ON THE COMMUTANT OF THE DIRECT SUM OF OPERATORS OF MULTIPLICATION BY THE INDEPENDENT VARIABLE

B. KHANI ROBATI and K. SEDDIGHI

Communicated by Norberto Salinas

Abstract

Let \mathcal{B} be a direct sum of spaces of functions on each of which the operator M_{z} of multiplication by $z(f \rightarrow z f)$ is bounded. We determine the commutant of the direct sum of the operators of multiplication by z on certain Hilbert spaces of functions (Banach spaces of functions). Also we characterize the commutant of M_{z} and multipliers of Lipschitz algebras. Let μ be a compactly supported measure on \mathbb{C} and $t \geqslant 1$. We determine the commutant of the operator M_{z} on $P^{t}(\mu)$, the closure of polynomials in $L^{t}(\mu)$, thus extending a result of M. Raphael for the case $t=2$.

KEywords: Commutant, muliplication by z, bounded point evaluation, Lipschitz algebra, direct sum of spaces.

MSC (2000): Primary 47E37; Secondary 47B48.

1. INTRODUCTION

Let \mathcal{H} be a Hilbert space of functions defined on a set G in the plane and $B(\mathcal{H})$ be the subset of all $\lambda \in G$ such that the linear functional of evaluation at λ, e_{λ}, is bounded on \mathcal{H}. For every $\lambda \in B(\mathcal{H})$ we find an element k_{λ} in \mathcal{H} such that $f(\lambda)=\left\langle f, k_{\lambda}\right\rangle$ for every $f \in \mathcal{H}$. We call k_{λ} the reproducing kernel for the point λ. Furthermore assume that $1 \in \mathcal{H}, z \mathcal{H} \subset \mathcal{H}$ and $\bigvee\left\{k_{\lambda}: \lambda \in B(\mathcal{H})\right\}=\mathcal{H}$. The latter assumption says that if $f \in \mathcal{H}$ and $f=0$ on $B(\mathcal{H})$, then $f=0$ as an element of \mathcal{H}. By the closed graph theorem, the operator M_{z} of multiplication by z on \mathcal{H} given by $f \mapsto z f$ is bounded. We also assume that $\operatorname{dim} \operatorname{ker}\left(M_{z}-\lambda\right)^{*}=1$ for each $\lambda \in B(\mathcal{H})$. This assumption is equivalent to saying that $\operatorname{ker} e_{\lambda}=\operatorname{ran}\left(M_{z}-\lambda\right)^{-}$,
$\lambda \in B(\mathcal{H})$. By a Hilbert space of functions we mean one satisfying the above conditions. A subset S of $B(\mathcal{H})$ is called dense in \mathcal{H} if $\bigvee\left\{k_{\lambda}: \lambda \in S\right\}=\mathcal{H}$.

Several examples of such Hilbert spaces \mathcal{H} are $L_{\mathrm{a}}^{2}(G)$, the Bergman space on a bounded open set G in the plane, D_{α} the Dirichlet space for $-\infty<\alpha<\infty$ and Hardy spaces on a bounded region G.

A complex valued function φ on G for which $\varphi f \in \mathcal{H}$ for all $f \in \mathcal{H}$ is called a multiplier of \mathcal{H} and the collection of all these multipliers is denoted by $\mathcal{M}(\mathcal{H})$. Each multiplier φ of \mathcal{H} determines a multiplication operator M_{φ} on \mathcal{H} by $M_{\varphi} f=\varphi f, f \in \mathcal{H}$. It is well known that each multiplier is a bounded function on $B(\mathcal{H})$. In fact $\|\varphi\|_{B(\mathcal{H})} \leqslant\left\|M_{\varphi}\right\|$. If \mathcal{H} consists of functions that are analytic on $B(\mathcal{H})$ and φ is a multiplier, then $\varphi \in \mathcal{H}$ because $1 \in \mathcal{H}$. Hence $\varphi \in H^{\infty}(B(\mathcal{H}))$. Morever X is in the commutant $\left\{M_{z}\right\}^{\prime}$ of M_{z} if and only if there exists $\varphi \in \mathcal{M}(\mathcal{H})$ such that $X=M_{\varphi}([11])$. The present work is a continuation of our work ([5]).

Let X be a compact subset of the plane. The algebra of all continuous functions on X that are analytic in the interior of X is denoted by $A(X)$. The set of all complex valued functions f defined on a compact subset K of the complex plane \mathbb{C} such that

$$
M_{f}^{\alpha}=\sup \left\{\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}: x, y \in K, x \neq y\right\}<\infty
$$

for $\alpha>0$ is an algebra which is denoted by $\operatorname{Lip}(\alpha, K)$ and called the Lipschitz algebra of order α. Clearly $\operatorname{Lip}(\alpha, K) \subset C(K)$. For $0<\alpha \leqslant 1$ the algebra $\operatorname{Lip}(\alpha, K)$ with the norm defined by $\|f\|_{\alpha}=\|f\|+M_{f}^{\alpha}$ is a Banach algebra.

For $0<\alpha<1$ the subset of $\operatorname{Lip}(\alpha, K)$ consisting of functions f for which

$$
\lim _{h \rightarrow 0} \frac{|f(t+h)-f(t)|}{|h|^{\alpha}}=0
$$

is denoted by $\operatorname{lip}(\alpha, K)$ and is a closed subalgebra of $\operatorname{Lip}(\alpha, K)$. If we further assume that $\operatorname{lip}_{A}(\alpha, K)$ and $\operatorname{Lip}_{A}(\alpha, K)$ denote respectively $\operatorname{lip}(\alpha, K) \cap A(K)$, $\operatorname{Lip}(\alpha, K) \cap A(K)$ we can see that $\operatorname{lip}_{A}(\alpha, K)\left(\operatorname{Lip}_{A}(\alpha, K)\right)$ is a closed subalgebra of $\operatorname{lip}(\alpha, K)(\operatorname{Lip}(\alpha, K))$.

We also need some properties of T-invariant algebras, for this we refer the reader to [4], Chapter 5, Section 6.

2. THE COMMUTANT OF 2×2 OPERATOR MATRICES

Every operator X acting on the direct sum $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ of two Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} can be written in the form

$$
X=\left[\begin{array}{ll}
X_{11} & X_{12} \tag{2.1}\\
X_{21} & X_{22}
\end{array}\right]
$$

where $X_{i j}: \mathcal{H}_{j} \rightarrow \mathcal{H}_{i}, i, j=1,2$ is defined by $X_{i j}=\left.P_{i} X\right|_{\mathcal{H}_{j}}$ and $P_{i}: \mathcal{H} \rightarrow \mathcal{H}_{i}$ is the projection onto $\mathcal{H}_{i}, i=1,2$.

Theorem 2.1. Let $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, where \mathcal{H}_{1} and \mathcal{H}_{2} are Hilbert spaces of functions on G and W respectively. If $M=M_{z}^{1} \oplus M_{z}^{2}$, then every member X of the commutant $\{M\}^{\prime}$ of M is of the form (2.1) in which $X_{11} \in\left\{M_{z}^{1}\right\}^{\prime}$, and $X_{22} \in\left\{M_{z}^{2}\right\}^{\prime}$ and $X_{21}(p f)=p X_{21} f$ for all polynomials p and all $f \in \mathcal{H}_{1}$. If $\sigma\left(M_{z}^{2}\right) \subset \mathbb{C} \backslash S$ where S is a subset of $B\left(\mathcal{H}_{1}\right)$ dense in \mathcal{H}_{1} then $X_{12}=0$. Furthermore if $\sigma\left(M_{z}^{1}\right) \subset \mathbb{C} \backslash T$, where T is a subset of $B\left(\mathcal{H}_{2}\right)$ dense in \mathcal{H}_{2} then $X_{21}=0$. In particular, if $B\left(\mathcal{H}_{1}\right) \cap B\left(\mathcal{H}_{2}\right)=\emptyset$, then $X_{12}=X_{21}=0$.

Proof. Let X commute with M and represent X as in (2.1). Then we have the following relations:

$$
\begin{array}{ll}
X_{11} M_{z}^{1}=M_{z}^{1} X_{11}, & X_{22} M_{z}^{2}=M_{z}^{2} X_{22} \\
X_{12} M_{z}^{2}=M_{z}^{1} X_{12}, & X_{21} M_{z}^{1}=M_{z}^{2} X_{21}
\end{array}
$$

We only need to show that $X_{12}=0$ and X_{21} has the required form. Because $X_{12} M_{z}^{2}=M_{z}^{1} X_{12}$, we conclude that $X_{12}^{*} M_{z}^{1^{*}}=M_{z}^{2^{*}} X_{12}^{*}$. Applying the latter on every $k_{\lambda}, \lambda \in S$, we get $X_{12}^{*} M_{z}^{1^{*}} k_{\lambda}=M_{z}^{2^{*}} X_{12}^{*} k_{\lambda}=\bar{\lambda} X_{12}^{*} k_{\lambda}$. If $X_{12}^{*} k_{\lambda} \neq 0$, then it is an eigenvector for $M_{z}^{2^{*}}$ corresponding to the eigenvalue $\bar{\lambda}$. Because $\sigma\left(M_{z}^{2}\right) \subseteq \mathbb{C} \backslash S$, we get a contradiction. Hence $X_{12}^{*} k_{\lambda}=0$ for all $\lambda \in S$. Because S is dense in \mathcal{H}_{1} we conclude that $X_{12}=0$. To characterize X_{21}, note that if p is a polynomial and $f \in \mathcal{H}_{1}$, then $X_{21}(p f)=X_{21} p\left(M_{z}^{1}\right) f=p\left(M_{z}^{2}\right) X_{21} f=p X_{21} f$.

Let W and G be open subsets of the complex plane and assume $\mathcal{H}_{1}=L_{\mathrm{a}}^{2}(W)$ and $\mathcal{H}_{2}=L_{\mathrm{a}}^{2}(G)$ such that $W \cap G=\emptyset$. It is well known that $\sigma\left(M_{z}^{1}\right)=\bar{W}$ and $\sigma\left(M_{z}^{2}\right)=\bar{G}$, also $B\left(\mathcal{H}_{1}\right)=W$ and $B\left(\mathcal{H}_{2}\right)=G$. Let $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ and $M=M_{z}^{1} \oplus M_{z}^{2}$. It may be that $\bar{W} \cap \bar{G} \neq \emptyset$ but by Theorem 2.1 if $X \in\{M\}^{\prime}$ then

$$
X=\left[\begin{array}{cc}
M_{\phi} & 0 \\
0 & M_{\psi}
\end{array}\right]
$$

since $\mathcal{M}\left(L_{\mathrm{a}}^{2}(W)\right)=H^{\infty}(W)$ and $\mathcal{M}\left(L_{\mathrm{a}}^{2}(G)\right)=H^{\infty}(G), \phi \in H^{\infty}(W)$ and $\psi \in$ $H^{\infty}(G)$. Furthermore assume W and G are regions in the plane and $(\mathbb{C} \backslash \bar{W}) \cap G \neq \emptyset$ and $(\mathbb{C} \backslash \bar{G}) \cap W \neq \emptyset$, then $\{M\}^{\prime}$ splits, that is $\{M\}^{\prime}=\left\{M_{z}^{1}\right\}^{\prime} \oplus\left\{M_{z}^{2}\right\}^{\prime}$.

Now we consider a Banach space \mathcal{B} consisting of functions defined on a set G in the plane such that $1 \in \mathcal{B}$ and $z \mathcal{B} \subset \mathcal{B}$. For every $\lambda \in B(\mathcal{B})$ the functional of evaluation at λ, e_{λ}, is bounded and $\bigvee\left\{e_{\lambda}: \lambda \in B(\mathcal{B})\right\}=\mathcal{B}^{*}$. We also assume that $\operatorname{dim} \operatorname{ker}\left(M_{z}-\lambda\right)^{*}=1$ for $\lambda \in B(\mathcal{B})$. It is easy to see that for $\lambda \in B(\mathcal{B})$, $\operatorname{ker}\left(M_{z}-\lambda\right)^{*}=\left[e_{\lambda}\right]$, the linear span of e_{λ}. Such a Banach space is called a Banach space of functions on G. In particular, $\left\{M_{z}\right\}^{\prime}=\left\{M_{\phi}: \phi \in \mathcal{M}(\mathcal{B})\right\}$. It is easy to see that $H^{\infty}(G)$ satisfies these conditions. A subset S of $B(\mathcal{B})$ is called dense in \mathcal{B}^{*} if $\bigvee\left\{e_{\lambda}: \lambda \in S\right\}=\mathcal{B}^{*}$.

In [3], Cole and Gamelin proved that if \mathcal{A} is a T-invariant algebra on K, then for each $\lambda \in K, \operatorname{ran}\left(M_{z}-\lambda\right)^{-}=\operatorname{ker} e_{\lambda}$. Hence $\operatorname{dim} \operatorname{ker}\left(M_{z}-\lambda\right)^{*}=1$ and every T-invariant algebra is a Banach space of functions.

Theorem 2.2. Let \mathcal{B}_{1} and \mathcal{B}_{2} be two Banach spaces of functions on G. If $B\left(\mathcal{B}_{1}\right) \cap B\left(\mathcal{B}_{2}\right)$ is dense in \mathcal{B}_{2}^{*} and $A: \mathcal{B}_{1} \rightarrow \mathcal{B}_{2}$ is such that $M_{z}^{2} A=A M_{z}^{1}$ then there is a function $\varphi \in \mathcal{M}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ such that $A=M_{\varphi}$. In particular, $\left\{M_{z}\right\}^{\prime}=$ $\left\{M_{\phi}: \phi \in \mathcal{M}(\mathcal{B})\right\}$. If $\mathcal{B}=\mathcal{B}_{1} \oplus \mathcal{B}_{2}$ and $M=M_{z}^{1} \oplus M_{z}^{2}$, then $X \in\{M\}^{\prime}$ if and only if

$$
X=\left[\begin{array}{ll}
M_{\Phi} & M_{\phi} \tag{2.2}\\
M_{\psi} & M_{\Psi}
\end{array}\right]
$$

in which $\Phi \in \mathcal{M}\left(\mathcal{B}_{1}\right)$, $\psi \in \mathcal{M}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$, $\phi \in \mathcal{M}\left(\mathcal{B}_{2}, \mathcal{B}_{1}\right)$ and $\Psi \in \mathcal{M}\left(\mathcal{B}_{2}\right)$. Let \mathcal{B}_{1} and \mathcal{B}_{2} be Banach spaces of functions on W and G respectively. If $\sigma\left(M_{z}^{1}\right) \subset \mathbb{C} \backslash S$ where S is dense in \mathcal{B}_{2}^{*} and $X: \mathcal{B}_{1} \rightarrow \mathcal{B}_{2}$ such that $M_{z}^{2} X=X M_{z}^{1}$ then $X=0$.

Proof. Let e_{λ}^{i} denote the functional of evaluation at λ in $\mathcal{B}_{i}, i=1,2$. For each $\lambda \in B\left(\mathcal{B}_{1}\right) \cap B\left(\mathcal{B}_{2}\right),\left(M_{z}^{1}-\lambda\right)^{*} A^{*}=A^{*}\left(M_{z}^{2}-\lambda\right)^{*}$. Hence $A^{*} \operatorname{ker}\left(M_{z}^{2}-\lambda\right)^{*} \subset$ $\operatorname{ker}\left(M_{z}^{1}-\lambda\right)^{*}$ and therefore $A^{*}\left(e_{\lambda}^{2}\right)=\phi(\lambda) e_{\lambda}^{1}$. Now we have

$$
(A f)(\lambda)=\left\langle A f, e_{\lambda}^{2}\right\rangle=\left\langle f, A^{*} e_{\lambda}^{2}\right\rangle=\left\langle f, \phi(\lambda) e_{\lambda}^{1}\right\rangle=\phi(\lambda) f(\lambda)
$$

Hence $A f=\varphi f$ on $B\left(\mathcal{B}_{1}\right) \cap B\left(\mathcal{B}_{2}\right)$. Because $B\left(\mathcal{B}_{1}\right) \cap B\left(\mathcal{B}_{2}\right)$ is dense in \mathcal{B}_{2}^{*} we get $A f=\varphi f$.

The weighted Bergman spaces are defined by

$$
L_{\mathrm{a}}^{p}(G, w \mathrm{~d} A)=\left\{g \in L^{p}(G, w \mathrm{~d} A): g \text { is analytic on } G\right\}
$$

where w is a positive continuous function defined on a region G. Assume $p<s$ and $\mathcal{B}=L_{\mathrm{a}}^{p}(G, w \mathrm{~d} A) \oplus L_{\mathrm{a}}^{s}(W, w \mathrm{~d} A)$ and $M=M_{z}^{1} \oplus M_{z}^{2}$. Then $X \in\{M\}^{\prime}$ is of the form (2.2) in which $\Phi \in H^{\infty}(G), \psi=0([2]$, Theorem 4$), \Psi \in H^{\infty}(W)$ and information about ϕ can be found in [1] and [8].

3. MULTIPLIERS OF LIPSCHITZ ALGEBRAS

Lipschitz algebras have been studied by Sherbert ([10]) and O'Farrell ([7]). We now study the commutant of M_{z} on these spaces and apply the result of the previous section to Lipshitz algebras.

Lemma 3.1. Let $\alpha \in(0,1)$ and M_{z} denote the multiplication operator on $\operatorname{lip}_{A}(\alpha, K)$. Then $\left\{M_{z}\right\}^{\prime}=\mathcal{M}\left(\operatorname{lip}_{A}(\alpha, K)\right)=\operatorname{lip}_{A}(\alpha, K)$.

Proof. By [6], Corollary 1, dim $\operatorname{ker}\left(M_{z}-\lambda\right)^{*}=1$ for each $\lambda \in K$. Hence $\operatorname{lip}_{A}(\alpha, K)$ is a Banach space of functions and $\left\{M_{z}\right\}^{\prime}=\mathcal{M}\left(\operatorname{lip}_{A}(\alpha, K)\right)$. Since $\operatorname{lip}_{A}(\alpha, K)$ is an algebra, $\mathcal{M}\left(\operatorname{lip}_{A}(\alpha, K)\right)=\operatorname{lip}_{A}(\alpha, K)$.

Let α and β be in $(0,1)$ and $\alpha>\beta$; it is easy to see that

$$
\begin{aligned}
\mathcal{M}\left(\operatorname{lip}_{A}(\alpha, K), \operatorname{lip}_{A}(\beta, K)\right) & =\operatorname{lip}_{A}(\beta, K) \\
\mathcal{M}\left(\operatorname{Lip}_{A}(\alpha, K), \operatorname{Lip}_{A}(\beta, K)\right) & =\operatorname{Lip}_{A}(\beta, K)
\end{aligned}
$$

Now we show that if $\alpha<\beta, \mathcal{M}\left(\operatorname{lip}_{A}(\alpha, K), \operatorname{lip}_{A}(\beta, K)\right)=\{0\}$. Before doing this we need the following result.

THEOREM 3.2. If $\phi \in \operatorname{lip}_{A}(\alpha, K)$ and $\alpha>\beta$ then $M_{\phi}: \operatorname{lip}_{A}(\alpha, K) \rightarrow$ $\operatorname{lip}_{A}(\beta, K)$ is compact.

Proof. It is easy to see that for each $f \in \operatorname{lip}_{A}(\alpha, K), \phi f \in \operatorname{lip}_{A}(\alpha, K)$ and M_{ϕ} is continuous. Assume $0<c<1$ is a constant such that $c \alpha>\beta$. Now let $\left\{f_{n}\right\}$ be a sequence in $\operatorname{lip}_{A}(\alpha, K)$ such that $\left\|f_{n}\right\|_{\alpha} \leqslant 1$. Then $\left\|f_{n}\right\| \leqslant 1$ and $\left|f_{n}(x)-f_{n}(y)\right| \leqslant|x-y|^{\alpha}$ for all $n \in \mathbb{N}$ and $x, y \in K$. Hence by Arzela-Ascoli Theorem there is a subsequence $\left\{f_{n_{k}}\right\}$ and a function $g \in C(K)$ such that $f_{n_{k}} \rightarrow g$ uniformly on K. We can see that the uniform limit of a bounded sequence in $\operatorname{Lip}_{A}(\alpha, K)$ is in $\operatorname{Lip}_{A}(\alpha, K)$. Hence $\phi g \in \operatorname{Lip}_{A}(\alpha, K)$. Now we have

$$
\begin{aligned}
& \frac{\left|\left(f_{n_{k}} \phi(x)-g \phi(x)\right)-\left(f_{n_{k}} \phi(y)-g \phi(y)\right)\right|}{|x-y|^{\beta}} \\
& \quad=\frac{\left|f_{n_{k}} \phi(x)-g \phi(x)-\left(f_{n_{k}} \phi(y)-g \phi(y)\right)\right|^{c}}{|x-y|^{\beta}\left|f_{n_{k}} \phi(x)-g \phi(x)-\left(f_{n_{k}} \phi(y)-g \phi(y)\right)\right|^{c-1}} \\
& \quad \leqslant \frac{\left(2 M_{\phi}^{\alpha}+2\|\phi\|\right)^{c}|x-y|^{\alpha c}}{|x-y|^{\beta}}\left|f_{n_{k}} \phi(x)-g \phi(x)-\left(f_{n_{k}} \phi(y)-g \phi(y)\right)\right|^{1-c} \\
& \quad \leqslant\left(2 M_{\phi}^{\alpha}+2\|\phi\|\right)^{c}(\operatorname{diam} K)^{\alpha c-\beta}\left|f_{n_{k}} \phi(x)-g \phi(x)-\left(f_{n_{k}} \phi(y)-g \phi(y)\right)\right|^{1-c} \\
& \quad \rightarrow 0 .
\end{aligned}
$$

The proof is now complete.

The idea of the proof of the next theorem is from [2], Theorem 4, on multipliers of Bergman spaces.

Theorem 3.3. If α and β are in $(0,1), \alpha<\beta$ and $K=\overline{\operatorname{int}(K)}$ then $\mathcal{M}\left(\operatorname{lip}_{A}(\alpha, K), \operatorname{lip}_{A}(\beta, K)\right)=\{0\}$.

Proof. Without loss of generality we can assume $\operatorname{int}(K)$ is connected, otherwise let W be a component of $\operatorname{int}(K)$ and $\phi \in \mathcal{M}\left(\operatorname{lip}_{A}(\alpha, K), \operatorname{lip}_{A}(\beta, K)\right)$ then $\left.\phi\right|_{W}$ is in $\mathcal{M}\left(\operatorname{lip}_{A}(\alpha, \bar{W}), \operatorname{lip}_{A}(\beta, \bar{W})\right)$ and we can prove that $\left.\phi\right|_{W}=0$.

Given $\phi \in \mathcal{M}\left(\operatorname{lip}_{A}(\alpha, K), \operatorname{lip}_{A}(\beta, K)\right)$, the operator $M_{\phi}: \operatorname{lip}_{A}(\alpha, K) \rightarrow$ $\operatorname{lip}_{A}(\beta, K)$ is bounded. Assume $h \in \operatorname{lip}_{A}(\beta, K)$ is not equal to zero, then by Theorem 3.2, $M_{h}: \operatorname{lip}_{A}(\beta, K) \rightarrow \operatorname{lip}_{A}(\alpha, K)$ is compact. Therefore $M_{h \phi}=M_{h} M_{\phi}:$ $\operatorname{lip}_{A}(\alpha, K) \rightarrow \operatorname{lip}_{A}(\alpha, K)$ is compact. Choose $z \in \operatorname{int}(K)$ such that $h(z)$ and $\phi(z)$ are not equal to zero. We can see that $M_{h \phi}-h(z) \phi(z)$ is not onto because each function in the range of $M_{h \phi}-h(z) \phi(z)$ is equal to zero at z. Now by Fredholm alternative $M_{h \phi}-h(z) \phi(z)$ is not injective and hence there is a function $f \neq 0$ in $\operatorname{lip}_{A}(\alpha, K)$ such that $(h \phi-h(z) \phi(z)) f=0$ on $\operatorname{int}(K)$. Hence $h \phi-h(z) \phi(z)=0$ and $h \phi$ is constant on K. Since $h \phi$ is constant for each $h \in \operatorname{lip}_{A}(\beta, K)$ we have $\phi=0$.

Remark. In Theorem 3.2 and Theorem 3.3 we can replace lip_{A} with Lip_{A}.
THEOREM 3.4. Let $\mathcal{B}=\operatorname{lip}_{A}(\alpha, K) \oplus \operatorname{lip}_{A}(\beta, K)$ and $K=\overline{\operatorname{int}(K)}, \alpha, \beta \in$ $(0,1), \alpha>\beta$. If $M=M_{z}^{1} \oplus M_{z}^{2}$ then $X \in\{M\}^{\prime}$ if and only if

$$
X=\left[\begin{array}{cc}
M_{\Phi} & 0 \tag{3.1}\\
M_{\psi} & M_{\Psi}
\end{array}\right]
$$

in which Φ is in $\operatorname{lip}_{A}(\alpha, K)$ and ψ and Ψ are in $\operatorname{lip}_{A}(\beta, K)$.
Proof. Apply Theorem 2.2, Lemma 3.1 and Theorem 3.3.
Assume $f \in \operatorname{Lip}_{A}(\alpha, K)$. We apply Proposition 1.4 of [10] to the real and the imaginary parts of f to obtain an extension F of f in $\operatorname{Lip}(\alpha, \mathbb{C})$ and multiply this function by a function $h \in C_{\mathrm{c}}^{\infty}$ defined by $h=1$ on K and equal to 0 on W^{c}, where W is a bounded open subset containing K. Hence we have the following well known extension theorem about functions in $\operatorname{Lip}_{A}(\alpha, K)$. The second part of the theorem asserts that $\operatorname{Lip}_{A}(\alpha, K)$ is a T-invariant algebra. A.G. O'Farrell ([7]) shows this for $g \in C_{\mathrm{c}}^{\infty}$ and gives a bound for $\left\|T_{g} F\right\|_{\alpha}$. This bound holds if $g \in C_{\mathrm{c}}^{1}$.

Theorem 3.5. Each f in $\operatorname{Lip}_{A}(\alpha, K)$ has an extension in $\operatorname{Lip}(\alpha, \mathbb{C})$ which has compact support. If $f \in \operatorname{Lip}_{A}(\alpha, K), F$ is the extension of f and $g \in C_{\mathrm{c}}^{1}$ then $\left.T_{g} F\right|_{K}$ is in $\operatorname{Lip}_{A}(\alpha, K)$.

The next lemma is a modification of a lemma proved by Cole and Gamelin in [3].

Lemma 3.6. Let K be a compact subset of the plane and $\alpha \in(0,1)$. Then $\operatorname{Lip}_{A}(\alpha, K)$ is a Banach algebra of functions on K. If $K=\overline{\operatorname{int}(K)}$, then $\left\{M_{z}\right\}^{\prime}=$ $\mathcal{M}\left(\operatorname{Lip}_{A}(\alpha, K)\right)=\operatorname{Lip}_{A}(\alpha, K)$.

Proof. For each $f \in \operatorname{Lip}_{A}(\alpha, K)$ the function $\frac{f-f(\lambda)}{z-\lambda}, \lambda \in \operatorname{int}(K)$, is in $\operatorname{Lip}_{A}(\alpha, K)$. This follows if in the proof of [4], Theorem 6.5, p. 189, we let F be the extension of f in Theorem 3.5. Hence $\operatorname{ran}\left(M_{z}-\lambda\right)=\operatorname{ker} e_{\lambda}, \operatorname{dim} \operatorname{ker}\left(M_{z}-\lambda\right)^{*}=1$ for $\lambda \in \operatorname{int}(K)$ and $\sigma_{\text {ap }}\left(M_{z}\right)=\partial K$.

Lemma 3.7. Let $A: \operatorname{Lip}(\beta, K) \rightarrow \operatorname{Lip}(\alpha, K)(\alpha, \beta \in[0,1]$ and $\alpha>\beta)$ be an operator such that $A M_{z}^{1}=M_{z}^{2} A$. If $K=\overline{\operatorname{int}(K)}$, then $A=0$. Let $\mathcal{B}=$ $\operatorname{Lip}_{A}(\alpha, K) \oplus \operatorname{Lip}_{A}(\beta, K), K=\overline{\operatorname{int}(K)}, \alpha$ and β are in $[0,1], \alpha>\beta$. If $M=$ $M_{z}^{1} \oplus M_{z}^{2}$ then $X \in\{M\}^{\prime}$ if and only if

$$
X=\left[\begin{array}{cc}
M_{\Phi} & 0 \\
M_{\psi} & M_{\Psi}
\end{array}\right]
$$

in which ϕ is in $\operatorname{lip}_{A}(\alpha, K)$ and ψ and Ψ are in $\operatorname{Lip}_{A}(\beta, K)$.
Proof. Let $A 1=\phi$. Then for each $\lambda \in \operatorname{int}(K), A f(\lambda)=\phi(\lambda) f(\lambda)$. Since $A f-\phi f$ is continous on K and equal to 0 on $\operatorname{int}(K)$ we have $A f=\phi f$. Therefore ϕ is a multiplier and by Theorem 3.3 and the remark after that, $\phi=0$.

4. POLYNOMIAL APPROXIMATION

Let μ be a measure with compact support in the complex plane. A point λ in \mathbb{C} is called a bounded point evaluation (bpe) for $P^{t}(\mu), t \geqslant 1$, if there is a constant C such that

$$
|p(\lambda)| \leqslant C\left(\int|p|^{t} \mathrm{~d} \mu\right)^{\frac{1}{t}}
$$

for every polynomial p.
If λ is a bpe for $P^{t}(\mu)$, then the linear functional $p \mapsto p(\lambda)$ of evaluation at λ defined on polynomials has a unique extension e_{λ} to $P^{t}(\mu)$. We can therefore find a unique element k_{λ} of $L^{s}(\mu)\left(\frac{1}{t}+\frac{1}{s}=1\right)$ such that $\int f k_{\lambda} \mathrm{d} \mu=\left\langle f, e_{\lambda}\right\rangle=e_{\lambda}(f)$ for every f in $P^{t}(\mu)$. The set of bounded point evaluations for $P^{t}(\mu)$ is denoted by $B^{t}(\mu)$. For $f \in P^{t}(\mu)$ let $\widehat{f}(\lambda)=\int f k_{\lambda} \mathrm{d} \mu$. It is not hard to see that $f=\widehat{f}$ a.e. [μ] on the set $B^{t}(\mu)$. A point λ in $B^{t}(\mu)$ is an analytic bounded point evaluation (abpe) for $P^{t}(\mu)$, if $\lambda \in B^{t}(\mu)^{\circ}$, the interior of $B^{t}(\mu)$, and for every f in $P^{t}(\mu)$, the map $z \mapsto \widehat{f}(z)$ is analytic in a neighbourhood of λ. We denote the set of all analytic bpe's for $P^{t}(\mu)$ by $B_{\mathrm{a}}^{t}(\mu)$. For more information on bpe's see [4]. The operator of multiplication by z on $P^{t}(\mu)$ is denoted by S_{μ}.

Definition 4.1. A measure μ supported on $\overline{\mathbb{D}}$ is called an m-measure if the set of abpe's of $P^{2}(\mu), B_{\mathrm{a}}(\mu)=\mathbb{D}$ and the identity mapping on the polynomials extends to an isometric isomorphism that is weak-star homeomorphism from $P^{\infty}(\mu)$ onto H^{∞}.

An equivalent condition is that $P^{\infty}(\mu)$ has no L^{∞}-summand and the interior of the Sarason hull of μ is \mathbb{D}, thus $P^{\infty}(\mu)=H^{\infty}$ and therefore $\mu_{0}=\mu \mid \partial \mathbb{D} \ll m$. We are looking for a characterization of the commutant of S_{μ}, i.e. $P^{2}(\mu) \cap L^{\infty}(\mu)$. Recall that $P^{2}(\mu)$ is a full analytic subspace if $B_{\mathrm{a}}(\mu)=\operatorname{int} \Sigma(\mu)$, the interior of the Sarason hull of μ.

Proposition 4.2. Let μ be a compactly supported measure such that $P^{\infty}(\mu)$ has no L^{∞}-summand and $P^{2}(\mu)$ is a full analytic subspace. Let $\mathcal{H}_{1}=\bigvee\left\{k_{\lambda}\right.$: $\left.\lambda \in B_{\mathrm{a}}(\mu)\right\}$ and $\mathcal{H}_{0}=\mathcal{H}_{1}^{\perp}$. Then \mathcal{H}_{0} reduces S_{μ}, \mathcal{H}_{1} is a full analytic subspace and $N_{0}=\left.S_{\mu}\right|_{\mathcal{H}}$ is a cyclic normal operator with scalar-valued spectral measure μ_{0} absolutely continuous with respect to harmonic measure for $\Sigma(\mu)$. Moreover, $P^{2}(\mu)=P^{2}\left(\mu_{1}\right) \oplus L^{2}\left(\mu_{0}\right)$, where $\mu_{1}=\mu-\mu_{0}, \mathcal{H}_{0}=L^{2}\left(\mu_{0}\right)$ and $\mathcal{H}_{1}=P^{2}\left(\mu_{1}\right)$.

Proof. [4], Proposition 7.7.4.
The next result can be found in [5] for the case of an m-measure. Because the reference [5] is not easily accessible we bring the proof for the benefit of the reader and the sake of completeness.

Proposition 4.3. Let μ be a compactly supported measure such that $P^{\infty}(\mu)$ has no L^{∞}-summand and $P^{2}(\mu)$ is a full analytic subspace, moreover $B_{\mathrm{a}}(\mu)$ is connected. Assume μ_{0} is as in Proposition 4.2. Set $\mu_{1}=\mu-\mu_{0}$. Then

$$
\begin{equation*}
P^{2}(\mu) \cap L^{\infty}(\mu)=P^{\infty}\left(\mu_{1}\right) \oplus L^{\infty}\left(\mu_{0}\right) \tag{4.1}
\end{equation*}
$$

and $P^{2}\left(\mu_{1}\right)$ is a full analytic subspace and $P^{\infty}\left(\mu_{1}\right)$ has no L^{∞}-summand.
Proof. By Proposition 4.2,

$$
P^{2}(\mu)=P^{2}\left(\mu_{1}\right) \oplus L^{2}\left(\mu_{0}\right)
$$

Let Δ be the carrier of μ_{0} and $\Delta^{\prime}=\operatorname{supp} \mu \backslash \Delta$ be the carrier of μ_{1}. Observe that $P^{\infty}\left(\mu_{1}\right) \oplus L^{\infty}\left(\mu_{0}\right) \subset P^{2}\left(\mu_{1}\right) \oplus L^{2}\left(\mu_{0}\right)=P^{2}(\mu)$ and $P^{\infty}\left(\mu_{1}\right) \oplus L^{\infty}\left(\mu_{0}\right) \subset L^{\infty}(\mu)$, thus the RHS of (4.1) is a subset of its LHS.

To show the converse, let $X \in\left\{S_{\mu}\right\}^{\prime}$. Then X can be written in the form (2.1) where, similar to Theorem 2.1, $X_{11}=M_{\varphi}$, and $X_{22}=M_{\psi}$ with $\varphi \in\left\{M_{z}^{1}\right\}^{\prime}=P^{2}\left(\mu_{1}\right) \cap L^{\infty}\left(\mu_{1}\right)\left([4]\right.$, Corollary 5.5, p. 52) and $\psi \in L^{\infty}\left(\mu_{0}\right)$. Also $\varphi \in H^{\infty}\left(B_{\mathrm{a}}\left(\mu_{1}\right)\right)$. By Proposition 4.2, we have $P^{2}\left(\mu_{1}\right)=\bigvee\left\{k_{\lambda}: \lambda \in B_{\mathrm{a}}(\mu)\right\}$.

Therefore, $B_{\mathrm{a}}\left(\mu_{1}\right)=B_{\mathrm{a}}(\mu)$. Since every $f \in P^{2}(\mu)$ satisfies $f=\widehat{f}$ a.e. on the set of bpe's and $B_{\mathrm{a}}(\mu)$ is connected, there is no nontrivial characteristic function in $P^{2}\left(\mu_{1}\right)$. Hence $P^{\infty}\left(\mu_{1}\right)$ has no L^{∞}-summand and hence $P^{\infty}\left(\mu_{1}\right)=H^{\infty}\left(B_{\mathrm{a}}\left(\mu_{1}\right)\right)$ ([4], Sarason's Theorem 7.1, p. 301). There exists $\varphi_{0} \in P^{\infty}\left(\mu_{1}\right)$ such that on $B_{\mathrm{a}}\left(\mu_{1}\right)$ we have $\varphi=\varphi_{0}$. Since $P^{2}\left(\mu_{1}\right)=\bigvee\left\{k_{\lambda}: \lambda \in B_{\mathrm{a}}(\mu)\right\}$ we have $\varphi \in P^{\infty}\left(\mu_{1}\right)$.

Now let $f \in P^{2}(\mu) \cap L^{\infty}(\mu)$. Then writing $X=M_{f}$ in the previous paragraph we conclude that $f=\varphi$ on Δ^{\prime} and $f=h+\psi$ on Δ, where $h=X_{21} 1 \in L^{2}\left(\mu_{0}\right)$. Because $f \in L^{\infty}(\mu)$ and $\psi \in L^{\infty}\left(\mu_{0}\right)$ we have $h \in L^{\infty}(\mu)$. Hence $h \in L^{\infty}\left(\mu_{0}\right)$. We can now write $f=\chi_{\Delta^{\prime}} f+\chi_{\Delta} f$ and therefore $P^{2}(\mu) \cap L^{\infty}(\mu) \subset P^{\infty}\left(\mu_{1}\right) \oplus L^{\infty}\left(\mu_{0}\right)$, thus (4.1) holds.

As a result of the above theorem we obtain the main result of [9] when μ is an m-measure. This result can be extended by Thomson's Theorem to $P^{t}(\mu)$. We also investigate the commutant of S_{μ} for $P^{t}(\mu)(t \geqslant 1)$. First we recall several useful theorems.

Theorem 4.4. Let μ be a positive measure and let $t \geqslant 1$. Then there exists a Borel partition $\left\{\Delta_{0}, \Delta\right\}$ of the support of μ such that

$$
P^{t}(\mu)=L^{t}\left(\mu \mid \Delta_{0}\right) \oplus P^{t}(\mu \mid \Delta)
$$

and $P^{t}(\mu \mid \Delta)$ contains no L^{t} summand.
Proof. See [12], Theorem 1.2.
Thomson's Theorem. If μ is any compactly supported measure on \mathbb{C} and S_{μ} is multiplication by z on $P^{t}(\mu)$, then there exists a Borel partition $\left\{\Delta_{i}\right\}_{i=0}^{\infty}$ of the support of μ such that if $\mu_{n}=\mu \mid \Delta_{n}$ then the following statements are true:
(a)

$$
\begin{equation*}
P^{t}(\mu)=L^{t}\left(\mu_{0}\right) \oplus\left(\bigoplus_{i=1}^{\infty} P^{t}\left(\mu_{i}\right)\right) \tag{4.2}
\end{equation*}
$$

(b) if $n \geqslant 1$, then $P^{t}\left(\mu_{n}\right)$ is irreducible; that is, $P^{t}\left(\mu_{n}\right)$ contains no nontrivial characteristic functions;
(c) if $n \geqslant 1$ and $\Omega_{n}=B_{\mathrm{a}}^{t}\left(\mu_{n}\right)$, then Ω_{n} is a simply connected region with $\operatorname{supp}\left(\mu_{n}\right) \subset \operatorname{cl} \Omega_{n}$;
(d) if S_{μ} is pure (that is $\Delta_{0}=\emptyset$) and $f \in P^{t}(\mu)$ such that f vanishes a.e. $[\mu]$ on $B_{\mathrm{a}}^{t}(\mu)$, then $f=0$. Equivalently, $\bigvee\left\{k_{\lambda}: \lambda \in B_{\mathrm{a}}^{t}(\mu)\right\}=P^{s}(\mu)\left(\frac{1}{t}+\frac{1}{s}=1\right)$.
(e) If S_{μ} is pure, then the map $f \rightarrow \widehat{f}$ is a dual algebra isomorphism of $P^{t}(\mu) \cap L^{\infty}(\mu)$ onto $H^{\infty}\left(B_{\mathrm{a}}^{t}(\mu)\right)$.

Remark. By part (d) of Thomson's Theorem and the fact that for every $\lambda \in B^{t}(\mu), \operatorname{dim} \operatorname{ker}\left(S_{\mu}-\lambda\right)^{*}=1$, we conclude that if $P^{t}(\mu)$ is pure it is a Banach space of functions with $B\left(P^{t}(\mu)\right)=B^{t}(\mu)$.

Theorem 4.5. Let μ be a measure such that $P^{t}(\mu)$ is pure. If $\left\{W_{i}\right\}_{i=1}^{\infty}$ are the components of $B_{\mathrm{a}}^{t}(\mu)$, then there is a partition $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ of $\operatorname{supp} \mu$ such that

$$
\begin{equation*}
P^{t}(\mu)=\bigoplus_{i=1}^{\infty} P^{t}\left(\mu_{i}\right) \tag{4.3}
\end{equation*}
$$

where $\mu_{i}=\mu \mid \Delta_{i}$, each $P^{t}\left(\mu_{i}\right)$ is irreducible and $\Delta_{i} \subset \bar{W}_{i}$.
Proof. See the proof of part (a) of Thomson's Theorem in the pure case ([12], Theorem 5.8).

Theorem 4.6. Let μ be a measure such that $P^{t}(\mu)$ is pure relative to the decomposition (4.3). If $X \in\left\{S_{\mu}\right\}^{\prime}=P^{t}(\mu) \cap L^{\infty}(\mu)$ then

$$
X=\left[\begin{array}{ccc}
M_{\phi_{1}} & 0 & \cdots \\
0 & M_{\phi_{2}} & \cdots \\
0 & 0 & \cdots \\
0 & 0 & \cdots \\
0 & 0 & \cdots
\end{array}\right]
$$

where each $\phi_{i}, i=1,2, \ldots$, belongs to $P^{t}\left(\mu_{i}\right) \cap L^{\infty}\left(\mu_{i}\right)$. If $P^{t}(\mu)$ is pure and the direct sum in (4.3) is finite that is

$$
P^{t}(\mu)=\bigoplus_{i=1}^{n} P^{t}\left(\mu_{i}\right), \quad n \geqslant 1
$$

then $P^{t}(\mu) \cap L^{\infty}(\mu)=\bigoplus_{i=1}^{n}\left(P^{t}\left(\mu_{i}\right) \cap L^{\infty}\left(\mu_{i}\right)\right)$.
Proof. Since $\bar{W}_{i} \cap W_{j}=\emptyset$ for $i \neq j$ and $\sigma\left(M_{z}^{i}\right) \subset \bar{W}_{i}$ by Theorem 2.2. $X_{i j}=0$ for $i \neq j$. Since $X_{i i} \in\left\{M_{z}^{i}\right\}^{\prime}, i \in \mathbb{N}$, then $X_{i i}=M_{\phi_{i}}$ for some $\phi_{i} \in$ $P^{t}\left(\mu_{i}\right) \cap L^{\infty}\left(\mu_{i}\right)$.

Theorem 4.7. If the decomposition in (4.2) is finite, that is

$$
P^{t}(\mu)=L^{t}\left(\mu_{0}\right) \oplus\left(\bigoplus_{i=1}^{n-1} P^{t}\left(\mu_{i}\right)\right), \quad n \geqslant 1
$$

then $P^{t}(\mu) \cap L^{\infty}(\mu)=L^{\infty}(\mu) \oplus\left(\bigoplus_{i=1}^{n-1} P^{t}\left(\mu_{i}\right) \cap L^{\infty}\left(\mu_{i}\right)\right)$.

Proof. In this case if $X \in\left\{S_{\mu}\right\}^{\prime}$, then $X=M_{\phi}$ for some $\phi \in P^{t}(\mu) \cap L^{\infty}(\mu)$. On the other hand

$$
X=\left[\begin{array}{cccccc}
M_{\phi_{0}} & X_{01} & X_{02} & X_{03} & \cdots & X_{0 n-1} \\
0 & M_{\phi_{1}} & 0 & 0 & \cdots & 0 \\
0 & 0 & M_{\phi_{2}} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
& & & & & \\
0 & 0 & 0 & 0 & \cdots & M_{\phi_{n-1}}
\end{array}\right]
$$

Therefore

$$
\phi=\left(\phi_{0}+X_{01}(1)+X_{02}(1)+\cdots+X_{0 n-1}(1)\right) \chi_{\Delta_{0}}+\phi_{1} \chi_{\Delta_{1}}+\cdots+\phi_{n-1} \chi_{\Delta_{n-1}}
$$

Since $\phi_{0} \in L^{\infty}\left(\mu_{0}\right)$ and $\phi \in L^{\infty}(\mu)$ we have $X_{01}(1)+X_{02}(1)+\cdots+X_{0 n-1}(1) \in$ $L^{\infty}\left(\mu_{0}\right)$. Because each $\phi_{i} \in P^{t}\left(\mu_{i}\right) \cap L^{\infty}\left(\mu_{i}\right)$ for $0<i<n$,

$$
P^{t}(\mu) \cap L^{\infty}(\mu) \subset L^{\infty}(\mu) \oplus\left(\bigoplus_{i=1}^{n-1} P^{t}\left(\mu_{i}\right) \cap L^{\infty}\left(\mu_{i}\right)\right)
$$

The reverse inclusion is obvious.

REFERENCES

1. R. Attele, Analytic multipliers of Bergman spaces, Michigan Math. J. 31(1984), 307-319.
2. S. Axler, Zero multipliers of Bergman spaces, Canad. Math. Bull. 28(1985), 237242.
3. J.B. Cole, T.W. Gamelin, Tight uniform algebras and algebras of analytic functios, J. Funct. Anal. 46(1982), 158-220.
4. J. Conway, The Theory of Subnormal Operators, Amer. Math. Soc., Providence 1991.
5. B. Khani Robati, K. Seddighi, On the commutant of the direct sum of operators on spaces of functions, Bull. Iranian Math. Soc. 21(1995), 45-57.
6. H. Mahyar, The maximal ideal space of $\operatorname{lip}_{A}(X, \alpha)$, Proc. Amer. Math. Soc. 122 (1994), 175-181.
7. A.G. O'Farrell, Hausdorff content and rational approximation in fractional Lipschitz norms, Trans. Amer. Math. Soc. 228(1977), 187-206.
8. V.L. Oleinik, B.S. Pavlov, Embedding theorem for weighted classes of harmonic and analytic function, J. Soviet Math. 2(1974), 135-142; a translation of Zap. Nauch. Sem. S.Peterburg. Otdel. Math. Inst. Steklov 22(1971), 94-102.
9. M. Raphael, A structure theorem for the commutant of a class of cyclic subnormal operators, Proc. Amer. Math. Soc. 96(1986), 318-322.
10. D.R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111(1964), 240-272.
11. A. Shields, L. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20(1971), 777-788.
12. J.E. Thomson, Approximation in the mean by polynomials, Ann. of Math. (2) 133(1991), 477-507.
B. KHANI ROBATI

Department of Mathematics College of Science Shiraz University Shiraz 71454

IRAN
K. SEDDIGHI

Center for Theoretical Physics and Math. Department of Mathematics
P. O. Box 11365-8486

Tehran 11365 IRAN
and
Department of Mathematics
College of Science
Shiraz University
Shiraz 71454
IRAN

