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Abstract. Let B be a direct sum of spaces of functions on each of which
the operator Mz of multiplication by z (f → zf) is bounded. We determine
the commutant of the direct sum of the operators of multiplication by z
on certain Hilbert spaces of functions (Banach spaces of functions). Also
we characterize the commutant of Mz and multipliers of Lipschitz algebras.
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1. INTRODUCTION

Let H be a Hilbert space of functions defined on a set G in the plane and B(H)
be the subset of all λ ∈ G such that the linear functional of evaluation at λ, eλ,
is bounded on H. For every λ ∈ B(H) we find an element kλ in H such that
f(λ) = 〈f, kλ〉 for every f ∈ H. We call kλ the reproducing kernel for the point λ.
Furthermore assume that 1 ∈ H, zH ⊂ H and

∨
{kλ : λ ∈ B(H)} = H. The latter

assumption says that if f ∈ H and f = 0 on B(H), then f = 0 as an element of
H. By the closed graph theorem, the operator Mz of multiplication by z on H
given by f 7→ zf is bounded. We also assume that dim ker(Mz − λ)∗ = 1 for each
λ ∈ B(H). This assumption is equivalent to saying that ker eλ = ran(Mz − λ)−,
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λ ∈ B(H). By a Hilbert space of functions we mean one satisfying the above

conditions. A subset S of B(H) is called dense in H if
∨
{kλ : λ ∈ S} = H.

Several examples of such Hilbert spaces H are L2
a(G), the Bergman space on

a bounded open set G in the plane, Dα the Dirichlet space for −∞ < α <∞ and

Hardy spaces on a bounded region G.

A complex valued function ϕ on G for which ϕf ∈ H for all f ∈ H is

called a multiplier of H and the collection of all these multipliers is denoted by

M(H). Each multiplier ϕ of H determines a multiplication operator Mϕ on H by

Mϕf = ϕf , f ∈ H. It is well known that each multiplier is a bounded function on

B(H). In fact ‖ϕ‖B(H) 6 ‖Mϕ‖. If H consists of functions that are analytic on

B(H) and ϕ is a multiplier, then ϕ ∈ H because 1 ∈ H. Hence ϕ ∈ H∞(B(H)).

Morever X is in the commutant {Mz}′ of Mz if and only if there exists ϕ ∈M(H)

such that X = Mϕ ([11]). The present work is a continuation of our work ([5]).

Let X be a compact subset of the plane. The algebra of all continuous

functions on X that are analytic in the interior of X is denoted by A(X). The set

of all complex valued functions f defined on a compact subset K of the complex

plane C such that

Mα
f = sup

{
|f(x)− f(y)|
|x− y|α

: x, y ∈ K, x 6= y

}
<∞

for α > 0 is an algebra which is denoted by Lip(α,K) and called the Lipschitz

algebra of order α. Clearly Lip(α,K) ⊂ C(K). For 0 < α 6 1 the algebra

Lip(α,K) with the norm defined by ‖f‖α = ‖f‖+Mα
f is a Banach algebra.

For 0 < α < 1 the subset of Lip(α,K) consisting of functions f for which

lim
h→0

|f(t+ h)− f(t)|
|h|α

= 0

is denoted by lip(α,K) and is a closed subalgebra of Lip(α,K). If we further

assume that lipA(α,K) and LipA(α,K) denote respectively lip(α,K) ∩ A(K),

Lip(α,K) ∩ A(K) we can see that lipA(α,K) (LipA(α,K)) is a closed subalge-

bra of lip(α,K) (Lip(α,K)).

We also need some properties of T -invariant algebras, for this we refer the

reader to [4], Chapter 5, Section 6.
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2. THE COMMUTANT OF 2× 2 OPERATOR MATRICES

Every operator X acting on the direct sum H = H1 ⊕ H2 of two Hilbert spaces
H1 and H2 can be written in the form

(2.1) X =
[
X11 X12

X21 X22

]
where Xij : Hj → Hi, i, j = 1, 2 is defined by Xij = PiX|Hj

and Pi : H → Hi is
the projection onto Hi, i = 1, 2.

Theorem 2.1. Let H = H1 ⊕ H2, where H1 and H2 are Hilbert spaces
of functions on G and W respectively. If M = M1

z ⊕ M2
z , then every member

X of the commutant {M}′ of M is of the form (2.1) in which X11 ∈ {M1
z }′,

and X22 ∈ {M2
z }′ and X21(pf) = pX21f for all polynomials p and all f ∈ H1.

If σ(M2
z ) ⊂ C \ S where S is a subset of B(H1) dense in H1 then X12 = 0.

Furthermore if σ(M1
z ) ⊂ C \ T , where T is a subset of B(H2) dense in H2 then

X21 = 0. In particular, if B(H1) ∩B(H2) = ∅, then X12 = X21 = 0.

Proof. Let X commute with M and represent X as in (2.1). Then we have
the following relations:

X11M
1
z = M1

zX11, X22M
2
z = M2

zX22,

X12M
2
z = M1

zX12, X21M
1
z = M2

zX21.

We only need to show that X12 = 0 and X21 has the required form. Because
X12M

2
z = M1

zX12, we conclude that X∗
12M

1
z
∗ = M2

z
∗
X∗

12. Applying the latter
on every kλ, λ ∈ S, we get X∗

12M
1
z
∗
kλ = M2

z
∗
X∗

12kλ = λX∗
12kλ. If X∗

12kλ 6= 0,
then it is an eigenvector for M2

z
∗ corresponding to the eigenvalue λ. Because

σ(M2
z ) ⊆ C\S, we get a contradiction. Hence X∗

12kλ = 0 for all λ ∈ S. Because S
is dense in H1 we conclude that X12 = 0. To characterize X21, note that if p is a
polynomial and f ∈ H1, then X21(pf) = X21p(M1

z )f = p(M2
z )X21f = pX21f .

Let W and G be open subsets of the complex plane and assume H1 = L2
a(W )

and H2 = L2
a(G) such that W ∩ G = ∅. It is well known that σ(M1

z ) = W

and σ(M2
z ) = G, also B(H1) = W and B(H2) = G. Let H = H1 ⊕ H2 and

M = M1
z ⊕M2

z . It may be that W ∩G 6= ∅ but by Theorem 2.1 if X ∈ {M}′ then

X =
[
Mφ 0
0 Mψ

]
,

since M(L2
a(W )) = H∞(W ) and M(L2

a(G)) = H∞(G), φ ∈ H∞(W ) and ψ ∈
H∞(G). Furthermore assumeW andG are regions in the plane and (C\W )∩G 6= ∅
and (C \G) ∩W 6= ∅, then {M}′ splits, that is {M}′ = {M1

z }′ ⊕ {M2
z }′.
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Now we consider a Banach space B consisting of functions defined on a set
G in the plane such that 1 ∈ B and zB ⊂ B. For every λ ∈ B(B) the functional
of evaluation at λ, eλ, is bounded and

∨
{eλ : λ ∈ B(B)} = B∗. We also assume

that dim ker(Mz − λ)∗ = 1 for λ ∈ B(B). It is easy to see that for λ ∈ B(B),
ker(Mz−λ)∗ = [eλ], the linear span of eλ. Such a Banach space is called a Banach
space of functions on G. In particular, {Mz}′ = {Mφ : φ ∈ M(B)}. It is easy to
see that H∞(G) satisfies these conditions. A subset S of B(B) is called dense in
B∗ if

∨
{eλ : λ ∈ S} = B∗.

In [3], Cole and Gamelin proved that if A is a T -invariant algebra on K, then
for each λ ∈ K, ran(Mz − λ)− = ker eλ. Hence dim ker(Mz − λ)∗ = 1 and every
T -invariant algebra is a Banach space of functions.

Theorem 2.2. Let B1 and B2 be two Banach spaces of functions on G. If
B(B1) ∩ B(B2) is dense in B∗2 and A : B1 → B2 is such that M2

zA = AM1
z then

there is a function ϕ ∈ M(B1,B2) such that A = Mϕ. In particular, {Mz}′ =
{Mφ : φ ∈ M(B)}. If B = B1 ⊕ B2 and M = M1

z ⊕M2
z , then X ∈ {M}′ if and

only if

(2.2) X =
[
MΦ Mφ

Mψ MΨ

]
in which Φ ∈ M(B1), ψ ∈ M(B1,B2), φ ∈ M(B2,B1) and Ψ ∈ M(B2). Let B1

and B2 be Banach spaces of functions on W and G respectively. If σ(M1
z ) ⊂ C \S

where S is dense in B∗2 and X : B1 → B2 such that M2
zX = XM1

z then X = 0.

Proof. Let eiλ denote the functional of evaluation at λ in Bi, i = 1, 2. For
each λ ∈ B(B1)∩B(B2), (M1

z −λ)∗A∗ = A∗(M2
z −λ)∗. Hence A∗ ker(M2

z −λ)∗ ⊂
ker(M1

z − λ)∗ and therefore A∗(e2λ) = φ(λ)e1λ. Now we have

(Af)(λ) = 〈Af, e2λ〉 = 〈f,A∗e2λ〉 = 〈f, φ(λ)e1λ〉 = φ(λ)f(λ).

Hence Af = ϕf on B(B1) ∩B(B2). Because B(B1) ∩B(B2) is dense in B∗2 we get
Af = ϕf .

The weighted Bergman spaces are defined by

Lpa(G,wdA) = {g ∈ Lp(G,wdA) : g is analytic on G}

where w is a positive continuous function defined on a region G. Assume p < s

and B = Lpa(G,wdA) ⊕ Lsa(W,wdA) and M = M1
z ⊕M2

z . Then X ∈ {M}′ is of
the form (2.2) in which Φ ∈ H∞(G), ψ = 0 ([2], Theorem 4), Ψ ∈ H∞(W ) and
information about φ can be found in [1] and [8].
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3. MULTIPLIERS OF LIPSCHITZ ALGEBRAS

Lipschitz algebras have been studied by Sherbert ([10]) and O’Farrell ([7]). We
now study the commutant of Mz on these spaces and apply the result of the
previous section to Lipshitz algebras.

Lemma 3.1. Let α ∈ (0, 1) and Mz denote the multiplication operator on
lipA(α,K). Then {Mz}′ = M(lipA(α,K)) = lipA(α,K).

Proof. By [6], Corollary 1, dim ker(Mz − λ)∗ = 1 for each λ ∈ K. Hence
lipA(α,K) is a Banach space of functions and {Mz}′ = M(lipA(α,K)). Since
lipA(α,K) is an algebra, M(lipA(α,K)) = lipA(α,K).

Let α and β be in (0, 1) and α > β; it is easy to see that

M(lipA(α,K), lipA(β,K)) = lipA(β,K),

M(LipA(α,K),LipA(β,K)) = LipA(β,K).

Now we show that if α < β, M(lipA(α,K), lipA(β,K)) = {0}. Before doing this
we need the following result.

Theorem 3.2. If φ ∈ lipA(α,K) and α > β then Mφ : lipA(α,K) →
lipA(β,K) is compact.

Proof. It is easy to see that for each f ∈ lipA(α,K), φf ∈ lipA(α,K) and
Mφ is continuous. Assume 0 < c < 1 is a constant such that cα > β. Now
let {fn} be a sequence in lipA(α,K) such that ‖fn‖α 6 1. Then ‖fn‖ 6 1 and
|fn(x)− fn(y)| 6 |x− y|α for all n ∈ N and x, y ∈ K. Hence by Arzela–Ascoli
Theorem there is a subsequence {fnk

} and a function g ∈ C(K) such that fnk
→ g

uniformly on K. We can see that the uniform limit of a bounded sequence in
LipA(α,K) is in LipA(α,K). Hence φg ∈ LipA(α,K). Now we have

|(fnk
φ(x)− gφ(x))− (fnk

φ(y)− gφ(y))|
|x− y|β

=
|fnk

φ(x)− gφ(x)− (fnk
φ(y)− gφ(y))|c

|x− y|β |fnk
φ(x)− gφ(x)− (fnk

φ(y)− gφ(y))|c−1

6
(2Mα

φ + 2‖φ‖)c|x− y|αc

|x− y|β
|fnk

φ(x)− gφ(x)− (fnk
φ(y)− gφ(y))|1−c

6 (2Mα
φ + 2‖φ‖)c(diamK)αc−β |fnk

φ(x)− gφ(x)− (fnk
φ(y)− gφ(y))|1−c

→ 0.

The proof is now complete.
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The idea of the proof of the next theorem is from [2], Theorem 4, on multi-
pliers of Bergman spaces.

Theorem 3.3. If α and β are in (0, 1), α < β and K = int(K) then
M(lipA(α,K), lipA(β,K)) = {0}.

Proof. Without loss of generality we can assume int(K) is connected, oth-
erwise let W be a component of int(K) and φ ∈ M(lipA(α,K), lipA(β,K)) then
φ|W is in M(lipA(α,W ), lipA(β,W )) and we can prove that φ|W = 0.

Given φ ∈ M(lipA(α,K), lipA(β,K)), the operator Mφ : lipA(α,K) →
lipA(β,K) is bounded. Assume h ∈ lipA(β,K) is not equal to zero, then by The-
orem 3.2, Mh : lipA(β,K) → lipA(α,K) is compact. Therefore Mhφ = MhMφ :
lipA(α,K) → lipA(α,K) is compact. Choose z ∈ int(K) such that h(z) and φ(z)
are not equal to zero. We can see that Mhφ − h(z)φ(z) is not onto because each
function in the range of Mhφ − h(z)φ(z) is equal to zero at z. Now by Fredholm
alternative Mhφ − h(z)φ(z) is not injective and hence there is a function f 6= 0 in
lipA(α,K) such that (hφ − h(z)φ(z))f = 0 on int(K). Hence hφ − h(z)φ(z) = 0
and hφ is constant on K. Since hφ is constant for each h ∈ lipA(β,K) we have
φ = 0.

Remark. In Theorem 3.2 and Theorem 3.3 we can replace lipA with LipA.

Theorem 3.4. Let B = lipA(α,K) ⊕ lipA(β,K) and K = int(K), α, β ∈
(0, 1), α > β. If M = M1

z ⊕M2
z then X ∈ {M}′ if and only if

(3.1) X =
[
MΦ 0
Mψ MΨ

]
in which Φ is in lipA(α,K) and ψ and Ψ are in lipA(β,K).

Proof. Apply Theorem 2.2, Lemma 3.1 and Theorem 3.3.

Assume f ∈ LipA(α,K). We apply Proposition 1.4 of [10] to the real and
the imaginary parts of f to obtain an extension F of f in Lip(α,C) and multiply
this function by a function h ∈ C∞c defined by h = 1 on K and equal to 0 on W c,
where W is a bounded open subset containing K. Hence we have the following
well known extension theorem about functions in LipA(α,K). The second part of
the theorem asserts that LipA(α,K) is a T -invariant algebra. A.G. O’Farrell ([7])
shows this for g ∈ C∞c and gives a bound for ‖TgF‖α. This bound holds if g ∈ C1

c .

Theorem 3.5. Each f in LipA(α,K) has an extension in Lip(α,C) which
has compact support. If f ∈ LipA(α,K), F is the extension of f and g ∈ C1

c then
TgF |K is in LipA(α,K).

The next lemma is a modification of a lemma proved by Cole and Gamelin
in [3].
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Lemma 3.6. Let K be a compact subset of the plane and α ∈ (0, 1). Then
LipA(α,K) is a Banach algebra of functions on K. If K = int(K), then {Mz}′ =
M(LipA(α,K)) = LipA(α,K).

Proof. For each f ∈ LipA(α,K) the function f−f(λ)
z−λ , λ ∈ int(K), is in

LipA(α,K). This follows if in the proof of [4], Theorem 6.5, p. 189, we let F be the
extension of f in Theorem 3.5. Hence ran(Mz−λ) = ker eλ, dim ker(Mz−λ)∗ = 1
for λ ∈ int(K) and σap(Mz) = ∂K.

Lemma 3.7. Let A : Lip(β,K) → Lip(α,K) (α, β ∈ [0, 1] and α > β) be
an operator such that AM1

z = M2
zA. If K = int(K), then A = 0. Let B =

LipA(α,K) ⊕ LipA(β,K), K = int(K), α and β are in [0, 1], α > β. If M =
M1
z ⊕M2

z then X ∈ {M}′ if and only if

X =
[
MΦ 0
Mψ MΨ

]
in which φ is in lipA(α,K) and ψ and Ψ are in LipA(β,K).

Proof. Let A1 = φ. Then for each λ ∈ int(K), Af(λ) = φ(λ)f(λ). Since
Af −φf is continous on K and equal to 0 on int(K) we have Af = φf . Therefore
φ is a multiplier and by Theorem 3.3 and the remark after that, φ = 0.

4. POLYNOMIAL APPROXIMATION

Let µ be a measure with compact support in the complex plane. A point λ in C
is called a bounded point evaluation (bpe) for P t(µ), t > 1, if there is a constant
C such that

|p(λ)| 6 C
( ∫

|p|tdµ
) 1

t

for every polynomial p.
If λ is a bpe for P t(µ), then the linear functional p 7→ p(λ) of evaluation at λ

defined on polynomials has a unique extension eλ to P t(µ). We can therefore find
a unique element kλ of Ls(µ) ( 1

t + 1
s = 1) such that

∫
fkλdµ = 〈f, eλ〉 = eλ(f) for

every f in P t(µ). The set of bounded point evaluations for P t(µ) is denoted by
Bt(µ). For f ∈ P t(µ) let f̂(λ) =

∫
fkλdµ. It is not hard to see that f = f̂ a.e.

[µ] on the set Bt(µ). A point λ in Bt(µ) is an analytic bounded point evaluation
(abpe) for P t(µ), if λ ∈ Bt(µ)◦, the interior of Bt(µ), and for every f in P t(µ),
the map z 7→ f̂(z) is analytic in a neighbourhood of λ. We denote the set of all
analytic bpe’s for P t(µ) by Bta(µ). For more information on bpe’s see [4]. The
operator of multiplication by z on P t(µ) is denoted by Sµ.
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Definition 4.1. A measure µ supported on D is called an m-measure if the
set of abpe’s of P 2(µ), Ba(µ) = D and the identity mapping on the polynomi-
als extends to an isometric isomorphism that is weak-star homeomorphism from
P∞(µ) onto H∞.

An equivalent condition is that P∞(µ) has no L∞-summand and the interior
of the Sarason hull of µ is D, thus P∞(µ) = H∞ and therefore µ0 = µ|∂D � m.
We are looking for a characterization of the commutant of Sµ, i.e. P 2(µ)∩L∞(µ).
Recall that P 2(µ) is a full analytic subspace if Ba(µ)= int Σ(µ), the interior of the
Sarason hull of µ.

Proposition 4.2. Let µ be a compactly supported measure such that P∞(µ)
has no L∞-summand and P 2(µ) is a full analytic subspace. Let H1 =

∨
{kλ :

λ ∈ Ba(µ)} and H0 = H⊥1 . Then H0 reduces Sµ, H1 is a full analytic subspace
and N0 = Sµ|H is a cyclic normal operator with scalar-valued spectral measure
µ0 absolutely continuous with respect to harmonic measure for Σ(µ). Moreover,
P 2(µ) = P 2(µ1)⊕ L2(µ0), where µ1 = µ− µ0, H0 = L2(µ0) and H1 = P 2(µ1).

Proof. [4], Proposition 7.7.4.

The next result can be found in [5] for the case of an m-measure. Because
the reference [5] is not easily accessible we bring the proof for the benefit of the
reader and the sake of completeness.

Proposition 4.3. Let µ be a compactly supported measure such that P∞(µ)
has no L∞-summand and P 2(µ) is a full analytic subspace, moreover Ba(µ) is
connected. Assume µ0 is as in Proposition 4.2. Set µ1 = µ− µ0. Then

(4.1) P 2(µ) ∩ L∞(µ) = P∞(µ1)⊕ L∞(µ0)

and P 2(µ1) is a full analytic subspace and P∞(µ1) has no L∞-summand.

Proof. By Proposition 4.2,

P 2(µ) = P 2(µ1)⊕ L2(µ0).

Let ∆ be the carrier of µ0 and ∆′ = suppµ \∆ be the carrier of µ1. Observe that
P∞(µ1)⊕ L∞(µ0) ⊂ P 2(µ1)⊕ L2(µ0) = P 2(µ) and P∞(µ1)⊕ L∞(µ0) ⊂ L∞(µ),
thus the RHS of (4.1) is a subset of its LHS.

To show the converse, let X ∈ {Sµ}′. Then X can be written in the
form (2.1) where, similar to Theorem 2.1, X11 = Mϕ, and X22 = Mψ with
ϕ ∈ {M1

z }′ = P 2(µ1) ∩ L∞(µ1) ([4], Corollary 5.5, p. 52) and ψ ∈ L∞(µ0).
Also ϕ ∈ H∞(Ba(µ1)). By Proposition 4.2, we have P 2(µ1) =

∨
{kλ : λ ∈ Ba(µ)}.
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Therefore, Ba(µ1) = Ba(µ). Since every f ∈ P 2(µ) satisfies f = f̂ a.e. on the set
of bpe’s and Ba(µ) is connected, there is no nontrivial characteristic function in
P 2(µ1). Hence P∞(µ1) has no L∞-summand and hence P∞(µ1) = H∞(Ba(µ1))
([4], Sarason’s Theorem 7.1, p. 301). There exists ϕ0 ∈ P∞(µ1) such that on
Ba(µ1) we have ϕ = ϕ0. Since P 2(µ1) =

∨
{kλ : λ ∈ Ba(µ)} we have ϕ ∈ P∞(µ1).

Now let f ∈ P 2(µ)∩L∞(µ). Then writingX = Mf in the previous paragraph
we conclude that f = ϕ on ∆′ and f = h + ψ on ∆, where h = X211 ∈ L2(µ0).
Because f ∈ L∞(µ) and ψ ∈ L∞(µ0) we have h ∈ L∞(µ). Hence h ∈ L∞(µ0). We
can now write f = χ∆′f+χ∆f and therefore P 2(µ)∩L∞(µ) ⊂ P∞(µ1)⊕L∞(µ0),
thus (4.1) holds.

As a result of the above theorem we obtain the main result of [9] when µ

is an m-measure. This result can be extended by Thomson’s Theorem to P t(µ).
We also investigate the commutant of Sµ for P t(µ) (t > 1). First we recall several
useful theorems.

Theorem 4.4. Let µ be a positive measure and let t > 1. Then there exists
a Borel partition {∆0,∆} of the support of µ such that

P t(µ) = Lt(µ|∆0)⊕ P t(µ|∆)

and P t(µ|∆) contains no Lt summand.

Proof. See [12], Theorem 1.2.

Thomson’s Theorem. If µ is any compactly supported measure on C and
Sµ is multiplication by z on P t(µ), then there exists a Borel partition {∆i}∞i=0 of
the support of µ such that if µn = µ|∆n then the following statements are true:

(a)

(4.2) P t(µ) = Lt(µ0)⊕
( ∞⊕
i=1

P t(µi)
)
;

(b) if n > 1, then P t(µn) is irreducible; that is, P t(µn) contains no nontrivial
characteristic functions;

(c) if n > 1 and Ωn = Bta(µn), then Ωn is a simply connected region with
supp (µn) ⊂ cl Ωn;

(d) if Sµ is pure (that is ∆0 = ∅) and f ∈ P t(µ) such that f vanishes a.e.
[µ] on Bta(µ), then f = 0. Equivalently,

∨
{kλ : λ ∈ Bta(µ)} = P s(µ) ( 1

t + 1
s = 1).

(e) If Sµ is pure, then the map f → f̂ is a dual algebra isomorphism of
P t(µ) ∩ L∞(µ) onto H∞(Bta(µ)).

Remark. By part (d) of Thomson’s Theorem and the fact that for every
λ ∈ Bt(µ), dim ker(Sµ − λ)∗ = 1, we conclude that if P t(µ) is pure it is a Banach
space of functions with B(P t(µ)) = Bt(µ).
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Theorem 4.5. Let µ be a measure such that P t(µ) is pure. If {Wi}∞i=1 are

the components of Bta(µ), then there is a partition {∆i}∞i=1 of suppµ such that

(4.3) P t(µ) =
∞⊕
i=1

P t(µi)

where µi = µ|∆i, each P t(µi) is irreducible and ∆i ⊂W i.

Proof. See the proof of part (a) of Thomson’s Theorem in the pure case ([12],

Theorem 5.8).

Theorem 4.6. Let µ be a measure such that P t(µ) is pure relative to the

decomposition (4.3). If X ∈ {Sµ}′ = P t(µ) ∩ L∞(µ) then

X =


Mφ1 0 · · ·

0 Mφ2 · · ·
0 0 · · ·
0 0 · · ·
0 0 · · ·


where each φi, i = 1, 2, . . ., belongs to P t(µi) ∩ L∞(µi). If P t(µ) is pure and the

direct sum in (4.3) is finite that is

P t(µ) =
n⊕
i=1

P t(µi), n > 1,

then P t(µ) ∩ L∞(µ) =
n⊕
i=1

(P t(µi) ∩ L∞(µi)).

Proof. Since W i ∩ Wj = ∅ for i 6= j and σ(M i
z) ⊂ W i by Theorem 2.2.

Xij = 0 for i 6= j. Since Xii ∈ {M i
z}′, i ∈ N, then Xii = Mφi

for some φi ∈
P t(µi) ∩ L∞(µi).

Theorem 4.7. If the decomposition in (4.2) is finite, that is

P t(µ) = Lt(µ0)⊕
( n−1⊕
i=1

P t(µi)
)
, n > 1,

then P t(µ) ∩ L∞(µ) = L∞(µ)⊕
( n−1⊕
i=1

P t(µi) ∩ L∞(µi)
)
.
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Proof. In this case if X ∈ {Sµ}′, then X = Mφ for some φ ∈ P t(µ)∩L∞(µ).
On the other hand

X =



Mφ0 X01 X02 X03 · · · X0n−1

0 Mφ1 0 0 · · · 0
0 0 Mφ2 0 · · · 0
...

. . . . . . . . . . . .
...

0 0 0 0 · · · Mφn−1


.

Therefore

φ = (φ0 +X01(1) +X02(1) + · · ·+X0n−1(1))χ∆0 + φ1χ∆1 + · · ·+ φn−1χ∆n−1 .

Since φ0 ∈ L∞(µ0) and φ ∈ L∞(µ) we have X01(1) +X02(1) + · · ·+X0n−1(1) ∈
L∞(µ0). Because each φi ∈ P t(µi) ∩ L∞(µi) for 0 < i < n,

P t(µ) ∩ L∞(µ) ⊂ L∞(µ)⊕
( n−1⊕
i=1

P t(µi) ∩ L∞(µi)
)
.

The reverse inclusion is obvious.
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