result from Theorem 2.1.

THEOREM 3.2. Suppose that $f_1, \ldots, f_n \in H^{\infty}(\mathbb{D})$ and define the functions $F_j \in H^{\infty}(\mathbb{D}^n)$ for $1 \leq j \leq n$ by:

$$F_j(z_1,\ldots,z_n)=f_j(z_j).$$

Then the commuting tuple $(T_{F_1}, \ldots, T_{F_n})$ of bounded linear operators on $H^2(\mathbb{D}^n)$ has property (β) .

376

BISHOP'S PROPERTY (β) for tensor product tuples

Proof. Because the Hardy space $H^2(\mathbb{D})$ can be regarded as a closed subspace of $L^2(\mathbb{T})$, the Toeplitz operators T_{f_j} are subnormal and therefore have property (β) . The statement of Theorem 3.2 now follows from Corollary 2.2, because we have:

$$I\otimes\cdots T_{f_j}\cdots\otimes I=T_{F_j}.$$

In [3] and [6] it was shown that the Hardy space $H^2(b\Omega)$ over a bounded weakly pseudoconvex domain $\Omega \subseteq \mathbb{C}^n$ has a localization property known as quasicoherence. It follows directly from the definitions that a Hardy space is quasicoherent if and only if the tuple $(T_{z_1}, \ldots, T_{z_n})$ of multiplication operators with the coordinate functions has property (β). We therefore obtain the following corollary.

COROLLARY 3.3. The Hardy space $H^2(\mathbb{D}^n)$ over the unit polydisc in \mathbb{C}^n is quasi-coherent.

REFERENCES

- J. ESCHMEIER, Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie, Sch. Math. Inst. Univ. Münster, 2. Serie, vol. 42, Univ. Münster, Münster 1987.
- J. ESCHMEIER, M. PUTINAR, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monogr. (N. S.), vol. 10, Oxford Univ. Press, Oxford 1996.
- M. PUTINAR, R. WOLFF, A natural localization of Hardy spaces in several complex variables, Ann. Polon. Math. 66(1997), 183–201.
- 4. W. RUDIN, Function Theory in Polydiscs, Benjamin, New York 1969.
- S.V. SHVEDENKO, Hardy classes and related spaces of analytic functions in the unit circle, polydisc, and ball, J. Sov. Math. 39(1987), 3011–3087.
- 6. R. WOLFF, Spectral theory on Hardy spaces in several complex variables, Ph.D. Dissertation Westfälische Wilhelms-Universität, Universität Münster 1996.
- R. WOLFF, Spectra of analytic Toeplitz tuples on Hardy spaces, Bull. London Math. Soc. 29(1997), 65–72.

ROLAND WOLFF Fachbereich 9 – Mathematik Universität des Saarlandes Postfach 151150 66041 Saarbrücken GERMANY E-mail: wolff@math.uni-sb.de

Receved October 22, 1997; revised March 23, 1998.