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Abstract. Let S be a symmetric operator in a Hilbert space H. Suppose
that the deficiency indices of S are infinite and S has some gap J . Then
for every topological support T of an absolutely continuous (with respect
to the Lebesgue measure) measure there exists a self-adjoint extension HT

of S such that σsc(H
T ) ∩ J = T ∩ J. Moreover for every α ∈ [0, 1] there

exists a self-adjoint extension Hα of S such that dim(σsc(Hα) ∩ J) = α and
another self-adjoint extension H ′

α and an α-dimensional singular continuous
measure µα such that H ′

α ' Qµα⊕R for some self-adjoint operator R without
spectrum within J . Here Qµα denotes the operator of multiplication by the
identity function in L2(R, µα).
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1. INTRODUCTION

The classical extension theories due to von Neumann and Krein only give little
information about the spectral properties of self-adjoint extensions. In [1], [3], [4],
[5] and [6] Albeverio, Brasche, Neidhardt and Weidmann have made an attempt
to investigate the following problems:

• What kind of spectral properties can the self-adjoint extensions of a sym-
metric operator have?

• How to represent self-adjoint extensions with preassigned spectral proper-
ties?
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Apparently it is not possible to control the spectra of the self-adjoint ex-
tensions on the whole real axis, or, more precisely, the spectral properties of all
self-adjoint extensions of a symmetric operator S strongly depend on S. For this
reason one has concentrated on the spectral properties within a gap J (cf. Defi-
nition 1) of S. One has derived affirmative results on the point spectra (cf. [6])
and the absolutely continuous spectra (cf. [1], [3], [4]) of self-adjoint extensions
but only got little information about singular continuous spectra (cf. [1], [3], [5]);
cf. Section 2 for the definition of the various kinds of spectra.

It is the goal of the present note to improve our understanding of the singular
continuous spectra of self-adjoint extensions. We shall consider a symmetric oper-
ator S in a Hilbert space H and suppose that the deficiency indices (cf. Section 2
for the definition) of S are infinite and S has some gap J . For the first time we
shall give explicitly non-empty nowhere dense sets which equal the singular con-
tinuous spectrum within the gap J of some self-adjoint extension H of S. More
precisely we shall show that for every topological support T of an absolutely con-
tinuous (with respect to the Lebesgue measure) measure there exists a self-adjoint
extension HT of S such that

σsc(HT ) ∩ J = T ∩ J.

Here σsc denotes the singular continuous spectrum. Note that the topological
support of an absolutely continuous measure might be non-empty and nowhere
dense, e.g. it might be a generalized Cantor set.

Moreover we shall show that for every α ∈ [0, 1] there exists a self-adjoint
extension Hα of S such that

dim(σsc(Hα) ∩ J) = α

and another self-adjoint extension H ′
α and an α-dimensional singular continuous

measure µα such that
H ′

α ' Qµα ⊕R

for some self-adjoint operator R without spectrum within J . Here Qµα
denotes

the operator of multiplication by the identity function in L2(R, µα) and “'”
means “unitarily equivalent”. Cf. Section 3 for the definition of “dim” and “α-
dimensional”.

The main tools we shall use are as follows:

• The theory of rank one perturbations and singular continuous spectra, cf.,
the articles [7], [8], [9], [13], [15] and [16] by del Rio, Jitomirskaya, Last, Makarov,
Simon and Wolff and references given therein.
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• A new representation theorem for symmetric extensions, cf. [1], Lemma 2.1,
or [3], Lemma 15.

The organization of the paper is as follows. In Sections 2 and 3 we shall recall
notions and results from the theory of rank-1-perturbations and singular contin-
uous spectra and the mentioned representation theorem for symmetric extensions
for the convenience of the reader. In Section 4 we shall show that for every set T

which is the topological support of an absolutely continuous measure there exists
a self-adjoint extension HT of H such that

σsc(HT ) ∩ J = T ∩ J.

Section 5 contains the mentioned results on the dimensions of singular continuous
spectra and spectral measures. In Section 6 we shall present new results on mixed
types of spectra, i.e. singular continuous, absolutely continuous and point spectra.

2. SYMMETRIC EXTENSIONS

ran (S), ker(S), D(S) and S∗ denote the range, the kernel, the domain and the
adjoint of the operator S, respectively.

Let S be a symmetric operator in a Hilbert space H.

Definition 2.1. The open interval J = (a, b),−∞ 6 a < b < ∞, is a gap
of S, if and only if∥∥∥∥(S − a + b

2

)
f

∥∥∥∥ >
b− a

2
‖f‖, f ∈ D(S), if a > −∞

and
(Sf, f) > b‖f‖2, f ∈ D(S), if a = −∞.

It is a classical result by Friedrichs ([11]) and Krein ([12]) that σ(H0)∩J = ∅
for some self-adjoint extension H0 of S if and only if the open interval J is a gap
of S in the sense of the above definition.

The dimension of the spaces ker(S∗ ∓ i) are called the deficiency indices of
S. It is well known that

dim ker(S∗ + i) = dim ker(S∗ − i) = dim ker(S∗ − E)

for every E ∈ J provided J is a gap of S. It is also well known that σ(H) ∩ J is
a discrete set for every self-adjoint extension H of S provided J is a gap of S and
the deficiency indices of S are finite. Here σ(H) and σp(H) denote the spectrum
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and the set of eigenvalues of H, respectively. Thus we are merely interested in
symmetric operators with infinite deficiency indices.

A measure µ on the Borel-σ-algebra of R, B(R), will be called a Borel measure
on R. The complement of the largest open set U such that µ(U) = 0 will be called
the topological support of µ, supp(µ). By Lebesgues decomposition theorem, every
σ-finite Borel measure µ on R can be uniquely represented as

µ = µac + µsc + µpp

where the Borel measure µac is absolutely continuous with respect to the Lebesgue
measure dλ, the Borel measure µsc is singular with respect to dλ and continuous
in the sense that µsc({a}) = 0 for every a ∈ R and the Borel measure µpp is a pure
point measure, i.e. µpp(R \ D) = 0 for some countable set D, respectively. The
Lebesgue measure of a set B will also be denoted by |B|.

Let H be a self-adjoint operator in the Hilbert space H. For every f ∈ H

the spectral measure of f with respect to H will be denoted by µf , i.e. µf is the
unique finite Borel measure such that∫

g(t)µf (dt) = (g(H)f, f)

for every bounded Borel measurable function g.
Along with the decomposition of measures µ one also has a unique decom-

position of the Hilbert space H and the self-adjoint operator H:

H = Hac(H)⊕Hsc(H)⊕Hpp(H)

where Hac(H),Hsc(H) and Hpp(H) denote the set of all f ∈ H such that µf =
µfac, µf = µfsc and µf = µfpp, respectively.

H = Hac ⊕Hsc ⊕Hpp

where Hac,Hsc and Hpp is a self-adjoint operator in Hac(H),Hsc(H) and Hpp(H),
respectively. The absolutely continuous spectrum of H,σac(H), the singular con-
tinuous spectrum of H,σsc(H), and the pure point spectrum of H,σpp(H) are
defined by

σac(H) := σ(Hac), σsc(H) := σ(Hsc), σpp(H) := σ(Hpp).

Note that σpp(H) equals the closure σp(H) of the set σp(H) of eigenvalues of H.
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For every subset B of R let 1B : R → R be the characteristic function of B,
i.e.

1B(x) :=
{

1, if x ∈ B;
0, if x ∈ R \B.

We put
1 := 1R.

By the spectral theorem, for every Borel set B in R the range ran 1B(H) of the
operator 1B(H) is a closed subspace of H and a reducing subspace of H, i.e.

(2.1) H = HB ⊕HR\B

where HB is a self-adjoint operator in ran 1B(H) and HR\B a self-adjoint operator
in

ran 1B(H)⊥ = ran 1R\B(H).

Here
M⊥ := {f ∈ H : (f, g) = 0, g ∈M}.

Remark 2.2. In general, the operator HB stores only little information
about the spectral properties of H in B. However, if B is open, then it stores
all the information about the spectral properties of H in B. In particular, if B

is open, then the spectral measures with respect to H and the spectral measures
with respect to HB coincide on the Borel-σ-algebra of B and

σac(H)∩B = σac(HB)∩B, σsc(H)∩B = σsc(HB)∩B, σp(H)∩B = σp(HB)∩B.

The following representation theorem for symmetric extensions from [1] (cf.
[1], Lemma 2.1) will play a crucial role in this paper. Here

N + M := {f + g : f ∈ N, g ∈ M}.

Theorem 2.3. Let S be a symmetric operator in a Hilbert space H. Suppose
that S has a gap J . Let M be a self-adjoint operator in some closed subspace H0

of H such that M ⊂ S∗, i.e., M is a restriction of S∗, and σ(M) ⊂ J . Then there
exists a symmetric operator G0 in H⊥

0 such that J is a gap of G0 and

SM := S∗|(D(S) + D(M)) = M ⊕G0.

In particular, S has a self-adjoint extension H such that

HJ = MJ .

Also the following Corollary 2.5 of the representation theorem will be very
useful. Before we state and prove the corollary we shall introduce one more nota-
tion.
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Definition 2.4. Let µ be a Borel measure on R. Qµ denotes the operator
of multiplication by the independent variable in L2(R, µ), i.e. the operator Qµ in
L2(R, µ) is defined by

D(Qµ) :=
{

f ∈ L2(R, µ) :
∫

x2|f(x)|2µ(dx) < ∞
}

,

Qµf(x) := xf(x), for µ-a.e. x ∈ R.

Corollary 2.5. Suppose that the symmetric operator S with gap J has a
self-adjoint extension H such that

HJ ' Qν

for some measure ν. Let ρ : R → [0,∞) be a locally ν-integrable function. Then
there exists a self-adjoint extension Ĥ of S such that

ĤJ ' Qρν .

Proof. Let V : ran 1J(H) → L2(R, ν) be any unitary transformation such
that

HJ = V −1QνV.

Obviously
U : L2(R, ρν) → L2(R, ν),

Uf :=
√

ρf, f ∈ L2(R, ρν),

defines a partial isometry from L2(R, ρν) onto the closed subspace ran (U) of
L2(R, ν) and

Qν |ran (U) = UQρνU−1.

Moreover
H0 := V −1ran (U)

is a reducing subspace for HJ and the operator

M := V −1UQρνU−1V |H0

is a self-adjoint operator in H0, unitarily equivalent to Qρν and a restriction of
HJ . Thus, by Theorem 2.3, S has a self-adjoint extension Ĥ such that

ĤJ = MJ ' Qρν .
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3. RANK–1–PERTURBATIONS

Let B be a Borel set in R and α ∈ [0, 1]. For δ > 0 let

hα
δ (B) := inf

{ ∞∑
n=1

|bn − an|α : B ⊂
∞⋃

n=1

(an, bn), |bn − an| < δ

}
and

hα(B) := lim
δ↓0

hα
δ (B).

Then hα(B) is called the α-dimensional Hausdorff measure of B. There is a unique
α0 ∈ [0, 1] such that

hα(B) = ∞ for α < α0

and
hα(B) = 0 for α > α0.

Then α0 is called the Hausdorff dimension, dim(B), of B. The following definition
is due to Rogers-Taylor ([14]).

Definition 3.1. A Borel measure µ on R is said to be of exact dimension
α for α ∈ [0, 1] if and only if:

(i) for any β ∈ [0, 1] with β < α and B a Borel set of dimension β, µ(B) = 0;
(ii) there is a Borel set B0 of dimension α such that µ(R \B0) = 0.

For B ⊂ R we put

(3.1) B−1 :=
{

1
E

: E ∈ B, E 6= 0
}

.

Definition 3.2. Let µ be a finite Borel measure on R and, as above, let Qµ

denote the operator of multiplication by the independent variable in L2(R, µ), i.e.
the operator Qµ in L2(R, µ) is defined by

D(Qµ) :=
{

f ∈ L2(R, µ) :
∫

x2|f(x)|2µ(dx) < ∞
}

,

Qµf(x) := xf(x), for µ-a.e. x ∈ R.

(i) For every λ ∈ R, let µλ be the unique finite Borel measure on R such
that

Qµ + λ(1, · )1 ' Qµλ .

(ii) For every λ ∈ R, let νλ be the finite Borel measure on R such that

νλ(B) = µλ(B−1), B ∈ B(R).
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Remark 3.3. (i) For the existence and uniqueness of the measure µλ cf.,
e.g., [7];

(ii) νλ(R) = µλ(R) if and only if µλ({0}) = 0;
(iii) let µλ({0}) = 0; note that µλ is absolutely continuous, singular contin-

uous, pure point and α-dimensional, respectively, if and only if νλ is absolutely
continuous, singular continuous, pure point and α-dimensional, respectively.

The following three theorems will play a crucial role in the following sections.

Theorem 3.4. Let µ be a finite Borel measure on R.
(i) There exists a λ ∈ R such that

(3.2) σp(Qµλ) ∩ σ(Qµ) = ∅;

(ii) if µac([a, b]) = 0 for some interval [a, b], a < b, and [a, b] ⊂ supp µpp then

[a, b] ⊂ supp µλ
sc

for some λ ∈ R.

The assertion (i) is due to N. Aronszajn ([2]) and W. Donogue ([10]). Cf.
[8] and [7] for a discussion of the question about “how big” the set of coupling
parameters λ with the property (3.2) is.

(ii) is a trivial consequence of (i) since essential and absolutely continuous
spectra are stable under rank-1-perturbations.

Modifying the proofs of Theorem 6.2, Example 2 in Section 6 and Theorem
6.5 of [7] in an obvious way we get the following:

Theorem 3.5. Let J be an open interval and I a compact subinterval of J .
Let α ∈ [0, 1]. Then there exists a finite pure point Borel measure µ0 on R such
that the following holds:

(i) suppµ0 = I;
(ii) for every finite Borel measure µ on R such that

1Jµ = µ0

there exists a real number λ such that

supp 1Iµ
λ
0 = I

and the measure 1Iµ
λ is α-dimensional;

(iii) let α > 0; then for every finite Borel measure µ on R such that

1Jµ = µ0



Inverse spectral theory 153

the measure 1Iµ
λ is purely singular continuous for dλ a.e. λ ∈ R.

Theorem 3.6. ([9], Theorem 0) Let µ be a normalized finite Borel measure
on R. Then ∫

µλ(B) dλ = |B|

for every Borel set B.

4. NOWHERE DENSE SINGULAR CONTINUOUS SPECTRA

Let S be a symmetric operator. Suppose that S has some gap J and its deficiency
indices are infinite. In this section we shall give, among others, large classes of
nowhere dense sets T such that

σsc(H) ∩ J = T

for some self-adjoint extension H of S.

Lemma 4.1. Let S be a symmetric operator in the Hilbert space H. Suppose
that S has a gap J such that 0 ∈ J . Let C be a compact subset of J and P the
orthogonal projection from H onto ker(S∗). Then

‖Pf‖ > c‖f‖, f ∈ ker(S∗ − E), E ∈ C,

for some strictly positive constant c.

Proof. We choose numbers a and b such that

0 < a <
t− E

t
< b < ∞, t ∈ R \ J, E ∈ C.

We choose any self-adjoint extension H0 of S such that J is a gap of H0.
Let E ∈ C and f ∈ ker(S∗ − E), f 6= 0. We put

f̂ := (H0 − E)H−1
0 f.

Then
(f̂ , Sg) = (f, (S − E)g) = 0, g ∈ D(S),

i.e. f̂ ∈ ker(S∗). Thus

‖Pf‖ >

(
f,

f̂

‖f̂‖

)
=

∫
t−E

t µf (dt)√∫
| t−E

t |2µf (dt)
>

a

b
‖f‖.

The following lemma makes it possible to apply results from the theory of
rank-1-perturbations for the investigation of singular continuous spectra of self-
adjoint extensions.
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Lemma 4.2. Let S be a symmetric operator in a Hilbert space H. Suppose
that S has some gap J , 0 ∈ J and the deficiency indices of S are infinite. Let µ0

be a finite pure point Borel measure on R such that the topological support of µ0

is a compact subset of

J−1 :=
{

1
E

: E ∈ J, E 6= 0
}

.

Then there exists a finite Borel measure µ on R with the following properties:
(i) 1J−1µ = µ0;
(ii) for every λ ∈ R there exists a self-adjoint extension Hλ of S such that

Hλ
J ' Q1Jνλ

(cf. (2.1) and Definition 3.2 for the definition of HJ , Qµ and νλ).

Proof. There exist a finite or countable infinite index set N , strictly positive
real numbers bn, n ∈ N , and points ηn ∈ J−1, n ∈ N , such that

µ0 =
∑
n∈N

bnδηn and
∑
n∈N

bn < ∞.

Let
En :=

1
ηn

, n ∈ N,

and P : H → ker(S∗) the orthogonal projection from H onto the kernel of the
adjoint of S. By Lemma 4.1, for every E ∈ J , the restriction of P to ker(S∗ −E)
is injective. Moreover for every E ∈ J the kernel of S∗ −E is infinite dimensional
since the deficiency indices of S are infinite. Thus we can choose, by induction,
an orthonormal system {en} such that

(4.1) S∗en = Enen, n ∈ N,

and

(4.2) (Pen, P ej) = 0, if n 6= j.

Let H0 be the closure of the span of the en, n ∈ N , and M the unique self-
adjoint operator in H0 such that En is an eigenvalue of M and en a corresponding
eigenvector for every n ∈ N . Clearly

M ⊂ S∗ and σ(M) ⊂ J.
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By Theorem 2.3, this implies that

HJ = MJ = M

for some self-adjoint extension H of S.
Note that the operator H has the following properties:

(4.3) H has pure point spectrum in J ;

(4.4) σp(H) ∩ J = {En : n ∈ N};

(4.5) ker(H − En) = span{en}, n ∈ N.

By hypothesis, inf
n∈N

|En| > 0. Thus it follows from (4.3) and (4.4), that the

operator H is invertible and its inverse H−1 is bounded.
By hypothesis, J is a gap of S, 0 ∈ J and {En : n ∈ N} is a relatively

compact subset of J . By Lemma 4.1, this implies that

inf
n∈N

‖Pen‖ > 0.

Thus ∑
n∈N

bn

‖Pen‖2
< ∞.

Put

an :=
√

bn

‖Pen‖
, n ∈ N.

Then
g :=

∑
n∈N

an
Pen

‖Pen‖

belongs to the kernel of S∗.
Let Hg be the closure of the span of the set

{(H−1)ng : n ∈ N or n = 0}.

Obviously H−1f ∈ Hg for every f ∈ Hg,

(4.6) H−1 = R0 ⊕R
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for some self-adjoint operator R in the Hilbert space Hg and some self-adjoint
operator R0 in H⊥

g and there exists a unitary transformation U : Hg → L2(R, µ)
such that

R = U−1QµU and Ug = 1.

Here µ denotes the spectral measure of g with respect to R.
Let Pg be the orthogonal projection from H onto Hg. Let n ∈ N . Pgen ∈

D(H−1) and
H−1Pgen = PgH

−1en = ηnPgen

since Hg is a reducing subspace for H−1 and ηn is an eigenvalue of H−1 and en

a corresponding eigenvector. Since ηn is a simple eigenvalue of H−1 this implies
that Pgen = 0 or Pgen = en. Since

(4.7) |(g, Pgen)| = |(g, en)| = |an| ‖Pen‖ =
√

bn > 0,

it follows that Pgen = en ∈ Hg.
Since en ∈ Hg for every n ∈ N and by the properties (4.3), (4.4), (4.5) and

(4.6) of the operator H the following holds:

σ(R0) ∩ J−1 = ∅,

R has pure point spectrum in J−1,

σp(R) ∩ J−1 = {ηn : n ∈ N}

and
ker(R− ηn) = span{en}, n ∈ N.

Thus the spectral measure µ of g with respect to R satisfies

(4.8) 1J−1µ =
∑
n∈N

dnδηn

for some strictly positive real numbers dn, n ∈ N .
For every n ∈ N the eigenspace ker(Qµ − ηn) is spanned by the normalized

vector
ẽn :=

1√
µ({ηn})

1{ηn}

and the scalar product of ẽn and 1 in L2(R, µ) equals

(ẽn, 1) =
√

µ({ηn}).
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Since R = U−1QµU and Ug = 1 for the unitary transformation U and the
eigenspace ker(R− ηn) is spanned by the normalized vector en, this implies that

Uen = cnẽn

for some normalized constant cn. Thus

|(g, en)| = |(ẽn, 1)| =
√

µ({ηn}), n ∈ N.

By (4.7) and (4.8), this implies that

1J−1µ = µ0.

Let λ ∈ R, λ 6= 0. The operator H−1 + λ(g, · )g is also invertible. In fact, if

H−1f + λ(g, f)g = 0,

then (g, f) g ∈ D(H) and H ( (g, f) g) = S∗ ( (g, f) g) = 0. Thus (g, f) g = 0
and f = 0. Since g ∈ ker(S∗) = ran (S)⊥, along with H−1 also the operator
H−1 + λ (g, ·) g is a self-adjoint extension of S−1. Thus its inverse

(4.9) Hλ :=
(
H−1 + λ (g, ·) g

)−1

is a self-adjoint extension of S.
Note that

(4.10) Hλ
J =

(
(R + λ(g, ·)g−1

)
J

since
σ(R0) ∩ J−1 = ∅.

Since
R = U−1QµU and Ug = 1

for the unitary transformation U from Hg onto L2(R, µ), we have

(4.11) R + λ (g, ·) g ' Qµ + λ (1, ·) 1 ' Qµλ

where the last equality is just the definition of the measure µλ.
Along with µλ, the measure νλ, defined by

νλ(B) := µλ

({
1
η

: η ∈ B, η 6= 0
})
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for every Borel set B in R, is a finite Borel measure on R. By the general trans-
formation theorem for integrals, the mapping

V : L2(R, µλ) → L2(R, νλ),

V f(x) := f

(
1
x

)
for νλ-a.e. x ∈ R, f ∈ L2(R, µλ),

is unitary. Obviously (
Qµλ

)−1 = V −1Qνλ
V.

By (4.10) and (4.11), this implies that

Hλ
J ' Q1Jνλ

.

Lemma 4.3. Let I be a compact interval. There exists a finite pure point
Borel measure µ0 such that the following holds:

(i) supp(µ0) = I;
(ii) if µ is a finite Borel measure such that

1Iµ = µ0

then
supp(1Iµ

λ) = I

and the measure 1Iµ
λ is purely singular continuous for every λ ∈ R, λ 6= 0.

Proof. We may assume that the diameter of I is strictly positive because the
other case is trivial.

We choose an > 0 and ηn ∈ I such that ηn 6= ηk for k 6= n,∑
n∈N

an < ∞

and

(4.12)
∑
n∈N

an

|η − ηn|2
= ∞, η ∈ I.

For instance we may put
an = n−1−ε, n ∈ N,

for some 0 < ε 6 1/2, successively subdivide I in 1, 2, 3, . . . subintervals of length
|I|, |I|/2, |I|/3, . . . and choose successively different points from these subintervals.
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We put
µ0 :=

∑
n∈N

anδηn .

Let µ be a finite Borel measure such that

1Iµ = µ0.

Let λ ∈ R, λ 6= 0. By definition of the measure µλ,

Qµλ ' Qµ + λ(1, ·)1.

Since I is contained in the essential spectrum of Qµ and Qµ has no absolutely
continuous spectrum in I we have only to show that the operator Qµ + λ(1, ·)1
has no eigenvalue in I.

Let η ∈ I and

(4.13) Qµf + λ(1, f)1 = ηf.

It remains to show that
(1, f) = 0

because then η = ηn and f = c1ηn
for some n ∈ N and some constant c and

therefore the equality (1, f) = 0 implies f = 0.
By (4.13),

ηnf(ηn) + λ(1, f)1 = ηf(ηn), n ∈ N.

If η = ηn for some n ∈ N, then (1, f) = 0. Otherwise we have

∞ >

∫
|f |2 dµ >

∑
n∈N

an|f(ηn)|2 = λ2|(1, f)|2
∑
n∈N

an

|η − ηn|2
.

By (4.12), this implies that (1, f) = 0.

Lemma 4.4. Let B ⊂ J be a Borel set with strictly positive Lebesgue measure.
Then there exist a closed subspace H0 of H, a self-adjoint operator M in H0 and
a symmetric operator G0 in H⊥

0 such that the following holds:
(i) S ⊂ M ⊕G0;
(ii) M has a purely singular continuous spectrum and

∅ 6= σsc(M) ⊂ B;

(iii) J is a gap of G0 and the deficiency indices of G0 are infinite.
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Proof. We choose an open interval D such that the closure D of D is a
compact subset of J−1 and the Lebesgue measure of B−1 ∩D is strictly positive.
By Lemma 4.3, we can choose a finite pure point Borel measure µ0 on R with the
following properties:

(i) µ0(R \D) = 0;
(ii) if µ is a finite Borel measure on R and 1J−1µ = µ0, then for every λ ∈ R,

λ 6= 0, the measure 1Dµλ is purely singular continuous and µλ(D) > 0.

By Lemma 4.2, we can choose a finite Borel measure µ on R with the following
properties:

(i) 1J−1µ = µ0;
(ii) for every λ ∈ R there exists a self-adjoint extension Hλ of S such that

(Hλ)J ' (Qνλ
)J .

By Theorem 3.6, we can choose a λ such that the measure 1Dµλ is purely
singular continuous and

µλ(B−1 ∩D) > 0.

Thus the measure 1B∩D−1νλ is purely singular continuous and νλ(B ∩D−1) > 0.
By the inner regularity of νλ we can choose disjoint compact subsets C and

C̃ of B ∩D−1 such that νλ(C) > 0 and νλ(C̃) > 0. Then

(4.14) ran 1C(Qνλ
) ⊥ ran 1

C̃
(Qνλ

),

(4.15) ∅ 6= σsc((Qνλ
)C) ⊂ C,

(4.16) ∅ 6= σsc((Qνλ
)
C̃

) ⊂ C̃.

By Lemma 4.2, there exists a unitary transformation W such that

Hλ
J = W−1(Qνλ

)JW.

Then
H0 := W−1ran (1C(Qνλ

)),

H̃0 := W−1ran (1
C̃

(Qνλ
)),

are closed subspaces of H and, by (4.14),

H0 ⊥ H̃0.
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Moreover
M := W−1(Qνλ

)CW,

M̃ := W−1(Qνλ
)
C̃

W,

is a self-adjoint operator in H0 and H̃0, respectively,

M ⊂ Hλ ⊂ S∗,

M̃ ⊂ Hλ ⊂ S∗,

and, by (4.15) and (4.16),

∅ 6= σsc(M) ⊂ C ⊂ B ⊂ J,

∅ 6= σsc(M̃) ⊂ C̃ ⊂ B ⊂ J.

By Theorem 2.3, there exist symmetric operators G0 and G′
0 in H⊥

0 and H̃⊥
0 ,

respectively, such that

S ⊂ SM = M ⊕G0,

S ⊂ S
M⊕M̃

= M ⊕ M̃ ⊕G′
0

and J is a gap of G0 and G′
0. Then G0 has a self-adjoint extension G such that

σsc(G)∩J 6= ∅, since G0 ⊂ M̃⊕G′
0. Thus the deficiency indices of G0 are infinite.

Theorem 4.5. Let T be the topological support of an absolutely continuous
Borel measure. Then there exists a self-adjoint extension H of S such that

σsc(H) ∩ J = T ∩ J.

Proof. We choose Borel sets Bn, n ∈ N, with the following properties:
(i) Bn ∩ T ⊂ J, n ∈ N;
(ii) the Lebesgue measure of Bn ∩ T is strictly positive for every n ∈ N;
(iii) for every x ∈ T ∩ J and ε > 0 there exists an n ∈ N such that x ∈ Bn

and the diameter of Bn is less than ε.
By Lemma 4.4, we can choose, by induction, pairwise orthogonal closed

subspaces Hn of H, self-adjoint operators Mn in Hn and symmetric operators Gn

in the orthogonal complement of H1 ⊕ · · · ⊕ Hn such that the following holds:

(i) Mn has a purely singular continuous spectrum and

∅ 6= σsc(Mn) ⊂ Bn ∩ T, n ∈ N;
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(ii) S ⊂ M1 ⊕G1 and

Gn ⊂ Mn+1 ⊕Gn+1, n ∈ N;

(iii) J is a gap of Gn and the deficiency indices of Gn are infinite for every

n ∈ N.

For every n ∈ N we have

(M1 ⊕ · · · ⊕Mn ⊕Gn)∗ = M∗
1 ⊕ · · · ⊕M∗

n ⊕G∗
n = M1 ⊕ · · · ⊕Mn ⊕G∗

n ⊂ S∗

since S ⊂ M1 ⊕ · · · ⊕Mn ⊕Gn. Thus

M :=
∞⊕

n=1

Mn ⊂ S∗,

M is a self-adjoint operator in

H0 :=
∞⊕

n=1

Hn,

has a purely singular continuous spectrum and

σsc(M) ∩ J =
∞⋃

n=1

σsc(Mn) ∩ J.

By our choice of the operators Mn and the sets Bn, it follows that

σsc(M) ∩ J = T ∩ J.

By Theorem 2.3, S has a self-adjoint extension H such that

HJ = MJ

and, in particular,

σsc(H) ∩ J = T ∩ J.
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5. HAUSDORFF-DIMENSION OF SINGULAR CONTINUOUS SPECTRA

AND SPECTRAL MEASURES

In this section we shall show that within a gap J of S the self-adjoint extensions of
S can have singular continuous spectral measures and singular continuous spectra
of any dimension.

Lemma 5.1. Let S be a symmetric operator in a Hilbert space H. Suppose
that S has a gap J such that 0 ∈ J and the deficiency indices of S are infinite.
Let I ⊂ J \ {0} be a compact interval such that |I| > 0, α ∈ [0, 1] and 0 < b < ∞.
Then there exist a finite Borel measure ν on R and a self-adjoint extension Ĥ of
S with the following properties:

(i) ν is purely singular continuous, i.e.

ν = νsc,

and α-dimensional;
(ii) supp(ν) = I and ν(I) = b;
(iii) ĤJ ' Qν .

Proof. By Theorem 3.5, we can choose a pure point finite Borel measure µ0

on R with the following properties:
(i) supp(µ0) = I−1;
(ii) for every finite Borel measure µ on R such that

(5.1) 1J−1µ = µ0

there exists a real number λ such that the measure 1I−1µλ is α-dimensional (cf.
Definition 3.2 for the definition of µλ; recall that, by Theorem 3.4,

(5.2) supp 1I−1µλ = I−1

for every λ ∈ R provided µ satisfies (5.1)).
By Lemma 4.2, we can choose a finite Borel measure µ on R, such that (5.1)

holds and for every λ ∈ R there exists a self-adjoint extension Hλ of S such that

(5.3) Hλ
J ' Q1Jνλ

.

We choose λ ∈ R such that the measure 1Iνλ is α-dimensional. By (5.2),

supp(1Iνλ) = I.

Thus the measure
ν :=

b

νλ(I)
1Iνλ

has the required properties. It follows from (5.3), Theorem 2.3 and Corollary 2.5,
that

ĤJ ' Qν

for some suitably chosen self-adjoint extension Ĥ of S.
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Corollary 5.2. Let S, J, I, α and b be as in Lemma 5.1. Then there exist
a Borel measure ν′ on R and a self-adjoint extension H ′ of S with the following
properties:

(i) ν′ is purely singular continuous and dim supp(ν′) = α;
(ii) supp(ν′) ⊂ I and ν′(I) = b;
(iii) H ′

J ' Qν′ .

In particular, the following holds:
(i) ∅ 6= σsc(H ′) ∩ J ⊂ I;
(ii) dim(σsc(H ′) ∩ J) = α.

Proof. Choose a Borel measure ν and a self-adjoint extension Ĥ of S as in
Lemma 5.1. Since ν is α-dimensional, there exists a Borel set Bα ⊂ I such that

ν(R \Bα) = 0 and dim Bα = α.

By the inner regularity of ν we can choose a compact subset Kα of Bα such that
ν(Kα) > 0. We put

ν′ :=
b

ν(Kα)
1Kαν.

Along with ν, also ν′ is purely singular continuous and, α-dimensional and we
have

supp(ν′) ⊂ Kα ⊂ I and ν′(I) = b.

Since the support of ν′ is contained in the α-dimensional set Bα and ν′ is α-
dimensional we have

dim supp(ν′) = α.

By Theorem 5.1 (iii) and Corollary 2.5, there exists a self-adjoint extension H ′ of
S such that

H ′
J ' Qν′ .

Corollary 5.3. Let S,H, J, I, α, b be as in Lemma 5.1. Then there exist a
Borel measure ν on R, a closed subspace H0 of H, a self-adjoint operator M in
H0 and a symmetric operator G0 in H⊥

0 with the following properties:
(i) ν is purely singular continuous and α-dimensional;
(ii) supp(ν) = I and ν(I) = b;
(iii) M ' Qν ;
(iv) J is a gap of G0 and the deficiency indices of G0 are infinite;
(v) S ⊂ M ⊕G0.

Proof. We choose a1 < a2 < a3 such that

I = [a1, a2]
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and Ĩ := [a1, a3] ⊂ J\{0}. By Lemma 5.1, we can choose a positive Radon measure
ν̃ and a self-adjoint extension H̃ of S such that the following holds:

(i) ν̃ is purely singular continuous and α-dimensional;
(ii) supp(ν̃) = Ĩ and ν̃(I) = b;
(iii)

(5.4) H̃J ' Q
ν̃
.

We put
ν := 1I ν̃.

Clearly the measure ν satisfies the claims (i) and (ii). By (5.4),

H̃J = M ⊕M ′

for some self-adjoint operators M and M ′ such that

M ' Qν and M ′ ' Q
ν̃−ν

.

By Theorem 2.3 and Corollary 2.5, there exist symmetric operators G0 and G1

such that
S ⊂ SM = M ⊕G0

S ⊂ SM⊕M ′ = M ⊕M ′ ⊕G1

and J is a gap of G0 and G1. Then G0 has a self adjoint extension G such that

σsc(G) ∩ J 6= ∅

since G0 ⊂ M ′⊕G1, J is a gap of G1 and M ′ ' Q
ν̃−ν

. Thus the deficiency indices
of G0 are infinite.

Corollary 5.4. Let S,H, J, I, α, b be as in Lemma 5.1. Then there exist a
Borel measure ν, a closed subspace H0 of H, a self-adjoint operator M in H0 and
a symmetric operator G0 in H⊥

0 with the following properties:
(i) ν is purely singular continuous and α-dimensional;
(ii) supp(ν) ⊂ I, ν(I) = b and dim supp(ν) = α;
(iii) M ' Qν ;
(iv) J is a gap of G0 and the deficiency indices of G0 are infinite;
(v) S ⊂ M ⊕G0.

Proof. This corollary can be proven as the previous one. Instead of Lemma 5.1
one uses Corollary 5.3 for the proof.
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Theorem 5.5. Let S be a symmetric operator in a Hilbert space H. Suppose
that S has a gap J and the deficiency indices of S are infinite. Let N1 and N2 be
disjoint, empty, finite or countable infinite index sets such that

N := N1 ∪N2 6= ∅.

For every n ∈ N , let In be a closed subinterval of J , αn ∈ [0, 1] and bn ∈ (0,∞).
Then there exist a self-adjoint extension H of S and Borel measures νn on R,
n ∈ N , with the following properties:

(i) HJ '
⊕

n∈N

Qνn
;

(ii) for every n ∈ N the measure νn is purely singular continuous and αn-
dimensional, supp(νn) ⊂ In and νn(In) = bn;

(iii) for every n ∈ N1

supp(νn) = In;

(iv) for every n ∈ N2

dim supp(νn) = αn.

Proof. Without loss of generality we may assume that 0 ∈ J and In is a
compact subset of J \ {0} for every n ∈ N. By Corollaries 5.3 and 5.4 and by in-
duction, we can choose measures νn, n ∈ N , with the required properties, pairwise
orthogonal closed subspaces Hn, n ∈ N , of H and operators Mn in Hn, n ∈ N ,
such that the following holds:

(i) for every n ∈ N

Mn ' Qνn
;

(ii) for every n ∈ N

Mn ⊂ S∗.

Then
H′ :=

⊕
n∈N

Hn and M :=
⊕
n∈N

Mn

is a closed subspace of H and a self-adjoint operator in H′, respectively. Moreover

M = MJ '
⊕
n∈N

Qνn

and σ(M) ⊂ J. By Theorem 2.3, there exists a self-adjoint extension H of S such
that

HJ = M,

and the theorem is proved.
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6. MIXED TYPES OF SPECTRA

New results on singular continuous spectra automatically yield new results on
mixed types of spectra, cf. the considerations in [1], Section 6. Thus, in particular,
the following Theorems 6.3 and 6.4 hold. For the formulation of these theorems
we need the following:

Definition 6.1. ([1]) A closed symmetric operator S with gap J is called
significantly deficient if and only if

Pker(S∗−E)D(S) 6= ker(S∗ − E)

for one (and therefore every) E ∈ J .

It is known (cf. [1]) that this definition does not depend on the special choice
of the gap J of S. Moreover we have the following:

Example 6.2. ([1]) The closed symmetric operator S with gap J is sig-
nificantly deficient provided its deficiency indices are infinite and the operator
(S − E)−1 is compact for one (and therefore every) E ∈ J .

In particular, the minimal Laplacian on a bounded domain D in Rd, d > 1,
is significantly deficient.

Theorem 6.3. Let S be a symmetric operator in the separable Hilbert space
H. Suppose that S has some gap J . Moreover suppose that S is significantly
deficient in the sense of the Definition 6.1 or that H is complex and S is the
orthogonal sum of infinitely many operators with strictly positive deficiency indices.

Then for every set T which is the topological support of an absolutely con-
tinuous Borel measure and every self-adjoint operator M ′ in H there exists a self-
adjoint extension H of S with the following properties:

(i) HacJ ' M ′
acJ ;

(ii) HppJ ' M ′
ppJ ;

(iii) σsc(H) ∩ J = T ∩ J.

Theorem 6.4. Let S, J and H be as in the Theorem 6.3. Let M ′ be a
self-adjoint operator in H. Let N1 and N2 be disjoint, empty, finite or countable
infinite index sets such that

N := N1 ∪N2 6= ∅.

For every n ∈ N , let In be a closed subinterval of J , αn ∈ [0, 1] and bn ∈ (0,∞).
Then there exist a self-adjoint extension H of S and Borel measures νn on R,
n ∈ N , with the following properties:



168 J.F. Brasche

(i) HscJ '
⊕

n∈N

Qνn
;

(ii) for every n ∈ N the measure νn is purely singular continuous and αn-
dimensional, supp(νn) ⊂ In and νn(In) = bn;

(iii) for every n ∈ N1

supp(νn) = In;

(iv) for every n ∈ N2

dim supp(νn) = αn;

(v) HacJ ' M ′
acJ ;

(vi) HppJ ' M ′
ppJ .
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