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Abstract. Let A be a norm-closed operator algebra which is radical; that
is, each element in A is quasinilpotent. We consider the case when such
algebras satisfy the stronger condition of being uniformly topologically nil.
In particular, we study this question when A is generated by a quasinilpotent
weighted shift or by the Volterra operator.
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A Banach algebra A is radical if every T ∈ A has spectral radius zero. A radical
Banach algebra is uniformly topologically nil ([4]) if the sequences ‖Tn‖1/n con-
verge to zero at a uniform rate as T ranges over the unit ball of A. The purpose of
this note is to examine the implications of this definition in the context of operator
algebras (i.e., not necessarily self-adjoint algebras of operators on Hilbert space).
The simplest radical operator algebras are those generated by a single quasinilpo-
tent operator. Such an algebra is perforce radical. While one might expect that
the norm-closed operator algebra generated by a single quasinilpotent operator to
be uniformly topologically nil, that turns out not to be the case, as examples with
weighted shifts and the Volterra operator show (See Examples 2.5, 2.8). As these
examples suggest, it is difficult to obtain positive results of the form that certain
classes of operator algebras are uniformly topologically nil. We know this is the
case if the algebra is finitely (algebraically) generated as an ideal in the unitiza-
tion; however, we suspect that all such algebras are finite dimensional, and indeed
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we can prove that this is the case if the algebra is singly algebraically generated as
an ideal in the unitization (cf. Proposition 2.2.). Another question is whether the
norm-closed algebra AT generated by a quasinilpotent operator T is an integral
domain, if T is not nilpotent. In some cases, e.g., for weighted shifts, AT is an
integral domain; however in the case of the Volterra operator it fails. There is
also an open question of whether a commutative radical Banach algebra which is
an integral domain can have prime elements ([15]). Even in the most tractable
cases the question of the (non-)existence of primes is difficult, though there are
two cases for which something can be said. (See Remark 2.7, Proposition 2.15.)

Section 1 contains a review of facts concerning radical Banach algebras and
a discussion of (not necessarily radical) normed algebras whose norm closures are
radical. Variants of topological nilpotence, due to Dixon ([4]), are introduced.

Section 2 is devoted primarily to singly generated algebras: if T is a bounded,
linear operator which is quasinilpotent, what can be said about the norm closed
algebra AT which it generates:

(i) Is AT topologically nilpotent?
(ii) If (i) fails, can it happen that the normalized powers of the generator T

form a uniformly quasinilpotent sequence?
(iii) Is AT an integral domain?
(iv) Is T a prime element in AT ?

The main examples we consider are the weighted unilateral shift, and the
Volterra operator.

1. PRELIMINARIES

If A is an algebra over C without unit, and A ∈ A, the spectrum is defined by
sp (A) = {λ ∈ C : λI − A is not invertible in Ã}, where Ã is the unitization of
A. An algebra norm ‖ · ‖ on A is a spectral norm if ‖A‖ > ρ(A), A ∈ A, where
ρ(A) := sup{|λ| : λ ∈ sp (A)} is the spectral radius. The algebra A is then called
a spectral normed algebra.

Definition 1.1. Let A be an algebra over C. The Jacobson radical is
rad (A) = {b ∈ A : ρ(ab) = 0 for all a ∈ A}. The ideal rad (A) is the largest
ideal I satisfying ρ(b) = 0 for all b ∈ I. A is called a radical algebra if A = rad (A).

Definition 1.2. An operator algebra A is a subalgebra of B(H), the bounded,
linear operators on a complex Hilbert space H.
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There is an abstract characterization of operator algebras. If A is a uni-
tal Banach algebra with an operator algebra structure (i.e., an L∞-matrix norm
structure on A with respect to which M∞(A) becomes a normed algebra), then A

is completely isometrically isomorphic to an operator algebra ([2]).
Note that an operator algebra need not be closed in any topology.
If A is a normed algebra, and A ∈ A, then lim

n
‖An‖1/n 6 ρ(A); if the norm

is spectral, then equality holds. Any Banach algebra norm is a spectral norm (cf.
[12], 2.2.2, 2.2.8).

Recall that an element A in an algebra (or a ring) A is nilpotent if there is a
positive integer n such that An = 0, and the algebra A is nil if each element A ∈ A

is nilpotent. Any nil algebra is a radical algebra. We are interested in comparing
properties of a normed algebra A with its norm closure.

Proposition 1.3. Let A be a commutative nil normed algebra. Then its
norm-completion is a radical Banach algebra.

As this result is subsumed by Proposition 1.4, the proof will be omitted. We
note that commutativity is essential to the conclusion. There are noncommutative
nil normed algebras (operator algebras) whose norm-completions are semisimple.
(See [8]. Examples can also be obtained from [6].)

An element T in a normed algebra A will be called quasinilpotent if
lim

n→∞
||Tn||1/n = 0. While the term “topologically nilpotent” is also used for this

property, that term will be reserved for other purposes here (cf. Definition 1.5).

Proposition 1.4. Let {Ti}i∈I be a family of pairwise commuting, quasi-
nilpotent elements of a commutative Banach algebra B. Then the norm-closed
subalgebra A generated by {Ti}i∈I is a radical Banach algebra.

Proof. Since A is commutative, all quasinilpotent elements are in the radical.
But the radical is a closed ideal, so the radical of A is A.

As an application, we note that the norm closure of a semisimple operator
algebra can be radical. Consider the polynomial ring P = C[x] and its subring
(maximal ideal) P0 of polynomials vanishing at x = 0. Both are semisimple. If T ∈
B(H), the bounded operators on a Hilbert space H, and if T is not algebraic, then
the image A0 (resp., Ã0) of P0 (resp., C[x]) in B(H) under the algebra isomorphism
p 7→ p(T ) is semisimple since the Jacobson radical can be characterized purely
algebraically. If in addition T is quasinilpotent, A0 is a semisimple algebra of
quasinilpotent operators. This anomaly reflects the fact that the operator norm
on A0 is not spectral. By the proposition, the norm closure A of A0 is radical.
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Recently there has been considerable progress in the study of radical Banach
algebras. (Cf. [4], [5], [15].) The following definitions are due to Peter Dixon (in
the context of Banach algebras).

Definition 1.5. Let A be a normed algebra. Set

an = sup
{
‖T1T2 · · ·Tn‖1/n : Tk ∈ ball (A), 1 6 k 6 n

}
bn = sup

{
‖Tn‖1/n : T ∈ ball (A)

}
, n = 1, 2, . . . .

(i) A is topologically nilpotent if lim
n

an = 0;

(ii) A is uniformly topologically nil if lim
n

bn = 0;

(iii) A is weakly topologically nilpotent if for every sequence (Tn)∞n=1 in
ball (A), lim

n
‖T1T2 · · ·Tn‖1/n = 0.

Clearly (i) implies (ii); but Dixon and Müller have a noncommutative Banach
algebra which satisfies (ii) but not (i). However, for commutative algebras we have:

Theorem 1.6. Let A0 be a commutative normed algebra, A its Banach al-
gebra completion. Consider the following conditions:

(i) A0 is topologically nilpotent;
(ii) A is topologically nilpotent;
(iii) A0 is uniformly topologically nil;
(iv) A is uniformly topologically nil;
(v) A0 is weakly topologically nilpotent;
(vi) A is weakly topologically nilpotent.
Then (i), (ii), (iii), (iv), (vi) are equivalent. (v) does not imply (vi).

Proof. The proofs of the equivalence of (i) and (ii), as well as (iii) and (iv),
follows from the fact that the suprema in Definition 1.5 taken over a dense subset of
the unit ball are the same as the suprema over the unit ball. That (ii) implies (iv)
is trivial, while the implication (iv) implies (ii) is given in [4]. Clearly, (ii) implies
(vi), and that (vi) implies (ii) is given in [5]. (That does not use commutativity.)
To complete the proof, we give an example that (v) does not imply (vi).

Let Tn ∈ Mn be the matrix which is zero except on the superdiagonal, where
all the entries are 1. Let Un be the algebra generated by Tn, so Un consists of all

operators T of the form T =
n−1∑
k=1

akT k
n , ak ∈ C. Let A0 be the algebraic direct sum⊕

n>2

Un, so that A ∈ A0 is a sequence A = (S2, S3, . . .) with the property there is

an integer N (which may depend on A) with Sn = 0, n > N . A0 is an operator
algebra with the norm: ‖A‖ = sup

n
‖Sn‖, where ‖Sn‖ is the operator norm of

the matrix Sn. It is easy to see A0 is not topologically nilpotent: the {an} in



Commutative radical operator algebras 409

Definition 1.5 are all 1. Let A be the norm completion of A0. Since statements (i)
and (vi) are equivalent, it follows that A is not weakly topologically nilpotent.

To see that A0 is weakly topologically nilpotent, let (An)∞n=1 be a sequence
in ball (A0): An = (S1n, S2n, S3n, . . .). There is an N ∈ N such that for k > N ,
Sk1 = 0. Thus in any product, A1 · · ·Am, the components belonging to Uk, for
k > N , are all zero. So A1 · · ·Am belongs to the subalgebra U1 ⊕ · · · ⊕ Un. This
is nilpotent of degree N − 1, so that A1 · · ·Am = 0 if m > N − 1.

Comment 1.7. Our reason for the rather trivial extension of the definitions
in [4] from the Banach algebra to the normed algebra setting is that in subsequent
examples of operator algebras in terms of generators it is convenient to work with
polynomials in the generators.

Question 1.8. Let A0 be a weakly topologically nilpotent normed algebra.
Then each T ∈ A0 is quasinilpotent. If A0 is commutative, then by Proposition 1.4
the norm closure A is radical. If A0 is not commutative, does it follow that A is
radical?

Example 1.9. A class of noncommutative operator algebras A0 for which
A0 weakly topologically nilpotent implies the norm-closure A is radical can be
obtained from the theory of triangular AF-algebras. Briefly, let T be a TAF
algebra with diagonal D = T ∩ T ∗ , and T 0 the maximal diagonally disjoint
subalgebra. If T is obtained as an inductive limit with respect to a fixed system
of matrix units (which is always the case), let A0 be the span of the strictly upper
triangular matrix units in T . Then the norm-closure of A0 is A = T 0. If A

is not radical, then from [6], Theorem 3, there is a sequence (Tn) ⊂ ball (A0)
with ‖T1T2 · · ·Tn‖ = 1 for all n. In fact, the Tk can be chosen as strictly upper
triangular matrix units. Thus A0 is not weakly topologically nilpotent.

2.

In this section we investigate some singly generated radical operator algebras. Let
P denote the set of complex polynomials in one variable, and P0 the subset of
polynomials which vanish at 0. For an operator T ∈ B(H), let P0(T ) denote the
operator algebra T generates: P0(T ) = {p(T ) : p ∈ P0}. AT will denote the
norm-closure of P0(T ) in B(H). A commutative normed algebra A is an integral
domain if it satisfies: S, T ∈ A both nonzero implies 0 6= ST . If A is a nonunital
commutative normed algebra (not necessarily an integral domain ), S, T ∈ A, say
S divides T if T = SU for U ∈ Ã, where Ã is the unitization of A. We say that T

is prime if whenever T divides a product SR, then either T divides S or T divides
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R. We will be considering the following questions for a quasinilpotent operator
T ∈ B(H):

(i) Is AT topologically nilpotent?
(ii) If T is not nilpotent (hence P0(T ) is an integral domain), is AT an

integral domain?
(iii) If T is not nilpotent (in which case T is prime in P0(T )), is T prime

in AT ?

The answers to (i) or (ii) will depend on the choice of T . It is an open question
whether a radical commutative Banach algebra can possess a prime element if it
is an integral domain ([15]).

If a commutative radical Banach algebra has a sufficiently nice algebraic
structure, then it is topologically nilpotent.

Proposition 2.1. Let A be a commutative radical Banach algebra. If A is
finitely generated as an ideal in Ã (the unitization of A), then A is topologically
nilpotent.

Proof. By hypothesis there exist elements T1, . . . , TK ∈ A such that the ideal
in Ã generated by {T1, . . . , TK} is A. We may assume ||Tk|| 6 1, 1 6 k 6 K.

Thus, any element T ∈ A has the form

T =
K∑

k=1

TkUk

where Uk ∈ Ã, 1 6 k 6 K. Thus, Tn =
∑

i1,...,iK>0
i1+···+iK=n

n!
i1!···iK !T

i1U i1
1 · · ·T iK

K U iK

K . Let

M = max{‖U1‖, . . . , ‖UK‖}. Then

‖Tn‖ 6
∑

i1,...,kK>0
i1+···+iK=n

n!
i1! · · · iK !

‖T i1
1 ‖ · · · ‖T

iK

K ‖ ·Mn.

For n = 1, 2, . . ., set

an = max
{(
‖T i1

1 ‖ · · · ‖T
iK

K ‖
)1/n : i1, . . . , iK > 0, i1 + · · ·+ iK = n

}
.

Then {an} converges to zero, since

an 6 max
{
‖T [n/K]

k ‖1/n : 1 6 k 6 K
}
,
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where [n/K] is the greatest integer 6 n/K. The right side approaches zero as the

elements Tk are quasinilpotent. Thus,

‖Tn‖ 6 Mn ·Knan
n, or

‖Tn‖1/n 6 M ·Kan, for n = 1, 2, . . . .

Define Λk =
{
T ∈ A : ‖T‖ 6 1, and ‖Tn‖1/n 6 k · an, n = 1, 2, . . .

}
. Now

Λk is closed for each k = 1, 2, . . ., and each T in the unit ball of A belongs to

some Λk by the previous calculation. Thus ball (A) =
∞⋃

k=1

Λk, and by the Baire

Category Theorem some Λk has nonempty interior, say ΛL. Let B(T0; ε) be a ball

centered at T0, radius ε, contained in interior of ΛL. Thus, if T ∈ B(T0; ε),

∥∥(T − T0)n
∥∥ 6

n∑
k=0

(
n

k

) ∥∥T k
∥∥∥∥Tn−k

0

∥∥ 6
n∑

k=0

(
n

k

)
Lkak

kLn−kan−k
n−k

6
n∑

k=0

(
n

k

)
Lnbn

n 6 2nLnbn
n

where bn = max
06k6n

{
(ak

kan−k
n−k)1/n

}
. Since T − T0 is in B(0; ε), the ball centered at

0 withradius ε, it follows that if T ∈ ball (A), T = (1/ε)T ′, T ′ ∈ B(0; ε). Thus if

T ∈ ball (A),

‖Tn‖1/n 6
2
ε
Lbn.

Finally, if cn = (2/ε)Lbn, n = 1, 2, . . . , we have that lim
n

cn = 0, and for any

T ∈ ball (A),

‖Tn‖1/n 6 cn.

This shows that A is uniformly topologically nil, which by Theorem 1.6 is equiva-

lent to topological nilpotence.

If the hypotheses of the proposition are weakened by assuming that A is

finitely generated as a closed ideal, the conclusion may fail. Indeed, if A is the

norm-closed algebra generated by a single quasinilpotent operator, A may fail to

be topologically nilpotent. This will be seen in the example with the Volterra

operator, as well as for certain shifts.

We have no example of a Banach algebras satisfying the hypotheses of Propo-

sition 2.1 which is not finite dimensional.
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Open Question. Let A be a commutative radical Banach algebra which is
finitely (algebraically) generated as an ideal in Ã. Is A necessarily finite dimen-
sional?

It may be that this question is related to questions concerning prime ele-
ments. (See [15].) We can prove, however, that if A is a commutative Banach
algebra which is singly algebraically generated as an ideal, then A is finite dimen-
sional. In fact the following can be obtained without assuming commutativity of A.

Proposition 2.2. Let A be a radical Banach algebra. Suppose for some T

in the center of A

TA + CT = A.

Then T is nilpotent, and A is finite dimensional.

Proof. Let Λ : A → A, Λ(A) = TA.
Claim 1. Given n ∈ Z+, B ∈ A, there is A ∈ A and a polynomial p of degree

at most n vanishing at 0, such that B = TnA+p(T ). Furthermore, if P(n)
0 denotes

the set of polynomials of degree at most n, vanishing at zero, then, if Tn 6= 0,

A = RanΛn ⊕ P(n)
0 (T ).

We first show A = RanΛn + P(n)
0 (T ). For n = 1, this is by hypothesis.

For n > 1 assume inductively that B = Tn−1A1 + q(T ) for some A1 ∈ A and
polynomial q of degree at most n− 1, q(0) = 0. Expressing A1 as A1 = TA + cT ,
we have

B = Tn−1(TA + cT ) + q(T ) = TnA + cTn + q(T ) = TnA + p(T )

where p(x) = cxn + q(x) has degree at most n, and p(0) = 0.

Next, suppose TnA = p(T ), some p ∈ P(n)
0 . Write p(t) = αntn + · · · + α1t.

Then TnA − p(T ) = 0 = T (C1 − α1) where C1 = Tn−1A − αnTn−2 − · · · − α2T.

If α1 6= 0, since C1 − α1 is invertible in Ã, the unitization of A, it follows that
T = 0, contrary to hypotheses. So α1 = 0. Thus TnA − p(T ) = 0 has the form
T 2(C2 − α2) = 0, for some C2 ∈ A. If α2 6= 0, C2 − α2 is invertible in Ã, so that
T 2 = 0, again a contradiction. Thus α2 = 0. Continuing in this way, we obtain
α1 = · · · = αn = 0, so p = 0.

Claim 2. If T is not nilpotent, kerΛ ⊂ RanΛn.

Let B ∈ ker Λ, B = Tn + p(T ), p ∈ P(n)
0 by Claim 1. So 0 = TB =

Tn+1A + Tp(T ). Again by Claim 1, both summands are zero. Hence, Tp(T ) = 0.
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As sp(T ) = 0, and T is not nilpotent, it must be that p = 0, and hence B =
TnA ∈ RanΛn.

Claim 3. RanΛn is closed and of codim n in A.

Begin with n = 1. That RanΛ is closed is the same argument as in [15],
Section 2, but it is done here for the sake of completeness. Suppose {Ak}∞n=1 ⊂ A,
and {TAk} converges to cT for some c 6= 0. Replacing Ak by (1/c)Ak, we may
suppose TAk → T . As above, let Ã be the Banach algebra obtained by adjoining
the identity to A, and Λ̃ : Ã → A, Λ̃(A + cI) = TA + cT . Λ̃ is a continuous linear
map from one Banach space onto another, so it is an open map. Thus

T − TAk = T (λk −Bk)

where λk ∈ C, Bk ∈ A, and λk −Bk → 0. Since A and C are closed in Ã, Bk → 0
and λk → 0. In particular, λk 6= 1 for some k. From the equation

T (1− λk) = T (Ak −Bk)

we obtain T = (1− λk)−1T (Ak −Bk) ∈ RanΛ, contradicting that RanΛ, CT are
linearly independent subspaces.

Given n > 1, assume inductively that Ran Λn−1 is closed. Let {TnAk}∞k=1

be a sequence in RanΛn converging to some element of A. Since by induction
Ran Λn−1 is closed, {TnAk} → Tn−1B. Write B = TA + λT . If λ = 0, we are
done. Otherwise divide by λ and replace (Ak−A)/λ by Ak to obtain TnAk → Tn

as k →∞. Now Λ̃n : Ã → Ran Λ̃n = Ran Λn−1 is an open map, so Tn(Ak − 1) =
Tn(Bk−λk) where Bk ∈ A, λk ∈ C, and Bk−λk → 0. As above, this implies that
Bk → 0 and λk → 0. We have that Tn(Ak −Bk) = Tn(1−λk), so if some λk 6= 1,
then Tn = (1−λk)−1Tn(Ak−Bk), contradicting the direct sum decomposition in
Claim 1.

Claim 4. If T is not nilpotent, kerΛ 6= (0).

If kerΛ = (0), then Λ : A → A has closed range with codim 1, so is Fredholm.
As ‖Λn‖ 6 ‖Tn‖, Λ is quasinilpotent. But then the Fredholm spectrum of Λ is
empty, so A is finite dimensional and T is nilpotent.

To complete the proof of the theorem, let B =
∞⋂

n=1
RanΛn. If T is not

nilpotent, since B ⊃ ker Λ by Claim 2, we have that B 6= (0) by Claim 4. Set
ΛB the restriction of Λ to B. Then ΛB : B → B is onto and quasinilpotent.
By [13], Theorem 4.15, the adjoint map Λ∗B : B∗ → B∗ is one-to-one with closed
range. Thus, by the Open Mapping Theorem (or, [13], Theorem 4.13) there is a
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δ > 0 such that ||Λ∗B∗|| > δ||B∗|| for all B∗ ∈ B∗. Hence, ||Λ∗nB∗|| > δn||B∗||,
and so Λ∗ is not quasinilpotent. On the other hand, ||Λ∗n|| = ||Λn||, so that
Λ∗ is quasinilpotent. This contradiction implies that T is nilpotent. Say Tn 6= 0,
Tn+1 = 0. By Claim 1, A = RanΛn⊕P(n)

0 (T ). So if A ∈ A, write A = ΛnB+p(T ),
p ∈ P(n)

0 . But B has the form B = ΛB1 + λT , for some B1 ∈ A, λ ∈ C,
so ΛnB = Λn+1B1 + λΛnT = Tn+1(B1 + λ) = 0. Thus, RanΛn = (0), and
A = P(n)

0 (T ) is the finite dimensional algebra of polynomials in T .

Next we turn to examples of operator algebras; these are operator algebras
AT which are singly generated in the sense that AT is the norm closure in B(H)
of polynomials in T , where T ∈ B(H) is the generator. Our first result is that if T

is a weighted shift with positive weights tending monotonically to zero (hence T

is quasinilpotent), then AT is topologically nilpotent. First we require a lemma.
Fix an orthonormal basis {ξn : n = 0, 1, 2, . . .} for a Hilbert space H, and

a positive decreasing sequence {αn}, n = 1, 2, . . . with lim
n→∞

αn = 0, and let T

denote the weighted shift on H given by: Tξn = αn+1ξn+1. It is convenient to
normalize T so ||T || = α1 = 1.

Lemma 2.3. Let P be the set of complex polynomials, and P0 = {p ∈ P :
p(0) = 0}. Denote by P0(T ) = {p(T ) : p ∈ P0}. Let m ∈ Z+, m > 1, p1, . . . , pm ∈
P0 with ‖pk(T )ξ0‖ 6 1, 1 6 k 6 m. Then

‖p1(T ) · · · pm(T )ξ0‖ 6 ‖Tm‖.

Proof. Let βk =
k∏

j=1

αj , k ∈ Z+.

Claim. Let i, k be integers such that k > m, and 1 6 i < k. Then βk/βi 6

αmβk−i.
As i > 1 and (αn)n>1 is decreasing, αi+1 6 α2, αi+2 6 α3, . . ., αk−1 6 αk−i,

and αk 6 αm. Thus

αi+1 · · ·αk−1αk 6 α2 · · ·αk−iαm.

But the product on the left is βk/βi, and the right side is αmβk−i, using the fact
α1 = 1.

Returning to the lemma, write pj(t) =
∞∑

i=1

a
(j)
i ti, where for each j only finitely

many of the a
(j)
i are nonzero. We have

∥∥pj(T )ξ0

∥∥2 =
∥∥∥∥ ∞∑

i=1

a
(j)
i T iξ0

∥∥∥∥2

=
∥∥∥∥ ∞∑

i=1

a
(j)
i βiξi

∥∥∥∥2

.



Commutative radical operator algebras 415

Thus,
∞∑

i=1

∣∣a(j)
i βi

∣∣2 6 1, 1 6 j 6 m.

The proof will be by induction on m. Note that for m = 1, ‖p1(T )ξ0‖ 6 1 =
‖T‖. Suppose that m > 1 and whenever q1, . . . , qm−1 ∈ P0 and ‖qj(T )ξ0‖ 6 1,
then ‖q1(T ) · · · qm−1(T )ξ0‖ 6 βm−1 = ‖Tm−1‖. e With {pj}16j6m as above, we
compute∥∥∥∥ m∏

j=1

pj(T )ξ0

∥∥∥∥2

=
∥∥∥∥ ∞∑

i1,...,im=1

a
(1)
i1
· · · a(m)

im
T i1+···+imξ0

∥∥∥∥2

=
∥∥∥∥ ∞∑

k=m

∑
i1+···+im=k
i1,...,im>1

a
(1)
i1
· · · a(m)

im
βkξk

∥∥∥∥2

=
∞∑

k=m

∣∣∣∣ ∑
i1+···+im=k
i1,...,im>1

a
(1)
i1
· · · a(m)

im

∣∣∣∣2β2
k

=
∞∑

k=m

∣∣∣∣ k−m+1∑
i1=1

a
(1)
i1

∑
i2+···+im=k−i1

i2,...,im>1

a
(2)
i2
· · · a(m)

im

∣∣∣∣∣
2

β2
k

6
∞∑

k=m

k−m+1∑
i1=1

∣∣a(1)
i1

∣∣2∣∣∣∣ ∑
i2+···+im=k−i1

i2,...,im>1

a
(2)
i2
· · · a(m)

im

∣∣∣∣2β2
k.

By the claim, we obtain

6
∞∑

k=m

k−m+1∑
i1=1

∣∣a(1)
i1

∣∣2β2
i1α

2
m

∣∣∣∣ ∑
i2+···+im=k−i1

i2,...,im>1

a
(2)
i2
· · · a(m)

im

∣∣∣∣2β2
k−i1

6
∞∑

i1=1

∣∣a(1)
i1

∣∣2β2
i1

∞∑
k=i1+m−1

α2
m

∣∣∣∣ ∑
i2+···+im=k−i1

i2,...,km>1

a
(2)
i2
· · · a(m)

im

∣∣∣∣2β2
k−i1 .

Making the change of index l = k − i1, we obtain

6
∞∑

i1=1

∣∣a(1)
i1

∣∣2β2
i1

∞∑
l=m−1

α2
m

∣∣∣∣ ∑
i2+···+im=l
i2,...,im>1

a
(2)
i2
· · · a(m)

im

∣∣∣∣2β2
l .

Now
∞∑

i1=1

∣∣a(1)
i1

∣∣2β2
i1

=‖p1(T )ξ0‖2 6 1. Furthermore,
∞∑

l=m−1

∣∣∣∣ ∑
i2+···+im=l
i2,...,im>1

a
(2)
i2
· · · a(m)

im

∣∣∣∣2
·β2

l is the norm ‖p2(T ) · · · pm(T )ξ0‖2, which by the induction hypothesis is at most
β2

m−1. Thus, ‖p1(T ) · · · pm(T )ξ0‖2 6 α2
mβ2

m−1 = β2
m 6 ‖Tm‖.
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Note that the hypothesis that the weights αn decrease to zero implies that
β

1/m
m = ‖Tm‖1/m converges to zero, so that T is quasinilpotent.

Theorem 2.4. Let T as above be a weighted shift with positive, decreasing
weight sequence converging to zero. Let AT be the norm-closed subalgebra of B(H)
generated by T . For any m ∈ Z+ and T1, . . . , Tm ∈ ball (AT ),

‖T1 · · ·Tm‖ 6 ‖Tn‖.

In particular, AT is topologically nilpotent.

Proof. With P0 as in the Lemma 2.3, P0(T ) = {p(T ) : p ∈ P0} is a dense
subalgebra of AT . By Theorem 1.6 it is enough to prove that P0(T ) is topologically
nilpotent. Thus we may take Tj = pj(T ), pj ∈ P0, 1 6 j 6 m, with ‖pj(T )‖ = 1.
Now for any S ∈ B(H), ‖S‖ = sup{‖Sξ‖ : ‖ξ‖ 6 1, ξ a finite linear combination of
basis vectors {ξn}∞n=0} = sup

{
‖Sq(T )ξ0‖ : q a polynomial, ‖q(T )ξ0‖ 6 1

}
. Thus,

‖p1(T ) · · · pm(T )‖ = sup
{
‖p1(T ) · · · pm(T )q(T )ξ0‖ : q a polynomial, ‖q(T )ξ0‖ 6

1
}
. Noting that (pmq)(0) = 0, ‖pm(T )q(T )ξ0‖ 6 ‖pm(T )‖ ‖q(T )ξ0‖ 6 1, and

‖pj(T )ξ0‖ 6 ‖pj(T )‖ ‖ξ0‖ 6 1, we may apply the Lemma 2.3 with the polynomial
pm in the lemma replaced by pmq. We obtain

‖p1(T ) · · · pm(T )q(T )ξ0‖ 6 ‖Tm‖.

Hence, ‖p1(T ) · · · pm(T )‖ 6 ‖Tm‖. As T is quasinilpotent, AT is topologically
nilpotent.

Next we present a quasinilpotent weighted shift T for which AT is not topo-
logically nilpotent. This shows that the hypothesis in Proposition 2.1 that A be
“finitely generated as an ideal” cannot be weakened to “finitely generated as a
closed ideal”.

Recall that if T is a weighted shift with weights {wn}, and if lim
n

wn = 0,

then T is quasinilpotent. This follows from ||Tn|| = sup
k
|wk+1wk+2 · · ·wk+n|.

Example 2.5. Define a sequence of weights in the following manner:

2n1︷ ︸︸ ︷
1
2
, . . . ,

1
2
, a1,

3n2︷ ︸︸ ︷
1
22

, . . . ,
1
22

, a2,

4n3︷ ︸︸ ︷
1
23

, . . . ,
1
23

, a3,

5n4︷ ︸︸ ︷
1
24

, . . . ,
1
24

, a4, . . .

where: n1 = 2, nk+1 = 1+(number of terms preceding ak), k > 1, and ak =

min
{(

1
nk

)nk

, bk

}
, where bk = (1/2)(product of the nk+1 terms following ak)

product of the terms preceding ak
.

From this, one can compute

‖Tn1‖1/n1 =
1
2
, ‖Tn2‖1/n2 =

1
22

, . . . , ‖Tnk‖1/nk =
1
2k

, k > 1.
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Since for any T ∈ B(H) the limit lim
n
‖Tn‖1/n exists, it follows in this case that

the limit is zero, so T is quasinilpotent. Let Tn =
(
1/‖Tn‖

)
Tn, n > 1. Note

that ‖T 2
n1
‖ = (1/2)4/(1/4)2 = 1, ‖T 3

n2
‖ = 1, . . ., ‖T k+1

nk
‖ = 1. Thus, AT is not

uniformly topologically nil, or what is equivalent, not topologically nilpotent.

Remark 2.6. Let {ξn}n>0 be an orthonormal basis for a Hilbert space, and
T a weighted shift, Tξn = αn+1ξn+1, with weight sequence αk 6= 0 for all k > 1.
It follows from the formal power series description that AT is an integral domain
(see [14]).

Remark 2.7. Here we consider the question of whether T is prime in AT .
As in Theorem 2.4 we suppose that the sequence (αn)∞1 of positive weights is
monotone decreasing to 0. Suppose further that the weighted shift T is strictly
cyclic. By this we mean that H = {Aξ0 : A ∈ AT }. Thus by the Closed Graph
Theorem, the norm ||Aξ0||, A ∈ AT is equivalent to the operator norm. A necessary
and sufficient condition is that

sup
n

n∑
k=0

(
βn

βkβn−k

)2

< ∞,

where β0 = 1, βn =
n∏

k=1

αk for k > 1 ([14], Proposition 32). In that case the

algebra AT can be identified with l2. Suppose that the sequence (βn) is regulated;
that is, for some k > 1, lim

n
(βn+k/βn) = 0. Then T is not prime in AT ([15],

Corollary 3.15).
A weight sequence satisfying these conditions would be αn = 1/n!, n > 1.

For general quasinilpotent weighted shifts we do not know if T is prime in AT .

Example 2.8. Next we turn to the Volterra integral operator, defined on
L2[0, 1] by

V ξ(x) =

x∫
0

ξ(t) dt, ξ ∈ L2[0, 1].

In [1] there is a model for the weakly closed subalgebra of B(L2[0, 1]) gen-
erated by V . We adapt this to obtain a model for the norm-closed subalgebra
generated by V . First, some preliminaries.

Let H∞ = H∞(D) denote the subspace of the L∞ functions on the unit
circle analytic in the interior, A = A(D) the disk algebra; i.e., A is the subspace
of H∞ of continuous functions on the circle analytic in the interior. Let M1 be
the maximal ideal in A of functions vanishing at the point 1. Let er(z) denote the
function er(z) = exp(r(z + 1)/(z − 1)).
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Observations:
(i) e1M1 = e1H

∞ ∩ M1 = e1H
∞ ∩ A. That e1M1 ⊂ e1H

∞ ∩ M1 ⊂
e1H

∞ ∩ A is clear. Suppose ϕ ∈ H∞ and e1ϕ ∈ A. Since for t ∈ (0, 1), e1(t) → 0
as t ↑ 1, it must be the case that for z ∈ T, z = eiθ, ϕ(z) → 0 as θ → 0, since
|e1(eiθ)| = 1, θ 6= 0, and e1ϕ is continuous by hypothesis. Since e1 is continuous
on T except at 1, and |e1(z)| = 1, z ∈ T, z 6= 1, it follows that ϕ is continuous
on T, except possibly at z = 1. If necessary, redefine ϕ so ϕ(1) = 0, then ϕ is
continuous on T. But then ϕ ∈M1.

(ii) Let Ps denote the Poisson kernel. Note that for f ∈ H∞, (Ps ∗ f)(z) =
f(sz). Then for any g ∈M1, ‖e1g − (Ps ∗ e1)g‖ → 0 as s ↑ 1. Indeed,

‖e1g − (Ps ∗ e1)g‖ 6 ‖e1g − Ps ∗ (e1g)‖+ ‖Ps ∗ (e1g)− (Ps ∗ e1)g‖.

Now the first term goes to zero since e1g ∈ M1, and hence Ps ∗ (e1g) converges
uniformly to e1g as s ↑ 1. For the other, note that Ps ∗ (e1g) = (Ps ∗ e1)(Ps ∗ g) so
that

‖Ps ∗ (e1g)− (Ps ∗ e1)g‖ = ‖Ps ∗ e1(g − Ps ∗ g)‖ 6 ‖g − Ps ∗ g‖

and by continuity of g the last term approaches zero as s ↑ 1.

Lemma 2.9. Let f ∈ M1, ε > 0. Then there exists r > 0 such that ‖f −
erf‖ < ε.

Proof. Let U be a neighborhood of 1 in the closed unit disk cl (D) so that
|f(z)| < ε/2, z ∈ U . We can choose r sufficiently small so that for all z ∈
cl (D) \ U , |er(z)− 1| < ε/‖f‖. Then

|f(z)− er(z)f(z)| 6


ε

2
|1− er(z)|, z ∈ U ;

|f(z)| · |1− er(z)|, z ∈ cl (D) \ U ;

6


ε

2
2 = ε, z ∈ U ;

‖f‖ ε

‖f‖
= ε, z ∈ cl (D) \ U .

Lemma 2.10. Let f ∈M1. Then

inf
g∈e1H∞

‖f − g‖ = inf
g∈e1M1

‖f − g‖.

Proof. With no loss of generality assume ‖f‖ = 1. By the previous lemma
we may choose r, 0 < r < 1, so that ‖f − erf‖ < ε. By [1], p. 41, the infimum
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{‖f − g‖ : g ∈ e1H
∞} is achieved for some g, g = e1ϕ, ϕ ∈ H∞. As ‖f‖ = 1,

‖g‖ = ‖ϕ‖ 6 2. With Ps the Poisson kernel as above,

Ps ∗ er(1) = er(s) = exp
(
r
s + 1
s− 1

)
.

As this approaches 0 as s ↑ 1, find s0 so that er(s) < ε for s0 < s < 1. Next,
observe that the function e1[Ps ∗ er − er(s)]Ps ∗ ϕ ∈ e1M1. By observation (ii),
there is s1, s0 6 s1 < 1, so that for s1 < s < 1,

‖Ps(erf)− e1[Ps ∗ er − er(s)]Ps ∗ ϕ‖(∗)
6 ‖Ps ∗ (erf)− Ps ∗ e1[Ps ∗ er − er(s)]Ps ∗ ϕ‖+ ε.

Also, ‖e1er(s)Ps ∗ ϕ‖ 6 2ε, so

(∗) 6 ‖Ps(erf)− Ps ∗ e1Ps ∗ erPs ∗ ϕ‖+ 3ε

6 ‖erf − e1erϕ‖+ 3ε 6 ‖f − e1ϕ‖+ 3ε.

Now
‖f − Ps ∗ (erf)‖ 6 ‖f − Ps ∗ f‖+ ‖Ps ∗ f − Ps ∗ (erf)‖

6 ‖f − Ps ∗ f‖+ ‖f − erf‖ < 2ε

for s2 < s < 1, where s1 6 s2 < 1 and for r sufficiently small, by Lemma 2.9.
Thus,

‖f − e1[Ps ∗ er − er(s)]Ps ∗ ϕ‖
6 ‖f − Ps ∗ (erf)‖+ ‖Ps ∗ (erf)− e1[Ps ∗ er − er(s)]Ps ∗ ϕ‖
< 2ε + ‖f − e1ϕ‖+ 3ε < 5ε + ‖f − e1ϕ‖.

As ε > 0 is arbitrary, this shows that the infimum on the right is less then or equal
the left side. The other inequality is obvious, and the proof is complete.

If B is a Banach algebra, A ⊆ B a Banach subalgebra, and I a norm-closed
ideal of B, then the map A/A ∩ I → A + I/I, which takes the coset a + A ∩
I → a + I (a ∈ A), is an algebraic isomorphism, but as A + I may not be
closed in B, the quotient A + I/I may be merely a normed algebra. In the case
B = H∞, A = M1, I = e1H

∞ it follows from the previous lemma that the
mapping A/A ∩ I → A + I/I is isometric, hence an isometric isomorphism of
Banach algebras.

Again, let V be the Volterra operator on L2[0, 1], T = (I−V )(I +V )−1 (the
“cogenerator”). By [1], p. 99, V is a norm limit of polynomials in (I − T ), and
conversely, I − T is a norm limit of polynomials in V .
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By [1], p. 97, Lemma 3.18, T is unitarily equivalent to S(e1), the compression
of the shift S on H2 to H(e1) = H2	 e1H

2. The commutant {S(e1)}′ (and hence
{T}′) is isometrically isomorphic to the quotient algebra H∞/e1H

∞. This is
implemented by u ∈ H∞ → u(S(e1)) ([1], p. 40, Corollary 1.20).

Due to the unitary equivalence of T , S(e1), we write u(T ), u ∈ H∞. Denote
by Φ the isometric isomorphism Φ : H∞/e1H

∞ → {T}′, u ∈ H∞ 7→ u(T ). The
image of the subalgebra M1 + e1H

∞/e1H
∞, which is norm closed, contains T − I

and hence V . On the other hand, as observed, any norm closed subalgebra con-
taining V contains T −I. Let AV denote the norm closed subalgebra of B(L2[0, 1])
generated by V .

Corollary 2.11.

AV = Φ(M1 + e1H
∞/e1H

∞) ∼= M1 + e1H
∞/e1H

∞

∼= M1/e1H
∞ ∩M1

∼= M1/e1M1.

Note: e1H
∞ ∩ M1 = e1M1 by observation (i). Also, the polynomials

vanishing at 1 are dense in M1.

The benefits of having a functional model for AV can work both ways. On
one hand we can use what is known about AV (that it is a radical algebra) to
get a result about approximation of analytic functions. On the other hand, the
model provides information about AV that cannot easily be extracted directly by
operator-theoretic tools.

From the (well-known) fact that V is quasinilpotent, we obtain from Propo-
sition 1.4 that the norm-closed algebra AV generated by V is radical. Let e1, and
M1 be as before.

Proposition 2.12. Let f ∈ M1, ε > 0. Then there is a positive integer N

and gn ∈M1, n > N , so that ‖fn − e1gn‖ < εn, n > N .

Proof. AV is isometrically isomorphic with M1/e1M1. Since AV is radi-
cal, so is M1/e1M1. The inequality above is a restatement of the fact that the
equivalence class of any f ∈M1 is quasinilpotent.

More interesting for our purposes is the information that M1/e1M1 provides
about AV .

Corollary 2.13. The nilpotent elements in AV are dense.

Proof. It is enough to prove density of nilpotent elements in M1/e1M1.
Given an equivalence class [f ] ∈M1/e1M1, let ε > 0 and choose a representative
f ∈ [f ]. By Lemma 2.9 there is r, 0 < r < 1, such that ‖f − erf‖ < ε. Now
erf ∈ M1, and ‖[f ] − [erf ]‖ < ε. But [erf ]n = [en

r fn] = [enrf
n] = [0] if nr > 1,

as enr = e1e(nr−1).
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Corollary 2.14. AV is not an integral domain.

Following the treatment of accretive operators in [11], pp. 173–174, one can
show that the (maximal) accretive operator V has a square root which lies in AV .
The result is sketched here.

For z = reiθ, r > 0, |θ| < π/2, define z1/2 = r1/2eiθ/2. The functions
(1+λ)1/2, (1−λ)1/2, (λ in the open unit disk D) are holomorphic in D and extend
to continuous functions on cl (D). That is, they belong to the disk algebra A(D).
Let

w(λ) =
(1 + λ)1/2 − (1− λ)1/2

(1 + λ)1/2 + (1− λ)1/2
.

w ∈ A(D). As before, set T = (I − V )(I + V )−1. So,

V 1/2 = (I − w(T ))−1(I + w(T )) =
∞∑

n=1

(
1
2

)n

(I + w(T ))n.

Using [11], Equation 5.7, p. 174, |w(λ)| < 1 for λ ∈ cl (D), λ 6= ±1, w(−1) = −1,
w(1) = 1, and so σ(w(T )) = 1. The second equality above follows from [1], p. 99,
in the same way V is obtained as a power series in (I − T ), except here we have
(I − w(T )). Since σ(w(T )) = w(σ(T )) = w(1) = 1, the series converges in norm.
Note that since w(0) = 0, I − w(T ) is a limit of polynomials in (I − T ). Thus,
I − w(T ) ∈ AV , and so is V 1/2.

Proposition 2.15. V is not prime in AV .

Proof. V divides V 1/2V 1/2, but V does not divide V 1/2, since V −1/2 is un-
bounded, hence not in AV .

Next we observe that the functional model for AV can be used to show
that AV is not uniformly topologically nil. Note that f(z) = (1/2)(1 − z), as
well as the principal nth roots of f for all positive integers n, belong to the unit
ball of M1; hence the equivalence classes of these functions belong to the unit
ball of the quotient M1/e1M1. If M1/e1M1 were uniformly topologically nil,
there would be a sequence {bn}∞n=1, bn > 0, with lim

n
bn = 0, such that for [g] ∈

unit ball (M1/e1M1), ‖[g]n‖1/n 6 bn, n = 1, 2, . . .. Let f be as above; for some
m ∈ Z+, ‖[f ]‖ > bm. Then, if g is the mth principal root of f ,

‖[g]m‖1/m = ‖[f ]‖1/m > ‖[f ]‖ > bm.

This proves
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Proposition 2.16. AV is not uniformly topologically nil and hence not topo-
logically nilpotent.

We remark that it is possible to provide an alternative proof of Proposi-
tion 2.16 based on a result of [7], that the weakly closed algebra generated by the
Volterra operator contains an operator whose spectrum has more than one point.
However, that proof yields less insight than the one presented here.

The other example, 2.5, of a singly generated operator algebra which is not
uniformly topologically nil was given by a quasinilpotent weighted shift T (in which
the weight sequence was not monotonic). The algebra AT failed to be uniformly
topologically nil because the sequence {Tn := Tn/‖Tn‖} of normalized powers of
the generator was not a uniformly topologically nil sequence.

This leads to the following question: suppose T is a quasinilpotent operator
which satisfies the condition: there is a positive sequence {bk}∞k=1, converging to
zero, and

||T k
n ||1/k 6 bk, for all positive integers n, k

where Tn = Tn/‖Tn‖, n > 1. Does it then follow that the algebra AT is uniformly
topologically nil?

Example 2.17 For the Volterra operator V one has the estimates

1
n!(2n + 1)

6 ‖V n‖ 6
1

(n− 1)!
, n > 1.

So with Vn = V n/‖V n‖ one has

‖V k
n ‖ =

‖V nk‖
‖V n‖k

6
(n!)k(2n + 1)k

(nk − 1)!
.

From Stirling’s formula one obtains

‖V k
n ‖1/k 6 C(2n + 1)3/2 1

kn
, k > 2,

where C does not depend on n, k. If

bk = sup
n

C(2n + 1)3/2 1
kn

, k > 2,

so bk → 0 as k → ∞. Thus the sequence {Vn}∞n=1 of normalized powers of the
generator is a uniformly topologically nil sequence, although the algebra AV is
not uniformly topologically nil (by Proposition 2.16). This answers the question
raised above in the negative.
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Remark 2.18. Here are some remarks concerning noncommutative radical
operator algebras. It is known that for noncommutative radical Banach algebras,
the condition that A be uniformly topologically nil is strictly weaker than topo-
logical nilpotence ([5]). The question remains open in the category of operator
algebras.

A possible candidate for a uniformly topologically nil but not topologically
nilpotent operator algebra is the following: let

{(
e
(n)
ij

)
: 1 6 i, j 6 2n

}
be set of

matrix units for M2n , and νn : M2n ↪→ M2n+1 the refinement embedding, given by

νn

(
e
(n)
ij

)
= e

(n+1)
2i−1 2j−1 + e

(n+1)
2i 2j .

Let Tn ⊂ M2n denote the upper triangular subalgebra, and T 0
n the strictly upper

triangular subalgebra. The operator algebra inductive limit, lim
−→

(Tn, νn) is called

the refinement algebra, and its Jacobson radical is known to be lim
−→

(T 0
n , νn) ([6]).

Let x1 = e
(1)
12 , x2 = e

(2)
34 ,. . ., xn = e

(n)
2n−12n , . . .. Let A be the norm closed (operator)

algebra generated by the {xn}∞n=1. As A is contained in the radical of the refine-
ment algebra, A is radical. As ‖x1x2 · · ·xn‖ = 1 for all n, A is not topologically
nilpotent.

For I = {i1 < i2 < · · · < ik} a finite subset of positive integers, let xI =
xi1xi2 · · ·xik

. It is not difficult to see that any T ∈ A can be expressed uniquely
as a sum

∑
I

aIxI over the finite subsets I ⊂ N. Let T ∈ A be non-nilpotent.

One can show that AT is an integral domain. We do not know if AT is uniformly
topologically nil.

The first named author was partially supported by a grant from the National Science
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