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Let X, Y be complex Banach spaces. Denote by L(X, Y ) the set of all bounded
linear operators from X to Y . If Y = X then we write for short L(X) = L(X, X).

Recall the well-known punctured neighbourhood theorem:

Theorem 0.1. Let T ∈ L(X) be a Fredholm operator. Then there exist ε > 0
and constants k1 6 dim Ker T , k2 6 codim Im T such that dim Ker(T − z) = k1

and codim Im(T − z) = k2 for all z, 0 < |z| < ε.

In this paper we study a more general situation. Let X, Y, Z be Banach
spaces, let U be an open subset of Cn, let S : U → L(X, Y ) and T : U → L(Y, Z)
be analytic operator-valued functions satisfying T (z)S(z) = 0 for all z ∈ U . For
z ∈ U write α(z) = dim KerT (z)/ Im S(z).

The aim of the paper is to study the behaviour of the function z 7→ α(z).
The main result of the first section is the following generalization of Theo-

rem 0.1: if U ⊂ C, w ∈ U , Im T (w) is closed and α(w) < ∞, then α(z) = k is
constant in a punctured neighbourhood of w.
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Clearly the classical punctured neighbourhood theorem follows easily from
this generalization for sequences 0→ X

T−z−→ Y and X
T−z−→ Y → 0, respectively.

In the second section we study the case n > 2. This situation has been
studied mainly in connection with the Koszul complex of an n-tuple of commuting
operators.

I

For T ∈ L(X, Y ) denote by γ(T ) the Kato reduced minimum modulus, γ(T ) =
inf

{
‖Tx‖ : dist{x, KerT} = 1

}
(formally we set γ(0) = ∞). Clearly γ(T ) > 0 if

and only if Im T is closed.
If M,L are closed subspaces of X then write

δ(M,L) = sup
x∈M
‖x‖61

dist{x, L}

and the gap between M and L is defined by δ̂(M,L) = max{δ(M,L), δ(L,M)}.
For the properties of the reduced minimum modulus and the gap see [6].

The following result is due to Markus, cf. [13], Theorem 1.4.

Theorem 1.1. Let U be an open subset of Cn, let T : U → L(X, Y ) be
a norm-continuous function, let w ∈ U and Im T (w) be closed. The following
conditions are equivalent:

(i) the function z 7→ γ(T (z)) is continuous at w;
(ii) lim inf

z→w
γ(T (z)) > 0;

(iii) lim
z→w

δ
(
KerT (w),KerT (z)

)
= 0;

(iv) lim
z→w

δ̂
(
KerT (w),KerT (z)

)
= 0;

(v) lim
z→w

δ
(
Im T (z), Im T (w)

)
= 0;

(vi) lim
z→w

δ̂
(
Im T (z), Im T (w)

)
= 0.

The equivalences (iii) ⇔ (iv) and (v) ⇔ (vi) follow from the fact that auto-
matically lim

z→w
δ
(
KerT (z),KerT (w)

)
= 0 and lim

z→w
δ(Im T (w), Im T (z)) = 0.

A continuous function T : U → L(X, Y ) is called regular at w if Im T (w)) is
closed and T satisfies any of equivalent conditions (i)–(vi). In particular, condition
(ii) implies that the set of all regularity points of T is open. Also, T is regular at
w if and only if the adjoint function z 7→ T (z)∗ is regular at w.

Regular functions are closely related to the exactness:
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Theorem 1.2. ([13], Theorem 2) Let U be an open subset of Cn, w ∈ U

and let T : U → L(X, Y ) be an analytic function. The following conditions are
equivalent:

(i) T is regular at w;
(ii) there exists a neighbourhood U0 ⊂ U of w, a Banach space E and an

analytic function S : U0 → L(E,X) such that Im S(z) = Ker T (z) (z ∈ U0);
(iii) there exists a neighbourhood U0 ⊂ U of w, a Banach space E′ and an

analytic function S′ : U0 → L(Y,E′) such that Im T (z) = Ker S′(z) (z ∈ U0).

In particular, if T : U → L(X, Y ) is regular at w and x ∈ KerT (w) then
there exist a neighbourhood U0 of w and an analytic function f : U0 → X such
that f(w) = x and T (z)f(z) = 0 (z ∈ U0). Indeed, let S : U0 → L(E,X) be an
analytic function satisfying the properties of (ii). Choose e ∈ E with S(w)e = x

and set f(z) = S(z)e.

Lemma 1.3. Let U be an open subset of Cn, let S : U → L(X, Y ) and
T : U → L(Y, Z) be functions regular in U . Suppose that T (z)S(z) = 0 for all
z ∈ U . Then α(z) is constant on each connected subset of U .

Proof. Let w ∈ U satisfy α(w) = dim KerT (w)/ Im S(w) < ∞. By Theo-
rem 1.1 (iv) and (vi),

lim
z→w

δ̂
(
KerT (w),KerT (z)

)
= 0 and lim

z→w
δ̂
(
Im T (w), Im T (z)

)
= 0.

Thus there exists ε > 0 such that δ̂
(
KerT (z),KerT (w)

)
< 1/3 and δ̂

(
Im S(z),

Im S(w)
)

< 1/3 for z ∈ U , dist{z, w} < ε. By [1] this implies that

α(z) = dim KerT (z)/ Im S(z) = dim KerT (w)/ Im S(w) = α(w)

for all z ∈ U , dist{z, w} < ε.
Thus α(z) is locally constant and a standard argument gives that α(z) is

constant on the component of connectivity of U containing w.
If U0 is a component of U and there is no w ∈ U0 with α(w) < ∞, then

clearly α(z) =∞ on U0.

An operator T ∈ L(X) with the property that the function z 7→ T − z is reg-
ular at 0 is called semi-regular (sometimes Kato regular). Semi-regular operators
exhibit very nice properties and have been studied intensely, see e.g. [9], [10], [12].

An essential version of semi-regular operators has been also studied. Recall
that if M,L are closed subspaces of X then we write M

e
⊂ L (M is essentially con-

tained in L) if dim M/(M ∩L) <∞. We summarize some of equivalent conditions
characterizing essentially semi-regular operators.
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Theorem 1.4. ([10], Theorem 3.1) Let T ∈ L(X) be an operator with closed
range. The following conditions are equivalent:

(i) (Kato decomposition) there exists a decomposition X = X1 ⊕X2 such
that TX1 ⊂ X1, TX2 ⊂ X2, dim X1 < ∞, T |X1 is nilpotent and T |X2 is an
semi-regular operator;

(ii)
⋂

z 6=0

Im(T − z)
e
⊂ Im T ;

(iii) dim Ker T/N∗(T ) < ∞, where N∗(T ) is the set of all x ∈ X such
that there are complex numbers zi (i = 1, 2, . . .) tending to 0 and elements xi ∈
Ker(T − zi) such that x = lim

i→∞
xi (clearly N∗(T ) ⊂ KerT );

(iv) dim R∗(T )/ Im T < ∞ where R∗(T ) is the set of all x ∈ X such that
x = lim

i→∞
xi for some xi ∈ Im(T − zi) and some zi → 0 (clearly Im T ⊂ R∗(T )).

Note that condition (i) implies that the function z 7→ T − z is regular in a
punctured neighbourhood {z : 0 < |z| < ε} for some ε > 0.

General analytic operator-valued functions of one variable can be reduced to
the linear case by the method of linearization, see [2], Theorem 2.6.

Theorem 1.5. Let U ⊂ C be an open set, T : U → L(X, Y ) an analytic
function and w ∈ U . Then there exist a neighbourhood U0 of w, Banach spaces Z

and M , an operator V ∈ L(M) and analytic functions A : U0 → L(M,X ⊕ Z),
B : U0 → L(Y ⊕ Z,M) such that A(z) and B(z) are invertible operators and

B(z)
(
T (z)⊕ IZ

)
A(z) = V − zIM (z ∈ U0).

Let U ⊂ C be an open set and let T : U → L(X, Y ) be an analytic operator-
valued function. Let w ∈ U . Write

R∗(T (w)) =
{
y ∈ Y : there exist zk ∈ U, zk → w

and yk ∈ Im T (zk) with yk → y
}
,

R∗∗(T (w)) =
{
y ∈ Y : lim

z→w
dist{y, Im T (z)} = 0

}
.

Clearly Im T (w) ⊂ R∗∗(T (w)) ⊂ R∗(T (w)) and R∗(T (w)), R∗∗(T (w)) are closed
subspaces of Y .

Similarly write

N∗(T (w)) =
{
x ∈ X : there are zk ∈ U, xk ∈ KerT (zk)

with zk → w and xk → x
}
,

N∗∗(T (w)) =
{
x ∈ X : lim

z→w
dist{x, KerT (z)} = 0

}
.

Clearly N∗∗(T (w)) ⊂ N∗(T (w)) ⊂ KerT (w) and N∗(T (w)), N∗∗(T (w)) are closed
subspaces of X.
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Theorem 1.6. Let U ⊂ C be an open set, T : U → L(X, Y ) an analytic

function and w ∈ U . The following statements are equivalent:

(i) dim R∗(T (w))/ Im T (w) <∞;

(ii) dim R∗∗(T (w))/ Im T (w) <∞;

(iii) dim Ker T (w)/N∗(T (w)) <∞ and Im T (w) is closed;

(iv) dim KerT (w)/N∗∗(T (w)) <∞ and Im T (w) is closed.

Any of these conditions implies that there exists ε > 0 such that the function

T is regular in the punctured neighbourhood {z ∈ U : 0 < |z − w| < ε}. Further

N∗(T (w)) = N∗∗(T (w)), R∗(T (w)) = R∗∗(T (w)) and dim Ker T (w)/N∗(T (w)) =

dim R∗(T (w))/ Im T (w).

Proof. A. Suppose first that Y = X and T (z) = V − zIX for some operator

V ∈ L(X). We show that in this case conditions (i)–(iv) are equivalent to

(v) V − w is essentially semi-regular.

Clearly (i) ⇒ (ii) and (iv) ⇒ (iii).

By Theorem 1.4, (i) ⇔ (iii) ⇔ (v).

(ii) ⇒ (v): Clearly (ii) implies that Im T (w) is closed. Further

⋂
z 6=w

Im(V − z) ⊂ R∗∗(V − w)

so that, by Theorem 1.4, V − w is essentially semi-regular.

Suppose now that V − w is essentially semi-regular. Let X = X1 ⊕ X2 be

the Kato decomposition of V − w, i.e., V X1 ⊂ X1, V X2 ⊂ X2, dim X1 < ∞,

(V −w)|X1 is nilpotent and (V −w)|X2 is semi-regular. It is easy to see that, for

z 6= w, Ker(V − z) = Ker((V − z)|X2) and Im(V − z) = X1 + Im((V − z)|X2).

Thus

N∗(V − w) = N∗∗(V − w) = Ker
(
(V − w)|X2

)
and

R∗(V − w) = R∗∗(V − w) = X1 + Im
(
(V − w)|X2

)
.

Hence (v) implies (iv). Further

dim Ker(V − w)/N∗(V − w) = dim Ker
(
(V − w)|X1

)
= dim X1/(V − w)X1

= dim R∗(V − w)/ Im(V − w).
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Also the Kato decomposition implies that the function z 7→ V − z is regular in a
certain punctured neighbourhood of w.

B. Let now T (z) be a general analytic operator-valued function. By Theo-
rem 1.5 there exist a neighbourhood U0 of w, Banach spaces Z,M , an operator
V ∈ L(M) and analytic functions A : U0 → L(M,X ⊕Z), B : U0 → L(Y ⊕Z,M)
whose values are invertible operators, such that

B(z)
(
T (z)⊕ IZ

)
A(z) = V − zIZ (z ∈ U0).

For z ∈ U0 we have

Ker(V −zI) = Ker
(
(T (z)⊕IZ)A(z)

)
= A(z)−1 Ker

(
T (z)⊕IZ

)
= A(z)−1 KerT (z)

and
Im(V − zI) = Im

(
B(z)(T (z)⊕ IZ)

)
= B(z)(Im T (z) + Z).

Thus
N∗(V − wI) = A(w)−1N∗(T (w)),

N∗∗(V − wI) = A(w)−1N∗∗(T (w)),

R∗(V − wI) = B(w)
(
R∗(T (w)) + Z

)
and

R∗∗(V − wI) = B(w)
(
R∗∗(T (w)) + Z

)
.

Hence all the statements for the function T (z) are equivalent to the corresponding
statements for V − zI and the general case reduces to the previous case.

Remark 1.7. Let U ⊂ C, w ∈ U and let T : U → L(X, Y ) be an analytic
function. Then dim KerT (w)/N∗(T (w)) can be interpreted as the “jump” in the
kernel of T (z); similarly dim R∗(T (w))/ Im T (w) signifies the jump in the range of
T (z). It is interesting to note that these two numbers are always equal.

Theorem 1.8. Let U be an open subset of C and w ∈ U . Suppose that
S : U → L(X, Y ), T : U → L(Y, Z) are analytic functions satisfying T (z)S(z) = 0
(z ∈ U), α(w) <∞ and Im T (w) is closed. Then there exist ε > 0 and a constant
c 6 α(w) such that α(z) = c for all z, 0 < |z − w| < ε.

Proof. By [14], Lemma 2.1, α(z) 6 α(w) for all z in a neighbourhood of
w. Using the previous theorem, both z 7→ S(z) and z 7→ T (z) are regular in a
certain punctured neighbourhood of w so that, by Lemma 4, α(z) is constant in
this punctured neighbourhood.
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II

In this section we study analytic operator-valued functions of n-variables.

It is not possible to expect the punctured neighbourhood theorem for n > 2;

the proper generalization seems to be

Conjecture 2.1. Let U ⊂ Cn be open, let S : U → L(X, Y ) and T :

U → L(X, Y ) be analytic on U . Suppose that T (z)S(z) = 0, Im T (z) is closed

and α(z) = dim Ker T (z)/ Im S(z) < ∞ (z ∈ U). Let k ∈ N. Then the set

{z ∈ U : α(z) > k} is analytic in U .

Recall that a set M ⊂ U is called analytic in U if for each w ∈ U there exist a

neighbourhood U0 of w and analytic (scalar-valued) functions f1, . . . , fr such that

M ∩ U0 = {z ∈ U0 : f1(z) = · · · = fr(z) = 0}.
The conjecture is true in the following particular cases:

A. If the ranges and kernels of S(z) and T (z) are complemented subspaces,

see Theorem 2.5 below. In particular, the conjecture is true for operators in Hilbert

spaces.

B. If either S(z) ≡ 0 or T (z) ≡ 0; this means that the other function is upper

(lower) semi-Fredholm-valued and the conjecture reduces to the statement about

defect indices of semi-Freholm-valued functions, see [5].

C. If the sequence X
S(z)−→ Y

T (z)−→ Z is a part of a Fredholm complex vanishing

at the ends, see [7], [8], [11] or Theorem 2.9 below.

We start with the following lemma:

Lemma 2.2. Let U ⊂ Cn be an open subset, let T : U → L(X, Y ) be an

analytic function, let k ∈ N. Then the set {z ∈ U : dim Im T (z) < k} is analytic.

Proof. If x1, . . . , xk ∈ X, y∗1 , . . . , y∗k ∈ Y ∗, z ∈ U and dim Im T (z) < k then

the vectors T (z)x1, . . . , T (z)xk are linearly dependent and det
(
〈T (z)xi, y

∗
j 〉

)
= 0.

On the other hand, if dim Im T (z) > k then there are vectors x1, . . . , xk ∈ X,

y∗1 , . . . , y∗k ∈ Y ∗ such that det
(
〈T (z)xi, y

∗
j 〉

)
6= 0. Thus

{
z ∈ U : dim Im T (z) < k}

= {z ∈ U : det
(
〈T (z)xi, y

∗
j 〉

)
= 0 for all x1, . . . , xk ∈ X, y∗1 , . . . , y∗k ∈ Y ∗}

which is an analytic set, see [3], p. 86.
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Corollary 2.3. Let S : U → L(X, Y ) and T : U → L(Y, Z) be analytic
functions and let k ∈ N. Then the set{

z ∈ U : dim Im S(z)/
(
Im S(z) ∩KerT (z)

)
< k

}
is analytic.

Proof. Clearly dim Im S(z)/
(
Im S(z) ∩ KerT (z)

)
= dim Im

(
T (z)S(z)

)
so

that the corollary follows from the previous lemma.

Lemma 2.4. Let U be an open subset of Cn, let S : U → L(X, Y ) and
T : U → L(Y,Z) be analytic functions satisfying T (z)S(z) = 0 (z ∈ U). Suppose
that there are Banach spaces X1 and Z1 and regular analytic functions S1 : U →
L(X1, Y ), T1 : U → L(Y, Z1) satisfying

KerT1(z) ⊂ Im S(z) ⊂ KerT (z) ⊂ Im S1(z)

and dim Im S1(z)/ KerT1(z) <∞ (z ∈ U). Then the set{
z ∈ U : dim KerT (z)/ Im S(z) > k

}
is analytic in U .

Proof. The situation is illustrated by the following diagram:

X
S(z)−→ Y

T (z)−→ Z

↗
S1(z)

↘T1(z)

X1 Z1

Figure 1.

We can assume that U is connected. For each j set

Aj = {z ∈ U : dim Im S(z)/ KerT1(z) 6 j}

and
Bj = {z ∈ U : dim Im S1(z)/ KerT (z) 6 j}.

By Corollary 2.3, Aj and Bj are analytic sets. As in the proof of Lemma 1.3
(or using Theorem 1.2) it is easy to see that there is a constant c such that
dim Im S1(z)/ KerT1(z) = c in U . Thus{

z ∈ U : dim KerT (z)/ Im S(z) > k
}

=
{
z ∈ U : dim Im S1(z)/ KerT (z) + dim Im S(z)/ KerT1(z) 6 c− k

}
=

c−k⋃
i=0

Ai ∩Bc−k−i.

The last set is clearly analytic.
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Let T ∈ L(X, Y ). An operator S ∈ L(Y,X) is called a generalized inverse of
T if TST = T and STS = S. If S is a generalized inverse of T then TS and ST

are projections satisfying Im(TS) = Im T and Ker(ST ) = KerT . Thus T has a
generalized inverse if and only if both KerT and Im T are complemented subspaces
of X and Y , respectively.

The next result shows that Conjecture 2.1 is true for operators with gener-
alized inverses. We adopt the method of [4].

Theorem 2.5. Let U be an open subset of Cn, let S : U → L(X, Y ) and
T : U → L(Y,Z) be analytic functions. Suppose that T (z)S(z) = 0, dim Ker T (z)/
Im S(z) <∞ and the operators S(z) and T (z) have generalized inverses for z ∈ U .
Let k ∈ N. Then the set {z ∈ U : α(z) > k} is analytic in U .

Proof. Let w ∈ U . Let V be a generalized inverse of S(w), i.e., V S(w)V = V

and S(w)V S(w) = S(w). Set P = I − S(w)V . Then P is a projection, KerP =
Im S(w).

For z close to w, the operator I +(S(z)−S(w))V is invertible. Define P (z) ∈
L(Y ) by P (z) = P

(
I +(S(z)−S(w))V

)−1 ∈ L(Y ). Clearly the function z 7→ P (z)
is regular at w since Im P (z) = Im P is constant. We prove that Ker P (z) ⊂
Im S(z). Let y ∈ KerP (z), i.e., 0 = P (z)y = P

(
I + (S(z)− S(w))V

)−1
y. Then(

I + (S(z)− S(w))V
)−1

y ∈ KerP = Im S(w).

For some x ∈ X we have

y =
(
I + (S(z)− S(w))V

)
S(w)x = S(z)V S(w)x ∈ Im S(z).

Similarly, let W be a generalized inverse of T (w). Set Q = I−WT (w). Then
Q is a projection with Im Q = Ker T (w). For z close to w define Q(z) ∈ L(Y ) by
Q(z) =

(
I +W (S(z)−S(w))

)−1
Q. Clearly the function z 7→ Q(z) is regular since

KerQ(z) = Ker Q is constant. We have

WT (z) = WT (w) + W (T (z)− T (w)) = I −Q + W (T (z)− T (w))

so that(
I + W (T (z)− T (w))

)−1
WT (z) = I −

(
I + W (T (z)− T (w))

)−1
Q = I −Q(z).

Consequently, Ker T (z) ⊂ Im Q(z).
Thus we have KerP (z) ⊂ Im S(z) ⊂ KerT (z) ⊂ Im Q(z) and

dim Im Q(w)/ KerP (w) = dim Im Q/KerP = dim KerT (w)/ Im S(w) <∞.

As in Lemma 1.3 we have that dim Im Q(z)/ KerP (z) <∞ in a neighbourhood of
w. The rest follows from Lemma 2.4.
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Corollary 2.6. Conjecture 2.1 is true for operators in Hilbert spaces.

In the following we consider a complex

(2.1) 0 −→ X0
δ0(z)−→ X1

δ1(z)−→ · · · δn−1(z)−→ Xn −→ 0,

where X0, . . . , Xn are Banach spaces, the operators δj(z) satisfy δj(z)δj−1(z) = 0
and depend analytically on a parameter z ∈ U , where U is an open subset of Cn.

Suppose that the complex (2.1) is Fredholm, i.e., dim Ker δj(z)/ Im δj−1(z) <

∞ for all j = 0, . . . , n and z ∈ U (formally we set δ−1(z) = 0 and δn(z) = 0).
Let k ∈ N. It is a folklore among specialists in the sheaf theory that the set{

z ∈ U : dim Ker δj(z)/ Im δj−1(z) > k
}

is analytic. This result is stated without
proof (for the Koszul complex of a commuting n-tuple of operators) in [7] and
[8]; cf. also [11]. Since apparently there is no elementary proof of this result, we
include the proof here.

We need the following modification of Lemma 2.4:

Lemma 2.7. Let U be an open subset of Cn, let S : U → L(X, Y ) and
T : U → L(Y,Z) be analytic functions satisfying T (z)S(z) = 0 (z ∈ U). Suppose
that there are Banach spaces X1, Z1, finite dimensional Banach spaces F,G and
regular analytic functions S1 : U → L(X1, Y ⊕F ) and T1 : U → L(Y ⊕G, Z1) such
that Im S1(z) ⊃ KerT (z) ⊃ Im S(z), Im S(z)+G ⊃ KerT1(z) and dim

(
Im S1(z)+

G
)
/ KerT1(z) < ∞ (z ∈ U), see Figure 2. Let k ∈ N. Then the set {z ∈ U :

α(z) > k} is analytic in U .

X1

↘
S1(z)

X
S(z)−→


F

⊕
Y

⊕
G


T (z)−→ Z

↘T1(z)

Z1

Figure 2.

Proof. Set Y ′ = Y ⊕F ⊕G. For z ∈ U define the operators S′(z) : X ⊕G→
Y ′, T ′(z) : Y ′ → Z ⊕ F , S′1(z) : X1 ⊕G→ Y ′ and T ′1(z) : Y ′ → Z1 ⊕ F by

S′(z)(x⊕ g) = S(z)x + g,

T ′(z)(y ⊕ f ⊕ g) = T (z)y + f,

S′1(z)(x1 ⊕ g) = S1(z)x1 + g,

T ′1(z)(y ⊕ f ⊕ g) = T1(z)(y ⊕ g) + f
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for all x ∈ X, f ∈ F , g ∈ G and x1 ∈ X1. Thus Im S′(z) = Im S(z) + G,
KerT ′(z) = KerT (z) + G, Im S′1(z) = Im S1(z) + G and KerT ′1(z) = KerT1(z).
We have

Im S′1(z) ⊃ KerT ′(z) ⊃ Im S′(z) ⊃ KerT ′1(z)

and
dim Im S′1(z)/ KerT ′1(z) = dim

(
Im S1(z) + G

)
/ KerT1(z) <∞.

By Lemma 2.4, the set
{
z ∈ U : dim KerT ′(z)/ Im S′(z) > k

}
is analytic in U .

This set, however, is equal to the set {z ∈ U : α(z) > k}.

Lemma 2.8. Let U be an open subset of Cn, let S : U → L(X, Y ) and T :
U → L(Y, Z) be analytic functions satisfying T (z)S(z) = 0 and α(z) <∞ (z ∈ U).
Let w ∈ U . Suppose that there are finite dimensional spaces G, H, a neighbourhood
U1 of w and a regular analytic function T1 : U1 → L(Y ⊕ G, Z ⊕ H) such that
T1(z)|Y = T (z). Then there exist a finite dimensional space F , a neighbourhood
U2 of w and a regular analytic function S1 : U2 → L(X ⊕ F, Y ⊕ G) such that
S1(z)|X = S(z) and Im S1(z) = Ker T1(z) ⊃ KerT (z), see Figure 3.

X

⊕
F


S(z)−→
−→
S1(z)

Y

⊕
G


T (z)−→
−→
T1(z)

Z

⊕
H


Figure 3.

Proof. For z ∈ U1 we have

dim Ker T1(z)/ Im S(z) = dim KerT1(z)/ KerT (z) + dim Ker T (z)/ Im S(z) <∞.

Let y1, . . . , yr be linearly independent vectors in Ker T1(w) such that

Im S(w) ∨ {y1, . . . , yr} = KerT1(w).

Since T1 is regular, for i = 1, . . . , r, there exists a (Y ⊕G)-valued analytic function
ϕi defined in a neighbourhood of w such that T1(z)ϕ(z) = 0 and ϕi(w) = yi. Let F

be an r-dimensional space with a basis f1 . . . , fr and define S1(z) : X⊕F → Y ⊕G

by

S1(z)
(
x⊕

r∑
i=1

βifi

)
= S(z)x +

r∑
i=1

βiϕ(z)yi (x ∈ X, βi ∈ C).

Clearly T1(z)S1(z) = 0 and Im S1(w) = Ker T1(w) so that there is a neighbourhood
of w where KerT1(z) = Im S1(z), see [14]. Thus S1 is regular in a neighbourhood
of w and satisfies all the required conditions.
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Theorem 2.9. Let X0, X1, . . . , Xn be Banach spaces, U an open subset of
Cn. Let

0 −→ X0
δ0(z)−→ X1

δ1(z)−→ · · · δn−1(z)−→ Xn −→ 0

be a Fredholm complex analytically dependent on z ∈ U
(
i.e., δj(z)δj−1(z) = 0 and

dim Ker δj(z)/ Im δj−1(z) <∞ for all ∈ U and j = 0, . . . , n
)
.

Let 0 6 j 6 n and k ∈ N. Then the set
{
z ∈ U : dim Ker δj(z)/ Im δj−1(z) >

k
}

is analytic in U .

Proof. Let w ∈ U . Using Lemma 2.8 repeatedly, it is easy to see by the
downward induction that there are finite dimensional spaces Fj−1, Fj and a regular
analytic function S(z) : Xj−1 ⊕ Fj−1 → Xj ⊕ Fj defined in a neighbourhood
of w such that S(z)|Xj−1 = δj−1(z) and Im S(z) ⊃ Ker δj(z). In particular,
dim Im S(z)/ Ker δj−1(z) <∞.

Consider the “adjoint” complex

0←− X∗
0

δ∗0 (z)←− X∗
1

δ∗1 (z)←− · · ·
δ∗n−1(z)
←− X∗

n ←− 0

where we write for short δ∗j (z) instead of (δj(z))∗. Since this complex is also Fred-
holm, similarly as above there exist finite dimensional spaces Gj and Gj+1 and a
regular analytic function T (z) : X∗

j+1 ⊕Gj+1 → X∗
j ⊕Gj defined in a neighbour-

hood of w such that Im T (z) ⊃ Ker
(
δ∗j−1(z)

)
and dim Im T (z)/ Ker δ∗j−1(z) < ∞.

Further the operator S∗(z) : X∗
j ⊕ F ∗ → X∗

j−1 ⊕ F ∗
j−1 satisfies

KerS∗(z) = (Im S(z))⊥ ⊂ (Ker δj(z))⊥ + F ∗
j = Im δ∗j (z) + F ∗

j .

By Lemma 2.7, the set
{
z : dim Ker δ∗j−1(z)/ Im δ∗j (z) > k

}
is analytic. Since

dim Ker δ∗j−1(z)/ Im δ∗j (z) = dim Ker δj(z)/ Im δj−1(z),

this finishes the proof.

Let A = (A1, . . . , An) be an n-tuple of commuting operators on a Banach
space X. Denote by σT(A) the Taylor spectrum of A. The essential spectrum
σTe(A) of A is defined as the set of all λ = (λ1, . . . , λn) ∈ Cn such that the Koszul
complex of the n-tuple (A1 − λ1, . . . , An − λn) is not Fredholm.

Corollary 2.10. ([7], [8]) Let A = (A1, . . . , An) be an n-tuple of commut-
ing operators on a Banach space X. Then the set σT(A) \ σTe(A) is analytic in
Cn \ σTe(A).
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