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Abstract. We study representations of the Cuntz algebras Od and their
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ducible, their restrictions to the gauge-invariant subalgebra UHFd have an
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1. INTRODUCTION

The aim of the present paper was at the outset threefold:
(i) To develop further and simplify the theory of finitely (and infinitely)

correlated states of the Cuntz algebra Od given in [9].
(ii) To apply this theory to analyze in detail the representations of ON

coming from compactly supported wavelets constructed by multiresolution wavelet
analysis of scale N ([10]). The main idea is that repeated applications of the
adjoints of the Cuntz operators on any trigonometric polynomial in L2(T) in that
case ultimately maps the polynomial into a fixed finite-dimensional subspace K ⊂
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L2(T) of low-order polynomials, and thus the results of the present paper apply.
This application will be postponed to the paper [8].

(iii) To understand better the connection between the theory of finitely cor-
related states on one-dimensional quantum spin chains developed in [24], [25] and
the corresponding states on the Cuntz algebras.

The setting and results (especially Theorem 5.1) also serve as a generaliza-
tion of the single-operator commutant lifting theorem ([19]) from one variable to
several. In this setting, Od, for d > 2, is viewed as the multivariable version of the
familiar C∗-algebra generated by a single isometry.

Recall that if d ∈ {2, 3, . . .}, the Cuntz algebra Od is the universal C∗-algebra
generated by elements s1, . . . , sd subject to the relations

s∗i sj = δij1l,
d∑
j=1

sjs
∗
j = 1l.

There is a canonical action of the group U(d) of unitary d × d matrices on
Od given by

τg(si) =
d∑
j=1

gjisj

for g = [gij ]di,j=1 ∈ U(d). In particular the gauge action is defined by

(1.1) τz(si) = zsi, z ∈ T ⊂ C.

If UHFd is the fixed point subalgebra under the gauge action, then UHFd is the clo-
sure of the linear span of all Wick ordered monomials of the form si1 · · · siks

∗
jk
· · · s∗j1 .

UHFd is isomorphic to the UHF algebra of Glimm type d∞:

UHFd ∼= Md∞ =
∞⊗
1

Md

in such a way that the isomorphism carries the Wick ordered monomial above into
the matrix element

e
(1)
i1j1

⊗ e
(2)
i2j2

⊗ · · · ⊗ e
(k)
ikjk

⊗ 1l⊗ 1l⊗ · · · .

The restriction of τg to UHFd is then carried into the action Ad(g)⊗Ad(g)⊗ · · ·

on
∞⊗
1
Md. We define the canonical endomorphism λ on UHFd (or on Od) by

(1.2) λ(x) =
d∑
j=1

sjxs
∗
j



Pure states on Od 99

and the isomorphism carries λ over into the one-sided shift

x1 ⊗ x2 ⊗ x3 ⊗ · · · → 1l⊗ x1 ⊗ x2 ⊗ · · ·

on
∞⊗
1
Md. (See [16], [21], [7].)

If si 7→ Si ∈ B(H) is a representation of the Cuntz relations on a Hilbert
space H, we will consider the situation that there is a closed subspace K ⊂ H
such that S∗i K ⊂ K for i ∈ Zd, and K is cyclic for the representation. Thus, if
P : H → K is the orthogonal projection onto K, we have PS∗i P = S∗i P. In this
situation, define Vi ∈ B(K) by Vi = PSi = PSiP. Then∑

i∈Zd

ViV
∗
i = 1l

so the map σ : B(K) → B(K) defined by

(1.3) σ(X) =
∑
i∈Zd

ViXV
∗
i

is completely positive and unital. We show that the representation can be com-
pletely recovered from (K, V1, . . . , Vd) in Theorem 2.1 and Theorem 5.1, and the
commutant of the representation is isometrically order isomorphic to the fixed
point set B(K)σ = {A ∈ B(K) | σ(A) = A} by Proposition 4.1 and Theorem 5.1.
This fixed point set is not an algebra in general, as is discussed in some detail in
Section 3. In particular, the representation of Od is irreducible if and only if σ
is ergodic in the sense that B(K)σ = C1l. In Section 6 we assume that the rep-
resentation is irreducible and study its restriction to UHFd in the case that there
is a normal σ-invariant state ϕ on B(K). Such a state is automatically unique if
it exists, and if K is finite-dimensional it always exists. In this case we replace K
with the smaller S∗i -invariant space EH, where E is the support projection of ϕ,
replace ϕ with its restriction to EB(K)E = B(EK), and we define a state ψ on Od
by

ψ(si1 · · · sins
∗
jm · · · s

∗
j1) = ϕ(ESi1 · · ·SinS

∗
jm · · ·S

∗
j1E).

Then ψ ◦ λ = ψ. (Occasionally, we will identify ψ with its normal extension to
B(H), defined by ψ(X) = ϕ(EXE) for X ∈ B(H). This extension is a type I
factor state with multiplicity dim(E).) We show in Theorem 6.3 that the set of
t ∈ T such that ψ ◦ τt = ψ is equal to the peripheral point spectrum PSp(σ) ∩ T
of σ, and this set is a finite subgroup of T. If k is the order of this subgroup, and
U ∈ B(H) is the unitary operator such that τ 1

k
, corresponding to z = ei 2π

k in (1.1),
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satisfies τ 1
k

= Ad(U) with Uk = 1l (U is unique up to a phase factor in Zk ⊂ T),
and

U =
∑
l∈Zk

e
2πil

k Ek

is the spectral decomposition of U , then the subalgebra UHFd ⊂ Od acts irre-
ducibly on each of the subspaces EkH, the corresponding representations of UHFd
are irreducible and mutually disjoint, and are mapped cyclically into each other
by the endomorphism λ.

In particular, this means that the restriction of the representation to UHFd is
irreducible if and only if the peripheral point spectrum PSp(σ)∩T of σ consists of
the point 1 alone. It is remarkable that, if K is finite-dimensional, this is exactly the
condition ensuring that the translation-invariant state defined by {ϕ, V1, . . . , Vd}
on the two-sided one-dimensional quantum chain

∞⊗
−∞

Md =
⊗
Z
Md is pure ([24],

[25]). To be precise, this condition on {ϕ, V1, . . . , Vd} is sufficient to ensure purity
of ω. It is not necessary for the given {ϕ, V1, . . . , Vd}, but if ω is pure and finitely
generated, there exists some {ϕ, V1, . . . , Vd} on a finite-dimensional K, defining
ω, such that the corresponding σ is ergodic and has trivial peripheral spectrum.
One source of the nonuniqueness of {ϕ, V1, . . . , Vd}, and the corresponding non-
necessity of the conditions on this set, is the following: if K is replaced by K⊗K′,
where K′ is a Hilbert space of finite dimension > 2, Vk by Vk⊗ id and ϕ by ϕ⊗ϕ′,
where ϕ′ is a faithful state on B(K′), then the new data define exactly the same
state as the old, but the fixed point set of the new σ contains at least 1l⊗B(K′). To
avoid this kind of degeneracy, we make in Section 7 the overall assumption that the
operators V1, . . . , Vd on K (which does not need to be finite-dimensional) generate
a factor M with a faithful normal σ-invariant state ϕ, and that B(K)σ = M′. If
in addition M is type I, we prove that the corresponding translationally invariant
state ω on

⊗
Z
Md is pure if and only if PSp(σ|M)∩T = {1}. If M is a finite type

I factor, this is exactly the result in [25]. If M is not type I, this equivalence is no
longer true, but in that case we can prove that ω is pure if and only if ω is a factor
state, i.e., if and only if ω has the clustering property lim

|n|→∞
ω(xλn(y)) = ω(x)ω(y)

for each pair x, y ∈
⊗
Z
Md.

For more background material on the representations of Od, see, e.g., [12], [9],
[11]. A representation (Si) of Od on H defines an endomorphism σ( · ) =

∑
i

Si ·S∗i
of B(H), and conversely. Moreover, the connection between an endomorphism σ,
corresponding to λ in (1.2), and the associated completely positive map σ in (1.3)
above, is given by

Pσ(X)P = σ(PXP ), X ∈ B(H).
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The lifting problem, addressed in Section 2 below, then concerns the reconstruction
of the endomorphism σ, or the associated Od-representation, from some given
completely positive normal unital map σ of B(K).

Other somewhat related aspects of the representation theory of Od, and its
restriction to UHFd, have been considered in [34], [41], [28], [27], [17].

2. GENERAL STATES ON Od

First some notation: Let d ∈ {2, 3, . . .} and let Zd be a set of d elements. (The
group structure of Zd is spurious for the purposes of this paper.) Let I be the
set of finite sequences (i1, . . . , im) where ik ∈ Zd and m ∈ {1, 2, . . .}. We also
include the empty sequence ∅ in I, and denote elements in I by I, J, . . . . If
I = (i1, . . . , im) ∈ I and i ∈ Zd, we let Ii denote the element (i1, . . . , im, i) in
I, and sI = si1si2 · · · sim ∈ Od and s∗I = s∗ims

∗
im−1

· · · s∗i1 ∈ Od. In particular
s∅ = 1l = s∗∅.

The following theorem is a version of a result of Popescu ([38]). It generalizes
[7]. We give a streamlined proof which applies in this case.

Theorem 2.1. Let d ∈ {2, 3, . . .}. There is a canonical one-one correspon-
dence between the following objects:
(2.1) States ω̂ on Od.
(2.2) Functions C : I × I → C with the following properties:

(i) C(∅, ∅) = 1;
(ii) for any function λ : I → C with finite support we have∑

I,J∈I
λ(I)C(I, J)λ(J) > 0;

(iii)
∑
i∈Zd

C(Ii, Ji) = C(I, J) for all I, J ∈ I.

(2.3) Unitary equivalence classes of objects (K,Ω, V1, . . . , Vd) where
(i) K is a Hilbert space;
(ii) Ω is a unit vector in K;
(iii) V1, . . . , Vd ∈ B(K);
(iv) the linear span of vectors of the form V ∗I Ω, where I ∈ I, is dense in K;
(v)

∑
i∈Zd

ViV
∗
i = 1lK.

The correspondence is given by

(2.4) ω̂(sIs
∗
J) = C(I, J) = 〈V ∗I Ω|V ∗J Ω〉.
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Proof. It is immediate that if either ω̂ or (K,Ω, V1, . . . , Vd) is given, and
C( · , · ) is defined by the relation (2.4), then C satisfies (2.2). ((i) corresponds to
the normalization ‖ω̂‖ = 1 = ω̂(1l), or ‖Ω‖ = 1, (ii) corresponds to positivity, and
(iii) to the relations

∑
i

sis
∗
i = 1l,

∑
i

ViV
∗
i = 1l.)

To go from the positive definite function C in (2.2) to the object (K,Ω, V1, . . . ,

Vd) one uses the usual Kolmogorov construction: one puts K equal to the comple-
tion of the free vector space L(I) of all formal finite linear combinations

∑
I∈I

λ(I)I

(alias all functions λ : I → C with finite support) with respect to the pre-inner
product defined by sesquilinearity from 〈I|J〉 = C(I, J), after dividing out the
vectors of zero norm. This gives a map Φ : L(I) → K, and one defines Vi
byV ∗i Φ(I) = Φ(Ii). It is now routine to check the properties (i)–(v) in (2.3).

To go from the object (K,Ω, V1, . . . , Vd) in (2.3) to the state ω̂ on Od, we
will actually prove more:

(There is also a simple direct way of establishing this direction which will be
exhibited in Remark 5.2.)

Lemma 2.2. ([38]) Assume that K,Ω, V1, . . . , Vd satisfy the properties (i)–(v)
under (2.3). It follows that there exists a unique linear map R : Od → B(K) such
that

R(sIs
∗
J) = VIV

∗
J

and this map is completely positive.

Proof. Let Td be the Cuntz–Toeplitz algebra, realized on the unrestricted

Fock space Ĥ =
∞⊕
k=0

(Cd)⊗ k in the usual way Li : ξ 7→ |i〉⊗ξ, where Li, i = 1, . . . , d,

are the operators mapping into si after dividing out by the compact operators ([21],
[7]). Let λ ∈ C, |λ| < 1, and define an operator Wλ : K → Ĥ ⊗ K by

Wλϕ =
√

1− |λ|2
∞⊕
k=0

λk
∑
I∈Ik

|I〉 ⊗ V ∗I ϕ

where Ik denotes all sequences I = (i1, . . . , ik) of length k with ij ∈ Zd, and

|I〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |ik〉.

One checks that Wλ is an isometry, and

(L∗i ⊗ 1lK)Wλ = λWλV
∗
i .

From this intertwining relation, and its adjoint, it follows that

Rλ(LIL
∗
J) ≡W ∗

λ (LIL
∗
J ⊗ 1lK)Wλ = λ

n
λmVIV

∗
J
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if I ∈ In, J ∈ Im. It follows from this explicit Stinespring representation that the
linear map defined from

LIL
∗
J 7→ λ

n
λmVIV

∗
J

is then completely positive for all |λ| < 1, and taking the limit as λ→ 1, it follows
further that R is completely positive as a map from Tn into B(K). To check that R,
thus defined, defines a map from Od into B(K), we have to show that R annihilates
the ideal generated by the one-dimensional projection p = 1l −

∑
i

LiL
∗
i , i.e., that

R(XpY ) = 0 for all polynomials X,Y in the Li’s and the L∗i ’s. We may take X,Y
to be Wick ordered monomials, i.e., of the form LIL

∗
J . Since pLi = 0, we may

assume that Y contains no factor LI , and by the same token we may assume that
X contains no factor L∗J , and hence XpY has the form

LIpL
∗
J = LIL

∗
J −

∑
i∈Zn

LIiL
∗
Ji.

Using the definition of Rλ, and the relation
d∑
i=1

ViV
∗
i = 1l, it now follows that

Rλ(XpY ) = 0. Hence R(XpY ) = 0, and R defines a completely positive map
from Od into B(K). This ends the proof of the lemma.

Proof of Theorem 2.1, continued: To go from the object (K,Ω, V1, . . . , Vd) to
the state ω̂ is now clear: put ω̂(X) = 〈Ω|R(X)Ω〉 where R : Od → B(K) is the
completely positive linear map defined in Lemma 2.2. Then ω̂(sIs

∗
J) = 〈Ω|VIV ∗J Ω〉

so (2.4) is fulfilled.
This establishes the one-one correspondence stated in Theorem 2.1. Of course,

the system (K,Ω, V1, . . . , Vd) is not unique, but determined only up to unitary
equivalence. The argument for why this is so is exactly the same as the stan-
dard argument from representation theory ([13], Theorem 2.3.16), to the effect
that a state on a C∗-algebra only determines a cyclic representation up to unitary
equivalence.

Remark 2.3. Note also that there is a simple direct way of going from the
state ω̂ in (2.1) to the object (K,Ω, V1, . . . , Vd) in (2.3). If (H,Ω, π) is the cyclic
representation of Od defined by Ω, let K be the closure of the linear span of all
vectors S∗IΩ, where SI = π(sI). Let P be the projection from H onto K, and put

V ∗i = PS∗i P = S∗i P.

The property
∑
i

ViV
∗
i = P = 1lK follows immediately from

∑
i

SiS
∗
i = 1lH.

One can use Lemma 2.2 to prove stronger versions of Popescu’s dilation
theorem:
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Corollary 2.4. Let K be a Hilbert space, and D ∈ B(K) a positive operator,
and V1, . . . , Vd ∈ B(K) operators such that∑

i

ViDV
∗
i = D.

Then there exists a unique continuous linear map R : Od → B(K) such that

R(sIs
∗
J) = VIDV

∗
J

and this map is completely positive.

Proof. Roughly, if R′ is the completely positive map defined in Lemma 2.2
from the operators V ′i = D− 1

2ViD
1
2 , one verifies that

R′(sIs
∗
J) = V ′IV

′∗
J = D− 1

2VIDV
∗
JD

− 1
2 .

Putting R( · ) = D
1
2R′( · )D 1

2 , we obtain the corollary. A more careful argument
is given in Remark 5.3.

3. ERGODIC THEORY OF COMPLETELY POSITIVE MAPS ON B(H)

In this section we prove some more or less known results about completely positive
unital normal maps ϕ of B(K), and we analyze the fixed-point set

B(K)ϕ := {X ∈ B(K) | ϕ(X) = X}.

We will need the arguments from the proofs here later in the paper.
Let K be a Hilbert space, and ϕ : B(K) → B(K) a normal unital completely

positive map. Then there exists a family of operators Vi ∈ B(K) such that∑
i

ViV
∗
i = 1l and ϕ(X) =

∑
i

ViXV
∗
i

for all X ∈ B(K), where the sum converges in weak operator topology ([22]).

Lemma 3.1. Let p be a projection in B(K). Then the following conditions
are equivalent:

(i) there is a λ > 0 such that ϕ(p) 6 λp;
(ii) Vip = pVip for all i;
(iii) ϕ(p) 6 p.
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Remark 3.2. Condition (i) is of course equivalent to the condition that the
weakly closed hereditary subalgebras pB(K)p of B(K) are invariant under ϕ. The
property that there are no nontrivial weakly closed hereditary subalgebras of B(H)
invariant under ϕ is called irreducibility of ϕ in [23], and since any such subalgebra
is of the form pB(H)p, irreducibility of ϕ is equivalent to the nonexistence of
projections p with the property (i) or (ii). The proof of Lemma 3.1 is extracted
from [23].

Proof. (i) ⇒ (ii) Assume ϕ(p) 6 λp. Then

0 6 (1l− p)ϕ(p)(1l− p) 6 (1l− p)λp(1l− p) = 0,

so
0 =

∑
i

(1l− p)VipV
∗
i (1l− p) =

∑
i

((1l− p)Vip)((1l− p)Vip)∗,

and hence
0 = (1l− p)Vip,

which is (ii).
(ii) ⇒ (iii) Assume that Vip = pVip for all i. Then

ϕ(p) =
∑
i

VipV
∗
i =

∑
i

pVipV
∗
i p = pϕ(p)p 6 ‖ϕ(p)‖p 6 p.

(iii) ⇒ (i) is trivial.

Lemma 3.3. Let p be a projection in B(K). Then the following conditions
are equivalent:

(i) ϕ(p) = p;
(ii) p ∈ {Vi, V ∗i }′i, i.e., pVi = Vip for all i.

Proof. Since
∑
i

ViV
∗
i = 1l, (ii) ⇒ (i) is trivial. Conversely, assume ϕ(p) = p.

Applying Lemma 3.1, (i) ⇒ (ii), on p and 1l − p, we obtain Vip = pVip and
Vi(1l− p) = (1l− p)Vi(1l− p), i.e., pVi = pVip, so (ii) holds.

If B(K)ϕ = {X ∈ B(K) | ϕ(X) = X} were an algebra (which necessarily is
weakly closed and closed under involution), it would follow from Lemma 3.3 that

B(K)ϕ = {Vi, V ∗i }′

(the inclusion ⊃ is trivial, as mentioned before). There is one important special
case where B(K)ϕ is an algebra, namely when there is a faithful ϕ-invariant state:
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Lemma 3.4. ([25]) Assume that there is a faithful ϕ-invariant state ω on

B(K). Then B(K)ϕ is an algebra, and hence

B(K)ϕ = {Vi, V ∗i }′.

Proof. We follow [25], proof of Proposition 2.2. By [15], Theorem 3.1, if ϕ is

any 2-positive map on a C∗-algebra A, then

{a ∈ A | ϕ(a∗a) = ϕ(a)∗ϕ(a)} = {a ∈ A | ϕ(xa) = ϕ(x)ϕ(a) for all x ∈ A}.

Going back to our case, assume that ϕ(a) = a for some a ∈ B(K). By the

generalized Schwarz inequality, we then have

ϕ(a∗a)− a∗a = ϕ(a∗a)− ϕ(a∗)ϕ(a) > 0.

But ω(ϕ(a∗a) − a∗a) = 0 by invariance of ω, and as ω is faithful it follows that

ϕ(a∗a) = a∗a = ϕ(a∗)ϕ(a). By Choi’s theorem, ϕ(xa) = ϕ(x)a for all x ∈ B(H),

and if in particular x ∈ B(H)ϕ, then ϕ(xa) = xa. Thus xa ∈ B(H)ϕ, and B(H)ϕ

is an algebra.

Note that the map ω 7→ ω◦ϕ is obviously a continuous map on the state space

of B(H), and this space is compact in the weak∗-topology from B(H). Hence it

follows from the Schauder–Tychonoff fixed point theorem that there exists a state

ω such that ω◦ϕ = ω ([44], [20], p. 456, Section V.10.5, Theorem 5). Unfortunately

the state ω is not necessarily faithful. For example: let K = Cn, eij a full set of

matrix units for B(Cn) = Mn, and put Vi = ei1 for i = 1, . . . , n. Then

∑
i

ViV
∗
i = 1l and {Vi, V ∗i }′ = C1l,

but the unique invariant state for ϕ is the pure state ω
( ∑
ij

Xijeij

)
= X11.

The states fixed by ϕ need not in general be normal either. We will discuss

these states further in the beginning of Section 6.

Actually, there also exist examples where B(K)ϕ is not an algebra. The

following example is from [1], [2]: K = C3,
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ϕ

X11 X12 X13

X21 X22 X23

X31 X32 X33

 =

X11 0 0
0 X22 0
0 0 1

2 (X11 +X22)

 .

Then ϕ is completely positive, and one checks that

B(K)ϕ =


 a 0 0

0 b 0
0 0 1

2 (a+ b)

 ∣∣∣∣∣ a, b ∈ C

 ,

which contains no nontrivial subalgebras, and hence {Vi, V ∗i }′ = C1l whatever the

choice of Vi’s. One choice is

V1 =

 1 0 0
0 0 0
0 0 0

 , V2 =

 0 0 0
0 1 0
0 0 0

 ,

V3 =

 0 0 0
0 0 0
1√
2

0 0

 , V4 =

 0 0 0
0 0 0
0 1√

2
0

 .

The invariant states are all the convex combinations of the two states (Xij) 7→ X11

or (Xij) 7→ X22. Thus, in the general situation, the following theorem is the best

possible.

Theorem 3.5. Let ϕ(·) =
∑
i

Vi · V ∗i be a normal unital completely positive

map of B(K). Then

{Vi, V ∗i }′ ⊂ B(H)ϕ.

Furthermore, the space B(H)ϕ contains a largest ∗-subalgebra, and this algebra is

{Vi, V ∗i }′.

Proof. Since
∑
i

ViV
∗
i = 1l, the first assertion is trivial. Next note that as

ϕ is normal, if A is a ∗-subalgebra of B(H)ϕ, then the weak∗-closure A of A is

contained in B(H)ϕ. But since A is the weak∗-closure of the linear span of its

projections, it follows from Lemma 3.3 that A ⊂ A ⊂ {Vi, V ∗i }′. This proves the

theorem.
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4. THE COMMUTANT LIFTING THEOREM AND PURE STATES ON Od

The main aim of this section is to decide which systems (K,Ω, V1, . . . , Vd) give rise
to pure states ω̂ on Od. To this end it will be convenient to define a completely
positive unital map σ of B(K) by

(4.1) σ(A) =
d∑
i=1

ViAV
∗
i .

We will actually establish an order isomorphism between the order interval [0, ω̂] in
the set of positive functionals on Od, and the set of operators A ∈ B(K) such that
0 6 A 6 1l and σ(A) = A. This is a natural generalization of the commutant lifting
theorem of [39], and another version of this result is Corollary 5.4 in [9]. The term
“commutant lifting” is from single-operator theory ([43], [26], [19]) where it refers
to the Sz.-Nagy lifting theorem, which for every contractive operator V in a given
Hilbert space K yields a minimal coisometry, and in fact, by a second step, also a
unitary operator U , acting on a bigger Hilbert space H, and serving as a lifting of
V . If P denotes the projection of H onto K, i.e., K = PH, then Sz.-Nagy’s dilation
theorem states the existence of (U,H) such that UP = PUP and V n = PUnP on
K for all n ∈ N. “Minimality” here is the requirement that the subspace K be cyclic
for {Un | n ∈ Z} in H. If we have two contractions Vi : Ki → Ki, i = 1, 2, with
corresponding minimal coisometric (or unitary) dilations (Ui,Hi) and projections
Pi : Hi → Ki, PiHi = Ki, i = 1, 2, and if Y : K1 → K2 is a bounded operator
which is given to intertwine the two contractions, i.e., Y V1 = V2Y , then Y lifts,
by [19], to a bounded X : H1 → H2 with the same operator norm, ‖X‖ = ‖Y ‖,
and satisfying XU1 = U2X, and P2XP1 = Y on K1.

The analogy to the present setting refers to an operator Y which intertwines
two given Vi-systems {Vi}di=1 and {Wi}di=1, say, and its canonical lifting to an
operator which intertwines the corresponding two representations of the Cuntz
algebra Od.

Proposition 4.1 and Theorem 4.4 below represent our multivariable analogue
of this lifting result, but only for the special case when Vi = Wi, while Theorem 5.1
is our general multivariable commutant lifting theorem.

Proposition 4.1. Adopt the notation in Remark 2.3. Then the selfadjoint
part of the commutant π(Od)′ is norm and order isomorphic to the space of self-
adjoint fixed points of the completely positive map σ. This isomorphism takes
A ∈ π(Od)′ into PAP ∈ B(K)σ.
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Proof. Let X ∈ π(Od)′. Then PXP is determined by the matrix elements

〈V ∗I Ω|PXPV ∗J Ω〉 = 〈S∗IΩ|XS∗JΩ〉.

Writing the same expression for I 7→ Ii and J 7→ Ji, and summing over i, shows

that PXP ∈ B(K)σ. (Why can we not conclude PXP ∈ {Vi, V ∗i }′? We get

〈V ∗I Ω|ViPXPV ∗J Ω〉 = 〈S∗i S∗IΩ|XS∗JΩ〉 = 〈S∗IΩ|XSiS∗JΩ〉
= 〈V ∗I Ω|PXSiPV ∗J Ω〉 6= 〈V ∗I Ω|PXPSiS∗JΩ〉,

because SiS
∗
JΩ /∈ K in general. See Theorem 3.5.) Conversely, assume that

D ∈ B(K)σ, with 0 6 D 6 1l. That is, D satisfies the hypothesis of Corollary 2.4.

Hence the linear functional on Od defined by

ω̃(sIs
∗
J) = 〈V ∗I Ω|DV ∗J Ω〉

is positive, and, applying the same argument to 1l −D, we find that 0 6 ω̃ 6 ω̂.

Since Ω is cyclic for Od, there is an X ∈ π(Od)′ (with 0 6 X 6 1l), which is

uniquely determined by the equation

ω̃(sIs
∗
J) = 〈Ω|XSIS∗JΩ〉.

But since X ∈ O′
d, we have 〈Ω|XSIS∗JΩ〉 = 〈V ∗I Ω|XV ∗J Ω〉 = 〈V ∗I Ω|DV ∗J Ω〉. That

is to say PXP = D.

Since 1l ∈ B(K)σ, the real linear span of this positive cone in B(K)σ is all

of the selfadjoint part, and hence the map X 7→ PXP is onto, and (by scaling

with suitable positive factors) the above arguments show that the map is an order

isomorphism between the respective selfadjoint parts of π(Od)′ and B(K)σ. The

selfadjoint subspaces are also order unit spaces, i.e.,

‖A‖ = inf{α > 0 | −α1l 6 A 6 α1l}.

(For B(K)σ, this formula is inherited from B(K), using, of course, crucially that

1l ∈ B(K)σ.) From this it is evident that the isomorphism is also isometric.

Having now identified B(K)σ with Pπ(Od)′P , let us return to the question

raised in Theorem 3.5 and the preceding remarks on when B(K)σ is an algebra.



110 O. Bratteli, P.E.T. Jorgensen, A. Kishimoto and R.F. Werner

Proposition 4.2. Let M be a von Neumann algebra on a Hilbert space
H, and let P be a projection in H such that X 7→ PXP is an isometry on the
selfadjoint part of M. Then the following are equivalent:

(i) PMP is an algebra;

(ii) X 7→ PXP is a homomorphism on M;

(iii) P ∈M′.

Proof. (iii) ⇒ (ii) ⇒ (i) are trivial. (ii) ⇒ (iii) follows from the observation
that the homomorphism property implies PX∗(1l−P )XP = 0, i.e., (1l−P )XP = 0,
andXP = PXP = PX. Note that these steps do not even depend on the isometry
property.

The nontrivial bit, (i) ⇒ (ii), is essentially contained in the proof of The-
orem 3.5. Here is a slightly different way of putting it: The isometry property
means that the unit interval of M is isometrically mapped onto that of the alge-
bra PMP . In particular, extremal points correspond to extremal points, which
in a von Neumann algebra means that projections go into projections, and or-
thogonality of projections is preserved. By the spectral theorem, we find that the
compression map is a Jordan isomorphism, and hence the direct sum of a homo-
morphism and an anti-homomorphism. Because it is completely positive, it is a
homomorphism.

Remark 4.3. Note that it is not enough to require isometry on the whole
(complex) vector space M, since the norms alone do not give enough information.
A counterexample can be made with a two-dimensional abelian algebra. (M =
CQ+ C(1l−Q), and QPQ has both eigenvalues 0 and 1.)

Note also that if Propositions 4.1 and 4.2 are applied to the example of Arve-
son discussed prior to Theorem 3.5, it follows that the dilation of {C3, V1, . . . , V4}
to a representation π of O4 decomposes into two disjoint irreducible representa-
tions, and P is not contained in π(O4)′′. Note that the nontrivial projections in
π(O4)′ then cannot be Popescu dilations of anything in B(C3).

We are now ready to state the characterization of pure states ω̂ on Od. If
ω̂ is any state on Od, let again (H,Ω, S1, . . . , Sd) be the corresponding represen-
tation, and (K,Ω, V1, . . . , Vd) the corresponding Popescu system, and define the

corresponding endomorphism λ of B(H) by λ( · ) =
d∑
i=1

Si · S∗i , and the unital

completely positive map σ of B(K) by σ( · ) =
d∑
i=1

Vi · V ∗i .
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Theorem 4.4. If ω̂ is a state on Od, the following conditions are equivalent:
(i) ω̂ is pure;
(ii) λ(X) = X implies X ∈ C1lH, X ∈ B(H);
(iii) σ(Y ) = Y implies Y ∈ C1lK, Y ∈ B(K);
(iv) {Vi, V ∗i } acts irreducibly on K, and P ∈ π(Od)′′.

Proof. In general the fixed point algebra for λ is π(Od)′ (see, e.g., [12], for-
mula (3.5) or [33], Proposition 3.1) and hence (i) ⇔ (ii) and (i) ⇔ (iii) follows
from Proposition 4.1. If ω̂ is pure, then P ∈ π(Od)′′ and {Vi, V ∗i } acts irreducibly
on K because {Vi, V ∗i }′ ⊂ B(K)σ = C1lH by (iii), hence (i) ⇒ (iv). Conversely
if P ∈ π(Od)′′ it follows, by applying Proposition 4.2 on M = π(Od)′, that
Pπ(Od)′P is an algebra. But this algebra is B(K)σ by Proposition 4.1, and if
{Vi, V ∗i } acts irreducibly, it follows from Theorem 3.5 that B(K)σ = C1lK. Thus
(iv) ⇒ (iii), and Theorem 4.4 is proved.

5. REPRESENTATIONS OF Od

For the wavelet applications described in Section 1, we will need versions of The-
orem 2.1, Proposition 4.1 and Theorem 4.4 where the state ω̂ is replaced merely
by the system (K, V1, . . . , Vd).

Theorem 5.1. Let K be a Hilbert space, and let V1, . . . , Vd ∈ B(K) be oper-
ators satisfying ∑

i∈Zd

ViV
∗
i = 1l.

Then K can be embedded into a larger Hilbert space H = HV carrying a represen-
tation S1, . . . , Sd of the Cuntz algebra Od such that if P : H → K is the projection
onto K we have

V ∗i = S∗i P

(i.e., S∗i K ⊂ K and S∗i P = PS∗i P = V ∗i ) and K is cyclic for the representation.
The system (H, S1, . . . , Sd, P ) is unique up to a unitary equivalence, and if σ :
B(K) → B(K) is defined by

σ(A) =
∑
i

ViAV
∗
i ,

then the commutant of the representation {S1, . . . , Sd}′ is isometrically order iso-
morphic to the fixed point set B(K)σ = {A ∈ B(K) | σ(A) = A} by the map
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A′ 7→ PA′P . More generally, if W1, . . . ,Wd ∈ B(K) is another set of operators
satisfying ∑

i∈Zd

WiW
∗
i = 1l

and T1, . . . , Td are the corresponding representatives of s1, . . . , sd, then there is an
isometric linear isomorphism between intertwiners U : HV → HW , i.e., operators
satisfying

USi = TiU,

and operators V ∈ B(K) such that

(5.1)
∑
i∈Zd

WiV V
∗
i = V,

given by the map U 7→ V = PUP .

Proof. Inspecting the proof of Lemma 2.2, we see that the vector Ω plays
no role in the proof, so the map R : Od → B(K) defined by R(sIs

∗
J) = VIV

∗
J is

well defined and completely positive. The representation S1, . . . , Sd of Od on H
thus may be taken to be the Stinespring dilation of R ([1], [14], p. 229, Notes and
Remarks to Chapter 5, [42]), and uniqueness up to unitary equivalence follows
from uniqueness of the Stinespring representation.

The commutant lifting property is established as in Proposition 4.1, using
Corollary 2.4.

To establish the final intertwiner lifting property, one considers the direct sum
representation of Od on HV ⊕HW given by si 7→ Si⊕Ti. Note that some operator

U : HV → HW is an intertwiner if and only if
(

0 0
U 0

)
is in the commutant

of this sum representation. But the operators corresponding to Vi of this latter
representation, relative to the subspace K ⊕K ⊂ HV ⊕HW , are(

Vi 0
0 Wi

)
, i ∈ Zd,

so, using the commutant lifting property of the direct sum representation, one
verifies that U intertwines the Si’s and the Ti’s if and only if V = PUP is fixed
under the map

∑
i

Wi · V ∗i . Specifically, if β( · ) :=
∑
i

Ti · S∗i , then we have the

identity
Pβ(X)P =

∑
i

WiPXPV
∗
i ,

valid for all operators X : HV → HW . Now note that U intertwines the two
Od-representations, if and only if β(U) = U , and the assertion follows from this.
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Remark 5.2. Another more direct way of constructing the representation
of Od in Theorem 5.1 is the following: let In be the set of finite sequences I =
(i1, . . . , im) where m 6 n and ik ∈ Zd for all k (including the empty sequence),
and let C In be the complex linear space of formal linear combinations of elements
in In. Put I =

⋃
n
In as in Section 2, and define

Hn = C In ⊗K

(algebraic tensor product). For each I ∈ I, define a linear operator SI on H =⋃
n
Hn by

SI(J ⊗ ξ) = IJ ⊗ ξ

and linearity. Define a semi-inner product on H by requiring

〈I ⊗ ξ|IJ ⊗ η〉 = 〈ξ|VJη〉,
〈IJ ⊗ ξ|I ⊗ η〉 = 〈VJξ|η〉

for all I, J ∈ I, ξ, η ∈ K, and

〈I ⊗ ξ|J ⊗ η〉 = 0

if the pair I, J does not have one of the forms above. To show that this sesquilinear
form is indeed positive and well defined, we proceed by induction: this is true for
H0 = K. Suppose this is proved for Hn−1 and let ζ ∈ Hn. We express ζ as

ζ =
∑
j∈Zd

Sjζj + ζ0

where ζj ∈ Hn−1 and ζ0 ∈ H0 = K. Then

〈ζ|ζ〉 =
〈 ∑

j

Sjζj + ζ0

∣∣∣ ∑
k

Skζk + ζ0

〉
=

∑
j

〈ζj |ζj〉+
∑
j

〈ζj |V ∗j ζ0〉+
∑
k

〈V ∗k ζ0|ζk〉+ 〈ζ0|ζ0〉

=
∑
j

‖ζj + V ∗j ζ0‖2 > 0.

Let H be the completion of H modulo zero-vectors and Λ : H → H the canonical
map. We define a bounded operator Si on H by

SiΛ(ζ) = Λ(Siζ),
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and, using
∑
j

VjV
∗
j = 1l, one easily verifies that si 7→ Si is a representation of Od

satisfying the required properties.

Remark 5.3. Note that Corollary 2.4 can also be proved along the lines in
Remark 5.2, but now one defines the semi-inner product 〈 · | · 〉D on H by requiring

〈I ⊗ ξ|IJ ⊗ η〉D = 〈V ∗J ξ|Dη〉,
〈IJ ⊗ ξ|I ⊗ η〉D = 〈ξ|DV ∗J η〉, etc.

Remark 5.4. In comparing the single-operator commutant lifting ([19])
with our Theorem 5.1, we note that the naive (or natural) multivariable gen-
eralization of the intertwining property for an operator Y on the “small” Hilbert
space K would be Y Vi = WiY . But this property is slightly different from the
present one,

∑
i

WiY V
∗
i = Y , i.e., (5.1), used in Theorem 5.1.

There is naturally a variety of ways of generalizing the classical single-
operator commutant lifting theorem to several variables, each serving different
purposes. In addition to ours and the others mentioned above, there are related,
but different, approaches (to the multivariable theory) in recent papers by Arveson
([3]) and Bhat ([4]).

6. IRREDUCIBLE REPRESENTATIONS OF Od AND THEIR RESTRICTION TO UHFd

Consider an irreducible representation S1, . . . , Sd of Od on a Hilbert space H,
and let K be a cyclic subspace of H invariant under S∗1 , . . . , S

∗
d . Define again

V1, . . . , Vd ∈ B(K) by
V ∗i P = S∗i P = PS∗i P

where P : H → K is the projection onto K. By Theorem 5.1, irreducibility on H
is equivalent to ergodicity of the completely positive map σ defined on B(K) by
σ( · ) =

∑
i

Vi · V ∗i . Since σ(1l) = 1l, σ maps the state space of B(K) into itself, and

hence there is a σ-invariant state ϕ. If K is finite-dimensional, we will show that ϕ
is unique. The state ϕ is automatically normal since K is finite-dimensional. Let
E be the support of ϕ.

Lemma 6.1. S∗i EK ⊂ EK for all i ∈ Zd.

Proof. Since ϕ(σ(E)) = ϕ(E) = 1l and 0 6 σ(E) 6 1l, it follows thatσ(E) >

E. Applying Lemma 3.1, (i) ⇒ (ii), on p = 1l−E gives V ∗i E = EV ∗i E. This proves
Lemma 6.1.
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But from [9], Lemma 6.3, it follows that there is only one σ-invariant state
with support inside E. So, if ϕ1, ϕ2 are two σ-invariant states with respective
support projections E1, E2, then 1

2 (ϕ1 + ϕ2) is a σ-invariant state with support
E1 ∨ E2, and hence ϕ1 = 1

2 (ϕ1 + ϕ2) = ϕ2 by the argument above. We have
proved:

Lemma 6.2. If K is finite-dimensional, then B(K) has a unique σ-invariant
state when σ is ergodic.

The example after the proof of Lemma 3.4 shows that this σ-invariant state
need not be faithful. However, replacing P by the support E of ϕ, and using
Lemma 6.1, the following theorem is applicable to general irreducible representa-
tions when K is finite-dimensional, replacing P by E.

Theorem 6.3. Consider an irreducible representation of Od on H, and let
K, V1, . . . , Vd, P, σ be as in the introduction to this section. Assume that there exists
a normal faithful σ-invariant state ϕ on B(K). Let ψ be the state of Od defined by

ψ(sIs
∗
J) = ϕ(VIV

∗
J ).

The following three subsets of the circle group T are equal:
(i) {t ∈ T | ψ ◦ τt = ψ}, where τ is the gauge action;
(ii) {t ∈ T | ψ ◦ τt is quasi-equivalent to ψ};
(iii) PSp(σ) ∩ T, where PSp(σ) is the set of eigenvalues of σ.
Furthermore, this set is a finite subgroup of T. If k is the order of this

subgroup, the restriction of the representation to UHFd decomposes into k mutually
disjoint irreducible representations, and these are mapped cyclically into each other
by the one-sided shift λ( · ) =

∑
i

si · s∗i .

Remark 6.4. Since the normal states on B(K) are given by density matrices,
it follows from [9], Lemma 6.3, (as in the proof of Lemma 6.2 above) that if there
is a faithful σ-invariant normal state ϕ, then this is the unique σ-invariant normal
state. Note that the state ψ defined in Theorem 6.3 is well defined by Lemma 2.2,
and ψ ◦ λ = ψ since ϕ ◦ σ = ϕ.

During the proof of Theorem 6.3 we will establish that

PSp(σ) ∩ T = PSp(λ) ∩ T

and that each of the corresponding eigenspaces is spanned by a unitary operator
(in B(K), B(H), respectively), and this unitary operator in B(H) implements τt
if t is the eigenvalue. In fact, if U ∈ B(H) \ {0} and λ(U) = tU , then λ(U∗U) =
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λ(U)∗λ(U) = U∗U , hence U∗U , and likewise UU∗, is a scalar multiple of 1l. Thus,
renormalizing U , we may take U to be unitary. But λ(U) =

∑
i

SiUS
∗
i = tU , so

SiU = tUSi and hence USiU∗ = tSi = τt(Si). Conversely, if U implements τt,
then λ(U) = tU , and we have shown

PSp(λ) ∩ T = {t | τt is inner}.

In particular, this shows that PSp(σ) ∩ T is independent of the particular state ϕ
chosen (with the required properties).

Proof of Theorem 6.3. We first prove the inclusion:

Lemma 6.5. {t ∈ T | ψ ◦ τt = ψ} ⊂ PSp(σ) ∩ T.

Proof. Since ϕ is normal on B(K), ϕ is a (possibly infinite) convex combina-
tion of vector states, and thus ψ is a convex combination of vector states. Since
the given representation of Od on H is irreducible, ψ is a type I factor state. If
ψ ◦ τt = ψ, it follows that there is a unitary U t ∈ B(H) such that τt = Ad(U t).
But if E = suppψ, the invariance implies τt(E) = E, and hence E ∈ U

′
t. Thus

Ut = EU tE = U tE = EU t is unitary. But U tSiU
∗
t = tSi, so multiplying to the left

with E, we get UtViU
∗
t = tVi. Multiplying to the right with UtV

∗
i , and summing

over i, we then obtain Ut = tσ(Ut), i.e., Ut is an eigenvector of σ with eigenvalue
t. Thus U∗t is an eigenvector with eigenvalue t, and the lemma is proved.

We next establish the converse inclusion.

Lemma 6.6. PSp(σ) ∩ T ⊂ {t ∈ T | ψ ◦ τt = ψ}.

Proof. If t ∈ PSp(σ) ∩ T, let U∗ = U∗t be a corresponding eigenvector,
and assume that ‖U∗‖ = 1. We argue that U is unitary by using the argument
employed in the proof of Lemma 3.4: by the generalized Schwarz inequality,

σ(U∗U) > σ(U∗)σ(U) = ttU∗U = U∗U,

so σ(U∗U) − U∗U > 0. But by σ-invariance of ϕ, ϕ(σ(U∗U) − U∗U) = 0, and
as ϕ is faithful, σ(U∗U) = U∗U. Since σ is ergodic and ‖U∗‖ = 1, it follows that
U∗U = 1l. In the same way, one shows that UU∗ = 1l, so U = Ut is unitary. But
we have

Ut = tσ(Ut) = t
∑
i

ViUtV
∗
i .

Before continuing the proof of Lemma 6.6, we now prove
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Lemma 6.7. If U is a unitary operator in B(K) with σ(U) = tU , where
t ∈ T ⊂ C, then

(6.1) UViU
∗ = tVi

for i ∈ Zd.

Proof. By [15], Theorem 3.1, we have

σ(XU) = σ(X)σ(U) = σ(X)tU

for all X ∈ B(K). Define Xi = UViU
∗ − tVi. Then∑

i

XiX
∗
i = U

(∑
i

ViV
∗
i

)
U∗ − t

∑
i

ViUV
∗
i U

∗ − t
∑
i

UViU
∗V ∗i +

∑
i

ViV
∗
i

= 1l− σ(U)tU∗ − tUσ(U∗) + 1l = 1l− σ(UU∗)− σ(UU∗) + 1l = 0.

It follows that Xi = UViU
∗ − tVi = 0, and Lemma 6.7 is proved.

Continuation of the proof of Lemma 6.6. We may now finalize the proof of
Lemma 6.6 by extending the unitary Ut on K, to a unitary U t on H, through the
definition

U t

(∑
I

αISIξI

)
=

∑
I

αIt
|I|SIUtξI

where I is a finite multi-index with elements from Zd, αI ∈ C and ξI ∈ K. U t is
well defined and unitary by the following computation, where J, I are multi-indices
related by J = IJ ′, where J ′ is another multi-index. Lemma 6.7 is used in the
computation.

〈SIUtξI |SJUtξJ〉 = 〈UtξI |SJ′UtξJ〉 = 〈UtξI |VJ′UtξJ〉 = t|J
′|〈UtξI |UtVJ′ξJ〉

= t|J
′|〈ξI |VJ′ξJ〉 = 〈t|I|SIξI |t|J|SJξJ〉.

But, from the definition of U t, it follows that

(6.2) U tSiU
∗
t = tSi,

so U t implements τt. (In passing from (6.1) to (6.2) with the lifting U 7→ U t, we
note that this is a “scaled” version of the commutant lifting in Section 5.) Use
now the same symbol τt to denote also the normal extension of τt to B(H). By
construction of U t, we have U tP = PU t, so

τt(P ) = P.
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We now argue that ψ ◦ τt = ψ. Put ψt = ψ ◦ τt. Since τt is unitarily implemented,
ψt is normal in the given representation and extends to B(H). Since ψt(P ) =
ψ(τt(P )) = ψ(P ) = 1l, we have supp(ψt) 6 P , and we may define a state ϕt on
B(K) by ϕt(PXP ) = ψt(X) for X ∈ B(H). But

λτt(X) =
∑
i

Siτt(X)S∗i = τtλ(X)

for X ∈ B(H), and, as ψ ◦ λ = ψ, we deduce that

ϕt ◦ σ(PXP ) = ψt ◦ λ(X) = ψτtλ(X) = ψλτt(X)

= ψτt(X) = ϕτt(PXP ) = ϕt(PXP ),

so ϕt ◦σ = ϕt. Using the fact that B(K) has a unique σ-invariant normal state by
assumption, we conclude that ϕt = ϕ, and hence ψ ◦ τt = ψt = ψ. This ends the
proof of Lemma 6.6.

We have now established that the sets (i) and (iii) in Theorem 6.3 are equal.
Clearly set (i) is contained in set (ii), and to establish the converse, we have to
show that, if ψ is τt-covariant for some t ∈ T, then ψ is actually τt-invariant. To
this end, note that, as

ψ ◦ τt ◦ λ = ψ ◦ λ ◦ τt = ψ ◦ τt,

this will follow once we can show the following lemma:

Lemma 6.8. Adopt the assumptions of Theorem 6.3. Then ψ is a unique
λ-invariant normal state on B(H).

Proof. If X ∈ B(H), then

w∗-lim
N→∞

1
N + 1

N∑
k=0

λk(X) = ψ(X)1l

by the following reasoning: putting

XN =
1

N + 1

N∑
k=0

λk(X),

we have λ(XN )−XN = (λN+1(X)−X)/(N + 1), and hence

‖λ(XN )−XN‖ 6
2‖X‖
N + 1

.
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It follows that any weak*-limit point of the sequence XN is λ-invariant. But, as
the representation is irreducible, the only λ-invariant elements in B(H) are the
scalar multiples of 1l (see, e.g., (3.5) in [12]). Moreover, as ψ ◦ λ = ψ, we have
ψ(XN ) = ψ(X), and the claim follows. Finally, if ω is a λ-invariant normal state
and X ∈ B(H), it follows that ω(X) = ω(XN ), and therefore

ω(X) = lim
N→∞

ω(XN ) = ω(ψ(X)1l) = ψ(X).

Note that Lemma 6.8 could be used to simplify the last part of the proof of
Lemma 6.6.

Next, we establish the finiteness of the three sets in Theorem 6.3:

Lemma 6.9. {t ∈ T | ψ ◦ τt = ψ} is a finite subgroup of T.

Proof. The set is clearly a closed subgroup of T, so if it is not finite it is
equal to T. But in that case the automorphism group t 7→ τt extends to the
weak closure πψ(Od)′′ of πψ(Od) in the GNS representation defined by ψ. Since
the original representation of Od on H is irreducible, and ψ is a normal state
in this representation, πψ(Od)′′ is a type I factor and πψ extends canonically to
a ∗-isomorphism from B(H) = O′′

d to this factor. Transporting τt back by this
isomorphism, it follows that there exists a unitary representation t 7→ Ut of T on
H such that τt(x) = UtxU

∗
t for x ∈ Od. For this covariant representation, let

Ut =
∑
n∈Z

tnEn

be the Stone-Naimark-Ambrose-Godement (SNAG) decomposition ([35]) of U . As

UtSi = τt(Si)Ut = tSiUt,

we obtain EnSi = SiEn−1, and thus λ(En) = En+1. But

ψ( · ) = ψ ◦
∫
T

AdUt( · ) dt =
∑
n

ψ(En · En),

where we identify ψ with the vector state it defines on the bounded operators on
the representation Hilbert space. Therefore, if ψn(X) = ψ(EnXEn), then

ψn(λ(X)) = ψ(Enλ(X)En) = ψ(λ(En−1XEn−1)) = ψn−1(X),

since ψ ◦ λ = ψ. (Here we use implicitly the facts that both ψ and λ extend by
weak*-continuity to B(H) = O′′

d , and that the invariance ψ ◦λ = ψ is preserved in
the extension. If the original representation were not irreducible, this point would
be problematic.) But then

ψ(1l) =
∑
n

ψn(1l) =
∑
n

ψ0(1l) = ∞,

since λ(1l) = 1l. This is impossible, so Lemma 6.9 is established.
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It remains to prove the last statements of Theorem 6.3. To this end, define
k ∈ N such that the finite group in Lemma 6.9 is {exp(2πil/k) | l = 0, 1, . . . , k−1}.

Lemma 6.10. With k defined as above and ψ as in Theorem 6.3, we have

πψ(Oτ1/k

d )′′ = πψ(UHFd)′′

and
πψ(Od)′′ ∩ πψ(Oτ1/k

d )′ ∼= Ck,

where Oτ1/k

d denotes the fixed point algebra in Od under the gauge automorphism
τexp(2πi/k).

Proof. Since πψ is merely a multiple of the given irreducible representation
on H (by normality of ψ), we only need to show

(Oτ1/k

d )′′ = (UHFd)′′

and
(Oτ1/k

d )′ ∼= Ck.

But, if U is the unitary on H implementing τ 1
k
, we have shown that U is an

eigenunitary of λ with eigenvalue e−
2πi
k . As λ(Uk) = e−

2πik
k Uk = Uk, we have

Uk ∈ C1l; and we may assume Uk = 1l by changing U by a phase factor. Thus U
will have a spectral decomposition

U =
∑
l∈Zk

e
i2πl

k El

where El, l ∈ Zk, are mutually orthogonal projections summing up to 1l. Moreover,
as

λ(U) =
∑
l∈Zk

e
i2πl

k λ(El) = e−
i2π
k U =

∑
l∈Zk

e
i2π(l−1)

k El,

we see that
λ(El) = El+1

for l ∈ Zk. It follows that all the projections El are nonzero. Thus

(Oτ1/k

d )′′ = (Od)′′ ∩ {U,U∗}′ = {El | l ∈ Zk}′ =
⊕
l∈Zk

ElB(H)El,

so
(Oτ1/k)′ =

∑
l∈Zk

CEl ∼= Ck
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as asserted.
To prove that (UHFd)′′ = (Oτ1/k)′′ we first note that if τt is restricted to

t ∈ [0, 1
k 〉, then τ defines a representation of T in Aut(Oτ1/k). Now consider the

direct integral representation

π =
∫

[0, 1k 〉

⊕
dt π

ψ
∣∣Oτ1/k

d

◦ τt

of Oτ1/k

d on H
ψ|O

τ1/k

d

⊗ L2([0, 1
k 〉). (See [6].)

We establish the following observation concerning this representation before
finalizing the proof of Lemma 6.10:

Lemma 6.11. 1l⊗ L∞([0, 1
k 〉) ⊂ π(Oτ1/k

d )′′.

Proof. Note that
λ(Oτ1/k

d ) ⊂ Oτ1/k

d ,

since λτt = τtλ. If t1, t2 ∈ [0, 1
k 〉 and t1 6= t2, it follows from the already proved

part of Theorem 6.3 that there exists an x ∈ Od with ψ(τt1(x)) 6= ψ(τt2(x)).
Replacing x with its mean over Zk, 1

k

∑
l∈Zk

τ l
k
(x), we may assume that x ∈ Oτ1/k

d .

Since

w-lim
N→∞

1
N + 1

N∑
n=0

λn(τt(x)) = ψ(τt(x))1l,

by the reasoning in the proof of Lemma 6.8, it follows that

w-lim
N→∞

1
N + 1

N∑
n=0

π(λn(x)) = 1l⊗ f,

where f(t) = ψ(τt(x)). Lemma 6.11 follows, as these f ’s separate points.

Continuation of the proof of Lemma 6.10. It follows from Lemma 6.11 that

π(Oτ1/k

d )′′ = πψ(Oτ1/k

d )′′ ⊗ L∞([0, 1
k 〉).

But π is clearly τ -covariant, T acting by translation, and therefore

π(UHFd)′′ = π(Oτ1/k

d )′′ τ = πψ(Oτ1/k

d )′′ ⊗ 1l.

This equality then also holds on fibers, so

πψ(UHFd)′′ = πψ(Oτ1/k

d )′′,

and this ends the proof of Lemma 6.10.
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End of proof of Theorem 6.3. We finally observe from the proof that this
means that UHFd acts irreducibly on each of the subspaces ElH, that these rep-
resentations are mutually disjoint, and since λ(El) = El+1, the endomorphism λ

maps these representations of UHFd cyclically one into another, i.e.,

π0 → π1 → · · · → πk−1 → π0,

where πl is the “cut down” of πψ by El, πl( · ) = πψ( · )El, l ∈ Zk.

7. TRANSLATIONALLY INVARIANT STATES ON THE TWO-SIDED QUANTUM CHAIN

Let us recall the definition of finitely correlated pure states from [24], [25]. These
are translationally invariant states defined on the one-dimensional quantum chain⊗
Z
Md as follows: let K be a finite-dimensional Hilbert space and let V : K →

K⊗ Cd be an isometry. Define

E : B(K)⊗Md → B(K)

by E(X) = V ∗XV. Let ϕ be a state on B(K) such that ϕ(E(B ⊗ 1l)) = ϕ(B) for
all B ∈ B(K). Define

EA : B(K) → B(K)

by B 7→ E(B ⊗A) for A ∈Md. Then

ω(A1 ⊗A2 ⊗ · · · ⊗Am) = ϕ(EA1 ◦ EA2 ◦ · · · ◦ EAm
(1lK))

defines a translation-invariant state on
⊗
Z
Md. It is proved in [25], Theorem 1.5,

that this state is pure if the completely positive map σ = E1l has trivial peripheral
spectrum, i.e., the only eigenvectors of E1l with eigenvalue of modulus one are the
scalar multiples of 1l. Conversely, if ω is pure, there does exist a realization of ω as
above such that σ has trivial peripheral spectrum (but it might not be the given

one; see the remarks at the end of Section 1). Now V : K → K ⊗ Cd =
d⊕
1
K has

the matrix form V =

V
∗
1
...
V ∗d

 and the property that V is an isometry translates

into
V ∗V =

∑
k∈Zd

VkV
∗
k = 1l.
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We check that
σ(X) = E(X ⊗ 1l) =

∑
k∈Zd

VkXV
∗
k .

Using Theorem 5.1 we can thus associate a representation πV of Od to V , and
since ϕ is normal by finite-dimensionality of K, we can associate a state ψ on Od
to (V, ϕ) which is normal in the given representation. We next verify that the
restriction of ψ to the one-sided tensor product UHFd =

⊗
N
Md is equal to the

restriction of ω to
⊗
N
Md:

ω(ei1j1 ⊗ · · · ⊗ eimjm) = ϕ(Eei1j1
◦ Eei2j2

◦ · · · ◦ Eeimjm
(1lK))

= ϕ(Eei1j1
◦ Eei2j2

◦ · · · ◦ Eeim−1jm−1
(VimV

∗
jm))

= ϕ(Vi1 · · ·VimV
∗
jm · · ·V

∗
j1)

= ψ(si1 · · · sims
∗
jm · · · s

∗
j1) = ψ(e(1)i1j1 ⊗ · · · ⊗ e

(m)
imjm

).

Note that finite-dimensionality of K and normality of ϕ do not play any role in
the computation above.

The main theorem in this section is the following.

Theorem 7.1. LetM be a factor, ϕ a faithful normal state onM, V1, . . . , Vd
operators in M satisfying ∑

k∈Zd

VkV
∗
k = 1l,

and σ the completely positive unital normal map of B(K) defined by

σ(X) =
∑
k∈Zd

VkXV
∗
k

for X ∈ B(K), and assume that

B(K)σ = M′.

If M is type I, the following two conditions are equivalent:
(i) the translationally invariant state ω defined by {ϕ, V1, . . . , Vd} on

⊗
Z
Md

is pure;
(ii) PSp(σ|M) ∩ T = {1}.

If M is not assumed to be type I, the condition (i) is nevertheless equivalent to
each of the following two conditions:

(iii) ω is a factor state, i.e.,

lim
|n|→∞

ω(xλn(y)) = ω(x)ω(y)
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for all x, y ∈
⊗
Z
Md, where λ is the shift;

(iv) the Connes spectrum of τ |H on πψ(Od)′′ is Ĥ, where H is the subgroup
of t ∈ T such that τt extends from Od to the weak closure πψ(Od)′′ and ψ is defined
in Theorem 6.3.

Remark 7.2. The condition B(K)σ = M′ implies in particular that the
von Neumann algebra generated by V1, . . . , Vd is M. See Section 3 for a further
discussion.

Note that the condition B(K)σ = M′ does not depend on the particular
normal representation of M (when σ is defined by the representatives for Vi). The
reason for this is that any normal representation of M is a product of a spatial
isomorphism, an induction M3 X 7→ XP where P is a projection in M′, and an
amplification M 3 X 7→ X ⊗ 1l, and applying these three types of maps on the
Vi’s, one verifies that the condition remains the same; see [18], Théorème I.4.3 for
details on normal representations. When developing a duality theory later, we will
use the representation where ϕ is defined by a separating and cyclic vector.

The rest of this section will be devoted to a proof of Theorem 7.1. To this
end we have to develop a certain duality theory for the objects (M, ϕ, V1, . . . , Vd).
But before that we will mention some more pedestrian results on translationally
invariant states.

Recall from [13], Example 4.3.24, that any translationally invariant factor
state of

⊗
Z
Md is extremal among the invariant states, i.e., is ergodic. Conversely,

an ergodic state need not be a factor state: if, for example, ω1, ω2 are distinct pure
states on Md, the mean of the pure product state · · · ⊗ ω1 ⊗ ω2 ⊗ ω1 ⊗ ω2 ⊗ · · ·
on

⊗
Z
Md and its shift is extremally invariant, but not a factor state (see [13],

Example 4.3.26).
The difference between factor states and ergodic states is reflected in the fact

that if ω is a translationally in variant state on
⊗
Z
Md, then ω is a factor state if

and only if it is strongly clustering,

lim
|n|→∞

ω(xλn(y)) = ω(x)ω(y)

(see [40]), while ω is ergodic if and only if it is clustering in the mean

lim
N→∞

1
N + 1

N∑
n=0

ω(xλn(y)) = ω(x)ω(y)

(see [13], Example 4.3.5 and Theorem 4.3.17). However, the following is true:
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Proposition 7.3. There is a canonical one-one correspondence between the
following three sets:

(i) the set of extremal translationally invariant states on
⊗
Z
Md;

(ii) the set of states on
⊗
N
Md which are extremal among the states invariant

under the one-sided shift λ;
(iii) the set of orbits under the gauge action τ in the sets of states ψ on Od

such that
ψ ◦ λ = ψ

and ψ is a factor state with an ergodic restriction to UHFd.
The maps giving the correspondence are defined by the restriction maps from

Set (i) and Set (iii) to Set (ii), using the inclusions⊗
N
Md ⊂

⊗
Z
Md

and ⊗
N
Md = UHFd ⊂ Od.

Proof. If we also use λ to denote the two-sided shift on
⊗
Z
Md, the new λ

extends the old, and ⊗
Z
Md =

∞⋃
n=1

λ−n
(⊗

N
Md

)‖ · ‖
,

so the one-one correspondence between Set (i) and Set (ii) is trivial.
It is clear that the map from Set (iii) to Set (ii) is well defined. To prove

that it is injective, let ω′ be an extremal invariant state on
⊗
N
Md, and consider

the set

K = {ψ | ψ is a state of Od such that ψ ◦ λ = ψ and ψ|UHFd = ω′}.

By applying an invariant mean on an extension of ω′ to Od it is clear that K is
nonempty, andK is clearly convex and compact, and a face in the set of λ-invariant
states since ω′ is extremal. We finish the proof of Proposition 7.3 by proving:

Lemma 7.4. ψ ∈ K is an extremal point in K if and only if ψ is a factor
state, and then all other extremal points have the form ψ ◦ τt for some t ∈ T.

Proof. If ψ is not factorial, there is a nontrivial projection E ∈ πψ(Od)′′ ∩
πψ(Od)′. But ψE(x) = 〈EΩψ|πψ(x)EΩψ〉. Then ψE 6 ψ and as λ(E) = E we
have ψE ◦ λ = ψE . But ψE |UHFd 6 ω′ and it follows from extremality of ω′ that
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there is a scalar c such that ψE |UHFd = c ω′. But as ψ = ψE +ψ1l−E , and ψE and
ψ1l−E are disjoint, this contradicts the extremality of ψ. Thus the extremal points
in K are factor states.

Conversely, if ψ ∈ K is a factor state, it follows as in the proof of Lemma 6.8
that

w-lim
N→∞

1
N + 1

N∑
k=0

πψ(λk(x)) = ψ(x)1l,

and hence ψ is ergodic by [13], Theorems 4.3.17 and 4.3.23. (Strictly speaking,
these theorems are proved under the assumption that λ is an automorphism, but
extending λ to an automorphism of the inductive limit

Od
λ−→ Od

λ−→ Od
λ−→ · · ·

and extending ψ by requiring λ-invariance, one still has the clustering

lim
N→∞

ψ
(
y
( 1
N + 1

N∑
k=0

λk(x)
)
z
)

= ψ(yz)ψ(x),

so the extended ψ is ergodic, and thus the original ψ is so, since there is a one-one
correspondence between the λ-invariant states on Od and those on the inductive
limit.)

Finally, let ψ be a given extremal point in the face K in the invariant states.
It follows from [13], Theorem 4.3.19, and the previous paragraph that any two
translates ψ ◦ τt1 , ψ ◦ τt2 of ψ are either equal or disjoint. Put

G = {t ∈ T | ψ ◦ τt = ψ}

and define
ψ0 = ω′ ◦

∫
T

τt dt =
∫
T

(ψ ◦ τt) dt.

Then

πψ0 =
∫

T/G

⊕
(πψ ◦ τt′) dt′

is the central decomposition of πψ0 by Lemma 6.11 and its proof. If now ψ′ is an
extremal point in K, i.e., ψ′ is a factorial λ-invariant state with ψ′|UHFd = ω′,
then

1
ε

ε∫
0

(ψ′ ◦ τt) dt 6
1
ε

∫
T

(ψ′ ◦ τt) dt =
1
ε
ψ0
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and hence, since the left-hand side of the above inequality is λ-invariant, by Segal’s
Radon-Nikodym theorem ([13], Theorem 2.3.19), there is a function gε ∈ L∞(T/G)
such that

1
ε

ε∫
0

(ψ′ ◦ τt) dt =
∫

T/G

(ψ ◦ τt)gε(t) dt.

Letting ε→ 0, we find a measure µ on T/G such that

ψ′ =
∫

T/G

(ψ ◦ τt) dµ(t).

But as ψ′ is extremal in K, this must be a Dirac measure, and ψ′ = ψ ◦ τt for
some t.

This ends the proof of Lemma 7.4 and Proposition 7.3.

In order to prove Theorem 7.1, we need to develop a duality theory for the
objects (M, ϕ, V1, . . . , Vd, σ) somewhat different from the duality theory in [30].
The starting point is more restrictive in that the normal state ϕ is assumed to be
faithful. We assume that V1, . . . , Vd ∈M and

d∑
j=1

VjV
∗
j = 1l,

and assume invariance ϕ ◦ σ = ϕ, where σ is the unital completely positive map
on M defined by

σ(X) =
d∑
j=1

VjXV
∗
j .

We will construct a dual object (M̃, ϕ̃, Ṽ1, . . . , Ṽd, σ̃) satisfying the same axioms.
To this end we assume M is acting on a Hilbert space K with a cyclic vector Φ
such that ϕ(X) = 〈Φ|XΦ〉. Note that Φ is then separating for M by faithfulness of
ϕ. In the application to Theorem 7.1, the system (M, ϕ, V1, . . . , Vd, σ) will roughly

correspond to a state on a Cuntz algebra Od with associated UHF algebra
∞⊗
1
Md,

and the dual object to a state on an isomorphic Cuntz algebra Õd with associated

UHF algebra
0⊗
−∞

Md, and
∞⊗
1
Md and

0⊗
−∞

Md will be embedded into
∞⊗
−∞

Md in the

obvious manner. This statement will be made more precise in Lemma 7.15.
Then to the definitions: we let M̃ = M′. The cyclic and separating vector Φ

forM defines the associated Tomita modular conjugation J , and modular operator
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∆; see, e.g., [13], Theorem 2.5.14. Let σt be the modular automorphism group
of M:

σt(X) = ∆itX∆−it

for X ∈M. We put

Ṽj = (Jσ i
2
(V ∗j )J) = (J∆− 1

2V ∗j ∆
1
2 J)

where denotes closure of the respective operators. To show that this is a well-
defined operator in M′, define a positive sesquilinear form Qj on JAΦ, where A

is the ∗-algebra of σt-entire elements in M, by

Qj(JXΦ, JY Φ) = 〈Ṽ ∗j JXΦ|Ṽ ∗j JY Φ〉 = 〈Jσ− i
2
(Vj)XΦ|Jσ− i

2
(Vj)Y Φ〉

= 〈J∆
1
2Vjσ i

2
(X)Φ|J∆

1
2Vjσ i

2
(Y )Φ〉

= 〈σ− i
2
(X∗)V ∗j Φ|σ− i

2
(Y ∗)V ∗j Φ〉.

Hence∑
j∈Zd

Qj(JXΦ, JY Φ) = ϕ(σ(σ i
2
(X)σ− i

2
(Y ∗))) = ϕ(σ i

2
(X)σ− i

2
(Y ∗))

= 〈σ− i
2
(X∗)Φ|σ− i

2
(Y ∗)Φ〉 = 〈∆ 1

2X∗Φ|∆ 1
2Y ∗Φ〉

= 〈J∆
1
2Y ∗Φ|J∆

1
2X∗Φ〉 = 〈Y Φ|XΦ〉 = 〈JXΦ|JY Φ〉.

It follows both that
‖Ṽ ∗j JXΦ‖ 6 ‖JXΦ‖,

i.e., Ṽ ∗j is bounded, and that
d∑
j=1

Ṽj Ṽ
∗
j = 1l.

We now naturally define a completely positive map σ̃ on M̃ = M′ by

σ̃(X) =
∑
j∈Zd

ṼjXṼ
∗
j

for X ∈ M̃, and a faithful normal state ϕ̃ on M̃ by ϕ̃(X) = 〈Φ|XΦ〉 for X ∈
M′. We introduce the terminology (M′, ϕ̃, Ṽ1, . . . , Ṽd, σ̃) for the dual system of
(M, ϕ, V1, . . . , Vd, σ). Note that ϕ̃ ◦ σ̃ = ϕ̃, since, for X ∈M′,

ϕ̃σ̃(X) =
∑
j

〈Φ|Jσ i
2
(V ∗j )JXJσ− i

2
(Vj)Φ〉 =

∑
j

〈V ∗j Φ|XV ∗j Φ〉

=
〈
Φ

∣∣∣X(∑
j

VjV
∗
j

)
Φ

〉
= ϕ̃(X).
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The term “dual system” is justified by the fact that the dual system of (M′, ϕ̃,

Ṽ1, . . . , Ṽd, σ̃) is (M, ϕ, V1, . . . , Vd, σ) again. For this, we just need to check ˜̃
V j =

Vj . But this follows from the computation

˜̃
V j = J∆

1
2 Ṽ ∗j ∆− 1

2 J = J∆
1
2 (J∆

1
2Vj∆

− 1
2 J)∆− 1

2 J = Vj

where we used that J and ∆−1 are the modular conjugation and modular operator
associated to the pair (M′,Φ), J∆ = ∆−1J and J2 = 1l.

This duality has several nice properties. For example σ is ergodic if and
only if σ̃ is, and PSp(σ) ∩ T = PSp(σ̃) ∩ T. These properties will be discussed
in Section 8. For the moment we return to the proof of Theorem 7.1. So let
(M, ϕ, V1, . . . , Vd, σ) be as in the hypothesis of the theorem, put K = Hϕ and
identify Vi with its representative πω(Vi) on K. If (M̃, ϕ̃, Ṽ1, . . . , Ṽd, σ̃) is the dual
system, we have the canonical identification H

ϕ̃
= K, and ϕ̃ is the vector state

on M̃ defined by the same vector Φ as ϕ. By Theorem 5.1 there are Hilbert
spaces H0, H̃0 containing K, with projectors P0 : H0 → K, P̃0 : H̃0 → K and
representations Si, S̃i of the Cuntz relations on H0, H̃0, respectively such that K
is cyclic for both representations and

P0SIS
∗
JP0 = VIV

∗
J ,

P̃0S̃I S̃
∗
J P̃0 = ṼI Ṽ

∗
J .

We will now form a sort of amalgamated tensor product of H0 and H̃0 over the
joint subspace K and thus obtain a Hilbert space H carrying two commuting
representations of Od. To this end we generalize the construction in Remark 5.2.
H is the completion of the quotient of

H = C I ⊗ C Ĩ ⊗ K,

where I, Ĩ both consist of all finite sequences in Zd, by the equivalence relation
defined by a semi-inner product defined on H by requiring

〈I ⊗ Ĩ ⊗ ξ|IJ ⊗ Ĩ J̃ ⊗ η〉 = 〈ξ|VJ ṼJ̃η〉,

〈I ⊗ Ĩ J̃ ⊗ ξ|IJ ⊗ Ĩ ⊗ η〉 = 〈Ṽ
J̃
ξ|VJη〉,

etc., all inner products that cannot be put in these forms being zero. Since the
VJ ’s and Ṽ

J̃
’s commute along with all combinations of their adjoints, we see that

this gives rise to two commuting representations of Od on H0 as follows:

SIΛ(J ⊗ J̃ ⊗ ξ) = Λ(IJ ⊗ J̃ ⊗ ξ),(7.1)

S̃
Ĩ
Λ(J ⊗ J̃ ⊗ ξ) = Λ(J ⊗ Ĩ J̃ ⊗ ξ),(7.2)
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where Λ : H → H is the quotient map. This is a slight abuse of notation as the
earlier SI , S̃Ĩ identify with the restriction of the present SI , S̃Ĩ to the subspaces
H0, H̃0 of H spanned by vectors Λ(I ⊗ {∅} ⊗ ξ) and Λ({∅} ⊗ Ĩ ⊗ ξ), respectively.

All the previous statements are easy to check. For example the positivity
of the sesquilinear form on H × H is checked by induction as follows, where the
operators Si and S̃i on H are defined in the obvious manner: if

ζ =
∑
ij

SiS̃jζij +
∑
i

Siζi 0 +
∑
j

S̃jζ0 j + ζ0

is a general element in Hn = C In ⊗ C Ĩn ⊗ K where ζij ∈ Hn−1, ζi 0 ∈ C In−1 ⊗
{∅} ⊗ K, ζ0 j ∈ {∅} ⊗ C Ĩn−1 ⊗K, ζ0 ∈ K, and we assume the form is positive on
Hn−1 ×Hn−1, we compute

〈ζ|ζ〉 =
∑
ij

‖ζij‖2 +
∑
i

‖ζi 0‖2 +
∑
j

‖ζ0 j‖2 + ‖ζ0‖2

+
∑
ij

{〈Ṽjζij |ζi 0〉+ 〈ζi 0|Ṽjζij〉}+
∑
ij

{〈Viζij |ζ0 j〉+ 〈ζ0 j |Viζij〉}

+
∑
ij

{〈ViṼjζij |ζ0〉+ 〈ζ0|ViṼjζij〉}+
∑
i

{〈Viζi 0|ζ0〉+ 〈ζ0|Viζi 0〉}

+
∑
j

{〈Ṽjζ0 j |ζ0〉+ 〈ζ0|Ṽjζ0 j〉}+
∑
ij

{〈Viζi 0|Ṽjζ0 j〉+ 〈Ṽjζ0 j |Viζi 0〉}

=
∑
ij

‖ζij + Ṽ ∗j ζi 0 + V ∗i ζ0 j + V ∗i Ṽjζ0‖2 > 0.

Note that K = Hϕ identifies with a subspace of H through the map

K 3 ξ 7→ Λ{{∅} ⊗ {∅} ⊗ ξ}.

Then K = H0 ∩ H̃0, so H may be viewed as an amalgamated tensor product

H = H0 ⊗K H̃0.

Let P be the projection from H onto K. Then

S∗i P = PS∗i P = V ∗i ,

S̃∗i P = PS̃∗i P = Ṽ ∗i .

We can thus define states ψ, ψ̃ on Od through the requirement

ψ(sIs
∗
J) = ϕ(VIV

∗
J ),

ψ̃(sIs
∗
J) = ϕ̃(ṼI Ṽ

∗
J ).



Pure states on Od 131

Let E be the support projection of ψ as a state on O′′
d on the amalgamated tensor

product, and similarly let Ẽ be the support projection of ψ̃. Here O′′
d and Õ′′

d

denote the von Neumann algebras generated by {S1, . . . , Sd} and {S̃1, . . . , S̃d} of
(7.1)–(7.2), respectively. (The amalgamated tensor product thus carries a rep-
resentation of Od ⊗ Õd, where Õd ∼= Od, and the states ψ, ψ̃ identify with the
restriction of the vector state 〈Φ| · Φ〉 to each of the two tensor factors.)

Lemma 7.5. H0 is an invariant subspace for Od and P |H0 = E|H0.

Proof. H0 is obviously an invariant subspace for Od by construction. But
the map

(Od|H0)′ → B(K)σ = M′ : Q 7→ PQP

is an order isomorphism onto M′ by Proposition 4.1 and the assumptions of The-
orem 7.1. Hence, as M′ is a factor by assumption and (Od|H0)′ is a von Neumann
algebra, the map Q 7→ PQP is either an isomorphism or anti-isomorphism by
[13], Proposition 3.22, or [29], [31], [32]. But as the map Q 7→ PQP is clearly
completely positive, it is an isomorphism. Hence P ∈ ((Od|H0)′)′ = O′′

d |H0 by
Proposition 4.2. But as P is the support projection of the normal state ψ on
O′′
d |H0, it follows that P is the image of E under the map O′′

d 3 A 7→ A|H0, i.e.,

P |H0 = E|H0.

Lemma 7.6. EẼ = P .

Proof. Clearly E > P , Ẽ > P , so EẼ > P . The converse inequality follows
by using Lemma 7.5, EẼ = ẼE, and ES̃

Ĩ
= S̃

Ĩ
E:

ẼEΛ(I ⊗ Ĩ ⊗ ξ) = ẼS̃
Ĩ
EΛ(I ⊗ {∅} ⊗ ξ) = ẼS̃

Ĩ
PΛ(I ⊗ {∅} ⊗ ξ)

= ẼS̃
Ĩ
PSIξ = ẼS̃

Ĩ
VIξ = ẼΛ({∅} ⊗ Ĩ ⊗ VIξ)

= PΛ({∅} ⊗ Ĩ ⊗ VIξ) = Ṽ
Ĩ
VIξ ∈ K,

so ẼE 6 P .

Lemma 7.7. O′′
d ∨ Õ′′

d = (Od ∪ Õd)′′ = B(H).

Proof. We have P = EẼ ∈ O′′
d ∨ Õ′′

d . But by Lemma 7.5 (applied both to
Od and Õd), P (O′′

d ∨ Õ′′
d )P contains both M and M′, and as M is a factor, we

have
P (O′′

d ∨ Õ′′
d )P = B(K).

Since K is cyclic for O′′
d ∨ Õ′′

d , the lemma follows.
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Lemma 7.8. O′
d = Õ′′

d .

Proof. Since Od and Õd mutually commute, it follows from Lemma 7.7 that
O′
d and Õ′′

d are factors, and O′
d ⊃ Õ′′

d . The projection E ∈ O′′
d commutes with O′

d

and thus also with Õ′′
d , and hence it suffices to show that O′

dE = Õ′′
dE. Introduce

N1 = O′
dE and N2 = Õ′′

dE. Then P ∈ N2 ⊂ N1, and PN ′
1P = M, PN2P = M′,

so

PN1P = PN2P = M′.

The relations P ∈ N2 ⊂ N1, and PN1P = PN2P , imply N1 = N2. (We can find
a type I subfactor M of N2 such that P dominates a minimal projection in M ,
and the above conditions imply that N1 ∩M ′ = N2 ∩M ′, which again implies
N1 = N2.)

Denote the gauge action of T on Od, respectively Õd, by τ , respectively τ̃ .
Define

H = {z ∈ T | τz extends to an automorphism of O′′
d}.

As in Theorem 6.3, it follows from ψ ◦ λ = ψ that

H = {z ∈ T | ψ ◦ τz = ψ},

and hence H is a closed subgroup of T. Define a subgroup H̃ in the same way as
H by using τ̃ instead of τ .

As mentioned before, the algebra Od ⊗ Õd is naturally represented on H.
Define

G = {(z1, z2) ∈ T2 | τz1 ⊗ τ̃z2 extends to an automorphism of O′′
d ∨ Õ′′

d = B(H)}.

Lemma 7.9. H̃ = H and {(z, z) | z ∈ H} ⊂ G ⊂ H ×H.

Proof. Once we can show {(z, z) | z ∈ H} ⊂ G it follows that H ⊂ H̃, and
then it follows by symmetry that H̃ ⊂ H, so H = H̃. But then G ⊂ H × H is
obvious. So it remains to show

{(z, z) | z ∈ H} ⊂ G.

For this, let z ∈ H, i.e., ψ ◦ τz = ψ. Thus τz(E) = E (where still E = suppψ),
and one can defne a unitary operator U0 on PH = K by U0QΦ = τz(Q)Φ for
Q ∈ M. (We are now working in the cyclic representation defined by ϕ, and τz
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also denotes the extension of τz to O′′
d .) If J,∆ are the modular conjugation and

modular operator associated to (M,Φ), it follows from τz-invariance that

U0JU
∗
0 = J,

U0∆U
∗
0 = ∆.

Thus
AdU0(Ṽj) = U0(J∆− 1

2V ∗j ∆
1
2 J)U∗0 = zṼj .

Using this, we can extend U0 to a unitary operator U on H by the definition

UΛ(I ⊗ Ĩ ⊗ ξ) = z|I|+|Ĩ|Λ(I ⊗ Ĩ ⊗ U0ξ).

This operator U is indeed well defined and unitary because

〈Λ(I ⊗ Ĩ ⊗ U0ξ)|Λ(J ⊗ J̃ ⊗ U0η)〉 = z|I|+|Ĩ|−|J|−|J̃|〈Λ(I ⊗ Ĩ ⊗ ξ)|Λ(J ⊗ J̃ ⊗ η)〉.

We have

USiΛ(I ⊗ Ĩ ⊗ ξ) = z|I|+1+|Ĩ|Λ(iI ⊗ Ĩ ⊗ U0ξ) = zSiΛ(I ⊗ Ĩ ⊗ ξ),

and similarly US̃i = zS̃iU . Hence, AdU |Od ⊗ Õd = τz ⊗ τ̃z, so (z, z) ∈ G.

We next prove an analogue of Theorem 6.3 in this situation.

Lemma 7.10. If z ∈ T, the following conditions are equivalent:
(i) (z, 1) ∈ G;
(ii) τz extends to an inner automorphism of O′′

d ;
(iii) z ∈ PSp(σ|M).

Proof. (i) ⇒ (ii) If (z, 1) ∈ G, there is a unitary U on H such that τz ⊗ id =
AdU . But then AdU |Õd = id, i.e., U ∈ Õ′

d = O′′
d (by Lemma 7.8) and hence

τz = AdU |Od extends to an inner automorphism of O′′
d .

(ii) ⇒ (iii) If (ii) holds, then ψ ◦ τz = ψ by the comment prior to Lemma 7.9,
and hence UEU∗ = E for a unitary U ∈ O′′

d with τz = AdU . Thus U0 =
UEẼ = UP is a unitary in M with σ(U0) = zU0 and thus σ(U∗0 ) = zU∗0 . Thus
z ∈ PSp(σ|M).

(iii)⇒ (i) SinceMσ = C 1l, it follows from (iii) and the beginning of the proof
of Lemma 6.6 that there exists a unitary operator U0 ∈M with σ(U0) = zU0, and
from Lemma 6.7 it follows that AdU0(Vi) = zVi. Proceeding as in the final parts
of the proofs of Lemma 6.6 and Lemma 7.9, we extend U0 to a unitary U on H by

UΛ(I ⊗ Ĩ ⊗ ξ) = z |I|Λ(I ⊗ Ĩ ⊗ U0ξ).

We check as there that U is a well-defined unitary, and that Ad(U∗) = τz ⊗ id.
Thus (z, 1) ∈ G.
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We now show that the representation of UHFd ⊂ Od on H is quasi-equivalent
to the subrepresentation on [UHFdΦ]:

Lemma 7.11. The representation of UHFd on H is quasi-equivalent to
πψ|UHFd

.

Proof. Since Φ is cyclic for the representation of Od⊗Õd onH by Lemma 7.7,
the vectors

ξ = SIS
∗
J S̃Ĩ

S̃∗
J̃
Φ

span a dense subspace of H, and thus it suffices to show that ωξ is normal in
πψ|UHFd. For this, if n > |I| and x ∈ UHFd, we have, using the Cuntz relations,
on the two representations (i)–(ii),

〈ξ|λn(x)ξ〉 =
〈
SI S̃Ĩ

S∗J S̃
∗
J̃
Φ

∣∣∣ ∑
|I′|=n

SI′xS
∗
I′SI S̃Ĩ

S∗J S̃
∗
J̃
Φ

〉
= 〈S̃

Ĩ
S∗J S̃

∗
J̃
Φ|λn−|I|(x)S̃

Ĩ
S∗J S̃

∗
J̃
Φ〉 = 〈S∗J S̃∗J̃Φ|λn−|I|(x)S∗J S̃∗J̃Φ〉.

Since S̃∗
J̃

commute with the other factors in this inner product and S̃
J̃
S̃∗
J̃

is a
projection, it follows for positive x that

〈ξ|λn(x)ξ〉 6 〈Φ|SJλn−|I|(x)S∗JΦ〉 6
∑

|J′|=|J|

〈Φ|SJ′λn−|I|(x)S∗J′Φ〉

= 〈Φ|λn−|I|+|J|(x)Φ〉 = ψ ◦ λn−|I|+|J|(x) = ψ(x),

where the last identity follows from Remark 6.4. Hence, ωξ ◦ λn|UHFd is a vector
state in the ψ|UHFd-representation, and since

UHFd ∼= Mdn ⊗ λn(UHFd)

in a canonical fashion, it follows that ωξ|UHFd is normal in ψ|UHFd. See [12],
proof of Lemma 5.2.

Lemma 7.12. Let N be a factor and α an action of a group G on N . Assume
that G is the circle group or a finite cyclic group. If the fixed point algebra Nα

is a factor, then N ∩ (Nα)′ is the abelian von Neumann algebra generated by a
unitary operator V such that

αg(V ) = 〈g|γ0〉V

for some γ0 ∈ Ĝ, and
AdV |N = αh
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for some h ∈ G.

Proof. Since Nα is a factor, α|N ∩ (Nα)′ is ergodic, and therefore
Sp(α|N ∩ (Nα)′) is a subgroup of Ĝ, and thus Sp(α|N ∩ (Nα)′) is either a fi-
nite cyclic group or Z. In any case, Sp(α|N ∩ (Nα)′) has a generator γ0, and by
ergodicity the corresponding eigen-subspace is the linear span of a unitary opera-
tor V ([13], Section 3.2.3, [36], [5]). Also V generates N ∩(Nα)′ as a von Neumann
algebra, so this algebra is abelian. Let β = AdV |N . Since αg(V ) = 〈g|γ0〉V for
all g ∈ G, we have βαg = αgβ for all g ∈ G, and hence β fixes each spectral
subspace of α in N . As V ∈ (Nα)′, we have β|Nα = id. Since Nα is a factor, each
spectral subspace Nα(γ) for γ ∈ Ĝ either is 0, or has the form Nα(γ) = NαV (γ)
for an isometry V (γ) ∈ Nα(γ), or the form Nα(γ) = V (γ)Nα for a coisometry
V (γ) ∈ Nα(γ). We may assume that G acts faithfully, and this excludes the case
Nα(γ) = 0.

Now consider the case that V (γ) is an isometry. Since β(V (γ)) ∈ Nα(γ),
there is an operator U(γ) ∈ Nα such that β(V (γ)) = U(γ)V (γ). Since the projec-
tion Q = V (γ)V (γ)∗ is in Nα, we may replace U(γ) by U(γ)Q without changing
the equation above, and then U(γ)Q = U(γ). Then since U(γ) = β(V (γ))V (γ)∗,
we have likewise

QU(γ) = V (γ)V (γ)∗β(V (γ))V (γ)∗ = β(V (γ)V (γ)∗V (γ))V (γ)∗

= β(V (γ))V (γ)∗ = U(γ),

so U(γ) ∈ QNαQ. If A ∈ QNαQ ⊂ Nα, then AV (γ) ∈ Nα(γ), and we have on
one side

β(AV (γ)) = β(A)β(V (γ)) = AU(γ)V (γ)

and on the other side, since V (γ)∗AV (γ) ∈ Nα,

β(AV (γ)) = β(V (γ)V (γ)∗AV (γ)) = β(V (γ))β(V (γ)∗AV (γ))

= U(γ)V (γ)(V (γ)∗AV (γ)) = U(γ)AV (γ).

Comparing the last two expressions, we see that AU(γ) = U(γ)A for all A ∈
QNαQ. Hence U(γ) ∈ Q((Nα)′∩Nα)Q = CQ, so U(γ) is a scalar multiple f(γ) ∈
T of Q, and β(B) = f(γ)B for all B ∈ Nα(γ) = NαV (γ). If V (γ) is a coisometry,
the verification of this relation is analogous. Since β is an automorphism, one

verifies that f ∈ ̂̂
G = G, so there exists an h ∈ G with β(B) = 〈h|γ〉B = αh(B)

for B ∈ Nα(γ) and γ ∈ Ĝ; and hence β = αh.
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Lemma 7.13. If ω is a translationally invariant state on A =
⊗
Z
Md such

that πω(A)′′ is a type I factor, then ω is pure.

Proof. Let π be an irreducible representation quasi-equivalent to πω. There
is a density matrix ρ on Hπ such thatω(x) = Tr(π(x)ρ) for x ∈ A. Since πω and
thus π are translationally covariant, there is a unitary operator U on Hπ such
that Uπ(x)U∗ = π(λ(x)) for all x ∈ A, where λ is the translation automorphism.
Since ω ◦ λ = ω, we obtain that U∗ρU = ρ. Assume ad absurdum that ρ is not a
one-dimensional projection. Then there are at least two orthogonal eigenvectors
ξ1, ξ2 of U . Thus, for any x ∈ A,

〈ξi|π(λn(x))ξi〉 = 〈U∗nξi|π(x)U∗nξi〉 = 〈ξi|π(x)ξi〉.

But any weak*-limit point of π(λn(x)), as n→∞, is in π(A)′ = C1l, and it follows
that

〈ξ1|π(x)ξ1〉 = 〈ξ2|π(x)ξ2〉

for all x ∈ A. But as π is irreducible, this is a contradiction. Thus ρ must be a
one-dimensional projection, and ω is pure.

Lemma 7.14. Let N be a type I von Neumann algebra and α an action of a
group G on N . Assume that G is the circle group or a finite cyclic group. Then
the fixed point subalgebra Nα is of type I.

Proof. By considering the action α on the center N ∩N ′, the von Neumann
algebra decomposes into algebras of the form M⊗L∞(G/H), where M is a type
I factor, H is a closed subgroup of G, and G acts on L∞(G/H) by translation,
until reaching the end of the orbit, in which case the action may be modified by an
automorphism of M (if H 6= {0}). The latter automorphism is inner and of finite
order, except in the case H = G = T, in which case we have an inner action of T
on the type I factor M. In any case, it is clear that the fixed point subalgebra of
M⊗L∞(G/H) under the action is a type I von Neumann algebra, and the lemma
follows.

Lemma 7.15. The vector state ωΦ on

ŨHFd ⊗UHFd ∼=
( 0⊗
−∞

Md

)
⊗

( ∞⊗
1

Md

)
∼=

⊗
Z
Md

is equal to ω.

Proof. Since

S̃∗jΦ = Ṽ ∗j Φ = J∆
1
2Vj∆

− 1
2 JΦ = V ∗j Φ = S∗jΦ,



Pure states on Od 137

it follows that

〈Φ|S̃
iĨ
S̃∗
jJ̃
SIS

∗
JΦ〉 = 〈S̃∗i Φ|S̃Ĩ S̃

∗
J̃
SIS

∗
J S̃

∗
jΦ〉 = 〈Φ|S̃

Ĩ
S̃∗
J̃
SiIS

∗
jJΦ〉.

This proves the lemma since the vector state ωΦ on UHFd is the restriction of ω
to UHFd =

⊗
N
Md.

Proof of Theorem 7.1. We first merely assume that M is a factor.
(i) ⇒ (iii) This is trivial.

(iii)⇒ (i) By Lemma 7.7, O′′
d is a factor, and by assumption (iii), πω

( ⊗
Z
Md

)′′
is a factor. By viewing UHFd =

⊗
N
Md as a subalgebra of both

⊗
Z
Md and Od, we

have
ω

∣∣∣ ⊗
N
Md = ψ|UHFd.

Hence, by Lemma 7.11, UHF′′d is a factor. Recall from the remark prior to
Lemma 7.9 that the set

H = {z ∈ T | τz extends to an automorphism of O′′
d}

is a closed subgroup of T, and, as in the proof of Lemma 6.11, we have

O′′ τH

d = UHF′′d .

By Lemma 7.12, the algebra O′′
d ∩UHF′d is abelian, and thus

(O′′
d ∩UHF′d)

′ = O′
d ∨UHF′′d = Õ′′

d ∨UHF′′d

is of type I, where we used Lemma 7.8 for the last identity. For any z ∈ T,

τ̃z ⊗ id|Õd ⊗UHFd = τ̃z ⊗ τz|Õd ⊗UHFd

extends to an automorphism of Õ′′
d ∨ UHF′′d if and only if z ∈ H. Then, again

invoking the argument in the proof of Lemma 6.11, we obtain

(Õ′′
d ∨UHF′′d)

τ̃H⊗id = ŨHF
′′
d ∨UHF′′d .

Since H is either T or a closed subgroup of T, it follows from Lemma 7.14 that
ŨHF

′′
d∨UHF′′d is of type I. By Lemma 7.15, ω = ω

Φ|ŨHFd⊗UHFd
, and by assumption

(iii), the restriction of ŨHF
′′
d ∨ UHF′′d to the closed subspace [(ŨHF

′′
d ∨ UHF′′d)Φ]

is a factor. Thus it follows from Lemma 7.13 that ω is pure. This ends the proof
of (iii) ⇒ (i).
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From now on, assume that M is a type I factor.

(ii) ⇒ (i) Since M' PO′′
dP ' EO′′

dE and O′′
d is a factor, it follows that O′′

d

is a type I factor. Since any automorphism of a type I factor is inner, it follows

from Lemma 7.10 that H = {0}. Thus O′′
d = UHF′′d as in Lemma 6.10. Similarly

Õ′′
d = ŨHF

′′
d , and it follows from Lemma 7.7 that ŨHF

′′
d ∨UHF′′d = B(H), so ω is

pure.

(i) ⇒ (ii) If M is of type I, it follows again that O′′
d and Õ′′

d are type I factors,

and hence Õ′′
d ∨O′′

d ' Õ′′
d ⊗O′′

d . Recall that O′′ τH

d = UHF′′d , and that τH is inner.

It then follows that O′′
d ∩UHF′d is abelian, and we conclude that

ŨHF
′′
d ∨UHF′′d ' ŨHF

′′
d ⊗UHF′′d

and further that the commutant of this algebra is again abelian. If (i) holds, it
follows from Lemma 7.11 and Proposition 7.3 that UHF′′d and ŨHF

′′
d are factors,

and hence

ŨHF
′′
d ∨UHF′′d = B(H).

This implies that the subgroup H of T must be trivial, and hence

PSp(σ|M) ∩ T = {1}

by Lemma 7.10, so (ii) holds.

Finally, we argue that (iii) ⇔ (iv). If N = πψ(Od)′′ ∼= O′′
d , then N τ |H =

UHF′′d by Lemma 6.10. But, by Corollary 8.10.5 in [37], it follows that N τ |H =

UHF′′d is a factor if and only if the Connes spectrum of the extension of τ |H to

O′′
d is equal to Ĥ. The rest of the proof of (iii) ⇔ (iv) is as above.

Remark 7.16. If N is a type I factor in the last paragraph of the preceding

proof, thenH = {1} sinceH is T or a cyclic group, and we get the trivial peripheral

spectrum. IfN is a type III factor, the subgroupH could in principle be nontrivial,

with some nontrivial τt inner, i.e., PSp(σ|M) 6= {1}. This is because τt could be

implemented by a unitary in N which would then not be fixed by H, and, in this

case, the Connes spectrum still could be Ĥ. See, e.g., [41] for examples of that.
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8. REMARKS ON DUALITY

In this section we will establish several more properties of the duality theory of the
objects (M, ϕ, V1, . . . , Vd, σ) introduced between Lemmas 7.4 and 7.5, and thereby
also extend [9], Lemma 6.3. So we assume that (M, ϕ, V1, . . . , Vd, σ) satisfies the
general hypotheses in Theorem 7.1, and let the dual object

(M̃, ϕ̃, Ṽ1, . . . , Ṽd, σ̃)

be defined as after Lemma 7.4, i.e.,

M̃ = M′, Ṽj = (Jσ i
2
(V ∗j )J) , ϕ̃(X) = 〈Φ|XΦ〉,

where Φ is the separating and cyclic vector for M defining the state ϕ.
Recall the notation

Mσ = {X ∈M | σ(X) = X},
Mσ

∗ = {η ∈M∗ | η ◦ σ = η},
where M∗ is the predual of M.

Lemma 8.1. If Mσ = C1l, then Mσ
∗ = Cϕ.

Proof. Since ϕ ◦ σ = ϕ, and σ is ergodic, this is established as in Lemma 6.8
and its proof.

We use Lemma 8.1 to establish:

Proposition 8.2. The map σ is ergodic if and only if the dual map σ̃ is
ergodic.

Proof. Assume that X ′ ∈M′ and that σ̃(X ′) = X ′. This means that∑
j

V ∗j ∆
1
2 JX ′J∆

1
2Vj = ∆

1
2 JX ′J∆

1
2 ,

for example as sesquilinear forms on MΦ. Define X = JX ′J ∈ M. If A ∈ M is
an entire element for the modular group σt, we have

〈∆ 1
2X∗Φ|σ(A)Φ〉

=
〈
∆

1
2X∗Φ

∣∣∣ ∑
j

VjAV
∗
j Φ

〉
=

〈
X∗Φ

∣∣∣ ∑
j

σ− i
2
(Vj)σ− i

2
(A)∆

1
2V ∗j Φ

〉
=

∑
j

〈Φ|Xσ− i
2
(Vj)σ− i

2
(A)∆

1
2V ∗j Φ〉 =

∑
j

〈Φ|Xσ− i
2
(Vj)σ− i

2
(A)J2∆

1
2V ∗j Φ〉

=
∑
j

〈Φ|Xσ− i
2
(Vj)σ− i

2
(A)JVjJΦ〉 =

∑
j

〈JV ∗j Φ|Xσ− i
2
(Vj)σ− i

2
(A)Φ〉

=
∑
j

〈J∆
1
2σ i

2
(V ∗j )Φ|Xσ− i

2
(Vj)σ− i

2
(A)Φ〉 =

∑
j

〈Φ|σ i
2
(V ∗j )Xσ− i

2
(Vj)σ− i

2
(A)Φ〉

=
∑
j

〈Φ|∆− 1
2V ∗j ∆

1
2X∆

1
2VjAΦ〉.
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But
∑
j

V ∗j ∆
1
2X∆

1
2Vj = ∆

1
2X∆

1
2 by the identity above, so furthermore:

〈∆ 1
2X∗Φ|σ(A)Φ〉 = 〈Φ|X∆

1
2AΦ〉 = 〈∆ 1

2X∗Φ|AΦ〉.

Thus the functional η ∈M∗ defined by

η(A) = 〈∆ 1
2X∗Φ|AΦ〉

is in Mσ
∗ . Since σ is ergodic, it follows from Lemma 8.1 that η ∈ Cϕ, and so

∆
1
2X∗Φ ∈ C Φ, which implies XΦ ∈ C Φ, or X ∈ C1l. Thus X ′ ∈ C1l, which shows

that σ̃ is ergodic. Since ˜̃σ = σ, the other implication follows.

Our next aim is to show that the two sets PSp(σ) ∩ T and PSp(σ̃) ∩ T are
equal. First we need a lemma.

Lemma 8.3. If η ∈M∗ \ {0} and

η ◦ σ = tη

for some t ∈ T, then t is an eigenvalue of σ.

Proof. Again we invoke the technique in the proof of Lemma 6.8: pick an
X ∈M such that η(X) 6= 0, and take a limit point L of the sequence

Xn =
1
n

n−1∑
k=0

t−kσk(X)

in the weak operator topology. Then it follows that η(L) = η(X) 6= 0, and
σ(L) = tL. Thus t is an eigenvalue for σ.

Proposition 8.4. PSp(σ) ∩ T = PSp(σ̃) ∩ T.

Proof. Let t ∈ PSp(σ̃)∩T, and let X ′ ∈M′ be a corresponding eigenvector:
σ̃(X ′) = tX ′. This means that, with X = JX ′J ∈M,∑

j

V ∗j ∆
1
2X∆

1
2Vj = t∆

1
2X∆

1
2 .

In the same way as in the proof of Proposition 8.2, one uses this identity to
establish

〈∆ 1
2X∗Φ|σ(A)Φ〉 = t〈∆ 1

2X∗Φ|AΦ〉

for all A ∈M. Thus the linear functional η(A) = 〈∆ 1
2X∗Φ|AΦ〉 satisfies η◦σ = tη,

and therefore t ∈ PSp(σ) ∩ T by Lemma 8.3. Since PSp(σ) is invariant under
complex conjugation, we obtain that PSp(σ̃) ∩ T ⊂ PSp(σ) ∩ T. As ˜̃σ = σ, the
other implication follows.
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