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Abstract. Given a finite index inclusion of factors N
E
⊂ M , it is possible to

define a representation of the Affine Temperley-Lieb algebra on the relative
commutant N ′ ∩ Mn, via the left and right multiplication by the ei’s, and
the conditional expectations En and λE−1, where λ = Ind(E)−1.

This result generalizes a theorem by Vaughan Jones (see [10]), where
he introduces the definition of the Affine Temperley-Lieb algebra, and proves
that a representation of it exists on the Hilbert spaces N ′ ∩Mn constructed
from a finite index and extremal inclusion of II1 factors N ⊂ M .
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1. INTRODUCTION

If N ⊂ M is a finite index inclusion of II1 factors, and if N ⊂ M is extremal, then

we can find a representation of the Affine Temperley-Lieb algebra on the relative

commutant N ′ ∩Mn, where Mn is the nth step of the Jones tower.

Definition 1.1. (see [10]) The affine Temperley-Lieb algebra T (n, λ) is the

algebra over C defined by generators f1, . . . , fn and relations:
fifi±1fi = λfi i = 1, . . . , n (modn),
fifj = fjfi |i− j| > 0 (modn),
f2

i = fi i = 1, . . . , n.
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To be more precise, if λ = [M : N ]−1, Lei
is the left multiplication by ei, Rej

the right multiplication by ej , and EN ′∩Mn−1 , EM ′∩Mn
are the trace preserving

conditional expectations onto N ′ ∩Mn and M ′ ∩Mn−1, then:

(1.1)
f1 f2 · · · fn fn+1 fn+2 fn+3 · · · f2n+1 f2n+2

Le1 Le2 · · · Len EN ′∩Mn−1 Ren Ren−1 · · · Re1 EM ′∩Mn

is a representation of the Affine Temperley-Lieb algebra T (2n+2, λ) on the Hilbert
space N ′ ∩Mn, with 2n + 2 generators and parameter λ (see [10]).

Consider now the more general setting N
E
⊂ M of any inclusion of factors

equipped with a normal, faithful conditional expectation E. By [11], [13], [16],

we can define in this case the index Ind(E) of the inclusion N
E
⊂ M , to be a real

number bigger than or equal to 1 (∞ is allowed).

If Ind(E) < ∞, then it is possible to define a basic construction M
E1⊂ M1,

with E1 normal faithful conditional expectation from M1 onto M (the “dual” to
E), and where M1 is the von Neumann algebra generated by M and the Jones
projection e1. As in the finite case, the relative commutant N ′ ∩ M is finite
dimensional (see [6], [7], [11], [12], [13],).

An important step now is to understand how E1 is defined. Starting with
the spatial theory by Connes (see [2]), and the operator-valued weights’ theory by
Haagerup (see [6], [7]), given a (normal faithful) conditional expectation E, it is
possible to define a canonical operator-valued weight E−1, which is the cornerstone
in the definition of Ind(E) in the sense of Kosaki. If Ind(E) < ∞, then λE−1

defines a normal faithful conditional expectation from N ′ onto M ′, where λ =
Ind(E)−1 (here M acts standardly on a fixed Hilbert space H). It is from λE−1

that we can define the dual conditional expectation E1.
Now we can iterate the basic construction, and get a tower of factors

(1.2) N
E
⊂ M

E1⊂ M1 ⊂ · · ·
En⊂ Mn,

where each Ei is the dual of Ei−1. In this way we also get the sequence of Jones
projections e1, . . . , en. Thus the main theorem:

Theorem 1.2. If N
E
⊂ M is a finite index inclusion of factors and ei, λ,

E−1 and En are as above, then:

(1.3)
f1 f2 · · · fn fn+1 fn+2 fn+3 · · · f2n+1 f2n+2

Le1 Le2 · · · Len
En Ren

Ren−1 · · · Re1 λE−1

is a representation of T (2n + 2, λ) onto the Hilbert space N ′ ∩Mn.



Affine Temperley-Lieb algebras 37

In other words, a representation of T (2n+2, λ) onto N ′∩Mn exists also both
in the infinite factors setting, and in the finite factors but not extremal one, the
main idea being that to get the representation it suffices to “tune up” the correct
conditional expectations.

2. PROOF OF THE MAIN THEOREM

In the following we will only consider σ-finite factors.

We start with a finite index inclusion (of σ-finite factors) N
E
⊂ M ⊂ B(H),

where E ∈ E(M,N), the set of all the normal, faithful conditional expectations
from M onto N .

Assume M acts standardly on H, and fix ϕ ∈ N+
? , any normal faithful state

on N . Then ϕ◦E is a normal faithful state on M , and we can find a unique cyclic
and separating vector ξ in the standard cone, such that ϕ ◦E = ωξ (see [7]). This
vector ξ determines uniquely the antilinear isometry J (the modular conjugation),
by considering the polar decomposition S = J∆1/2 of the closure S of the map
xξ → x?ξ, x ∈ M .

Define eN by eN (xξ) = E(x)ξ, x ∈ M . Kosaki proves in [11] that eN can be
extended to a bounded projection on H which commutes with N (still denoted by
eN ), and that eN does not depend on the choice of ϕ.

Lemma 2.1. (see [11]) E−1(eN ) = 1. In particular, Ind(E) > 1 and Ind(E) =
1 if and only if N = M .

This projection satisfies several “natural” conditions:

Lemma 2.2. (see [11]) Let N
E
⊂ M be a finite index inclusion of factors, and

assume M acts standardly on H. Fix ξ a cyclic and separating vector for M such
that ϕ◦E = ωξ, for any fixed ϕ normal faithful state on N , and call J its modular
conjugation. If eN is as above, then:

(i) eNxeN = E(x)eN , x ∈ M ;
(ii) if x ∈ M , then xeN = eNx ⇔ x ∈ N ;
(iii) N ′ = 〈M ′, eN 〉;
(iv) J commutes with eN ;
(v) 〈M, eN 〉 = JN ′J ;

(vi)
{

a0 +
n∑

i=1

aieNbi : ai, bj ∈ M ′
}

is dense in N ′;

(vii)
{

a0 +
n∑

i=1

aieNbi : ai, bj ∈ M
}

is dense in 〈M, eN 〉.
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Assume now N
E
⊂ M are factors with Ind(E) < ∞, and perform the basic

construction N
E
⊂ M ⊂ M1. Remember M acts standardly on H, and consider:

N
E
⊂ M ⊂ M1

M ′
1 ⊂ M ′ λE−1

⊂ N ′

where λ = Ind(E)−1. If J is, as in the previous lemma, the modular conjugation

relative to ξ:

Definition 2.3. (see [11], [12]) E1, the conditional expectation dual to E,

is defined by

E1(x) = λJE−1(JxJ)J, x ∈ M1.

E1 ∈ E(M1,M), and E1(eN ) = λ. Also, Ind(E) = Ind(E1) (see [11]).

To iterate this construction, fix a new Hilbert space H1 standard for M1, and

consider the modular conjugation J1 relative to the vector state ξ1 of ϕ ◦ E ◦ E1.

Now we can proceed as above, and can define the basic construction M2 of M
E1⊂

M1. In this way we get a tower

(2.1) N
E
⊂ M

E1⊂ M1 ⊂ · · ·
En−1
⊂ Mn−1

En⊂ Mn

satisfying (see [11]):

(i) Ei is the dual of Ei−1, and Ind(Ei) = λ−1;

(ii) Mi = 〈Mi−1, ei〉;
(iii) Ei(ei) = λ;

(iv) eie±1ei = λei;

(v) eiej = ejei, for |i− j| > 2.

A word about the Hilbert spaces in this extended version of the Jones tower:

given a tower as in (iv), it is always possible to let it act on H, where M is standard

on H. To do this, first of all consider the inclusion M ⊂ Mn.

If M and Mn are infinite, then it is well known it exists a faithful represen-

tation of the inclusion M ⊂ Mn in which both factors are in standard form with

respect to the same vector. If instead M ⊂ Mn are finite factors, then the result

is well known from [9].
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Lemma 2.4. Let N
E
⊂ M be a finite index inclusion of factors with Ind(E) =

λ−1, and consider M1 its basic construction. If e is the Jones projection relative
to E, and E1 is the conditional expectation dual to E, then:

(i) eE1(ex) = λ ex;
(ii) E1(xe)e = λ xe.

Proof. Since elements of the type a0 +
n∑

i=1

aiebi, ai, bj ∈ M are dense in M1,

it is enough to check the statement for x = a, and x = aeb, with a, b ∈ M . The
case x = a is obvious. Let x = aeb, a, b ∈ M . Then eE1(ex) = eE1(eaeb) =
eE1(E(a)eb) = eE(a)E1(e)b = λeE(a)b = λeaeb = λex. The other equality is
proved in the same way.

Lemma 2.5. Let N
E
⊂ M be a finite index inclusion of factors with Ind(E) =

λ−1, and perform the basic construction up to the n-th step:

N
E
⊂ M

E1⊂ M1 ⊂ · · ·
En⊂ Mn.

Let the tower act on the Hilbert space H, with M in standard form on H, call
e1, e2, . . . the Jones projections relative to E,E1, . . ., and consider:

(2.2)
N ′ ∩Mn−1 ⊂ N ′ ∩Mn

∪ ∪
M ′ ∩Mn−1 ⊂ M ′ ∩Mn.

Then:
(i) (a) En ∈ E(N ′ ∩Mn, N ′ ∩Mn−1) ∩ E(M ′ ∩Mn,M ′ ∩Mn−1),

(b) λE−1 ∈ E(N ′ ∩Mn,M ′ ∩Mn) ∩ E(N ′ ∩Mn−1,M
′ ∩Mn−1);

(ii) enxen = En−1(x)en, ∀x ∈ N ′ ∩Mn−1;
(iii) e1xe1 = λ(E1)−1(x)e1, ∀x ∈ M ′ ∩Mn;
(iv) En ◦ λE−1|N ′∩Mn

= λE−1 ◦ En|N ′∩Mn
.

Proof. Let x ∈ N ′ ∩ Mn. En(x) ∈ Mn−1, but also: ∀y ∈ N : En(x)y =
En(xy) = En(yx) = yEn(x), thus En(x) ∈ N ′. The other relations in (i) are
proved in the same way.

(ii) is shown as in Lemma 2.2.

Part (iii) is clear from the fact that N ′ is the basic construction of M ′
1

λ(E1)
−1

⊂
M ′, with Jones projection e1.

To show (iv), fix {ui}n
i=1 ⊂ M a Watatani’s quasibasis for E (see [16]).

Then E−1(z) =
n∑

i=1

uizu?
i , for z ∈ N ′. Fix x ∈ N ′ ∩ Mn. En ◦ λE−1(x) =

λEn

( n∑
i=1

uixu?
i

)
= λ

n∑
i=1

uiEn(x)u?
i = λE−1 ◦ En(x).
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It is worthwhile to note that (2.2) is not a commuting square in the ordinary
sense (see [3]), but it can be considered to be a generalized one, since it has several
of the interesting properties of that one. For instance, by (iv) of the previous
lemma, En ◦λE−1|N ′∩Mn

= λE−1 ◦En|N ′∩Mn
, and it is clear that λE−1 ◦En(N ′∩

Mn) = M ′ ∩ Mn−1. This could be the definition for a generalized commuting
square.

Theorem 2.6. Let N
E
⊂ M be an inclusion of factors with Ind(E) = λ−1 <

∞. Consider
N

E
⊂ M

E1⊂ M1 ⊂ · · ·
En⊂ Mn

the tower up to the step n, and let it act over H with M in standard form. Then

(2.3)
f1 f2 · · · fn fn+1 fn+2 fn+3 · · · f2n+1 f2n+2

Le1 Le2 · · · Len En Ren Ren−1 · · · Re1 λE−1

defines a representation of T (2n + 2, λ) over the Hilbert space N ′ ∩Mn.

Proof. The only non obvious relations are (with x ∈ N ′ ∩Mn):
(1) enEn(enx) = λenx (and similarly: En(xen)en = λxen),
(2) e1λE−1(e1x) = λe1x (and similarly: λE−1(xe1)e1 = λxe1),
(3) En ◦ λE−1(x) = λE−1 ◦ En(x).

Part (1) is proved applying Lemma 2.4 to Mn−2

En−1
⊂ Mn−1

En⊂ Mn.

To show Part (2), either apply Lemma 2.4 to M ′
1

λ(E1)
−1

⊂ M ′ λE−1

⊂ N ′, or use
a direct argument: since x ∈ N ′ ∩Mn, then x is the weak limit of elements of the

type
n∑

i=1

aie1bi, with ai, bi ∈ M ′ (see [11]). Fix a, b ∈ M ′ and let x = ae1b.

e1λE−1(e1x) = e1λE−1(e1ae1b) = e1JE1(Je1ae1bJ)J = e1JE1(e1JaJe1JbJ)J

= e1JE1(E(JaJ)e1JbJ)J = e1JE(JaJ)λJbJJ = λJe1JaJe1JbJJ

= λe1ae1b = λe1x.

For Part (3) use Lemma 2.5.

Corollary 2.7. If N ⊂ M is an extremal inclusion of II1 factors, with
finite index, then the construction in (1.1) coincides with the one in (2.3). In
other words

En|N ′∩Mn
= EN ′∩Mn

N ′∩Mn−1
,

and
λE−1|N ′ ∩Mn = EN ′∩Mn

M ′∩Mn
,
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where E, EN ′∩Mn

N ′∩Mn−1
, and EN ′∩Mn

M ′∩Mn
are the usual trace preserving conditional ex-

pectations; and the Ei’s are the sequence of conditional expectations constructed

inductively by duality, as in [11].

Proof. Remember that as a general matter of fact (both in the finite and

infinite factors case), the basic construction does not depend on the choice of the

conditional expectation, because if N
E
⊂ M is any inclusion of factors (finite or

infinite) with Ind(E) < ∞, then M1 = JN ′J , and J does not depend on E.

Moreover, if E is trace preserving, then its dual E1 is also trace preserving

(simply because E1(e1) = λ), so that En (the dual to En−1) coincides with EMn

Mn−1

(the trace preserving conditional expectation) for all n. It remains now to show

λE−1|N ′ ∩Mn = EN ′∩Mn

M ′∩Mn
,

and to do that we need some more terminology. First of all let the tower act

on H = L2(M), then call τ the usual trace on M∞, and τ ′ the unique trace on

N ′ ⊂ B(H). We will denote by F the τ ′ preserving conditional expectation of N ′

onto M ′. Recall that elements of the type ae1b, with a, b ∈ M ′, span N ′. We have:

τ ′(λE−1(ae1b)) = τ ′(aλE−1(e1)b) = τ ′(λab).

On the other side, using the fact E1 coincides with the trace preserving conditional

expectation:

τ ′(ae1b) = τ(JaJe1JbJ) = τ(λJabJ) = τ ′(λab).

In other words λE−1 = F .

The rest is now clear: N ⊂ M extremal implies N ⊂ Mn is also extremal

(see for instance [4]), so that

τ |N ′∩Mn = τ ′|N ′∩Mn .

This is enough to guarantee

EN ′∩Mn

M ′∩Mn
= F |N ′∩Mn

,

which concludes the proof.
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