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Abstract. One can associate asymptotic approximates G∞ and H∞ with
each nilpotent Lie group G and pure m-th order weighted subcoercive oper-
ator H by a scaling limit. Then the semigroups S and S(∞) generated by H

and H∞, on the spaces Lp(G), p ∈ [1,∞], satisfy lim
t→∞

‖St − S
(∞)
t ‖p→p = 0

if, and only if, G = G∞. If G 6= G∞ then lim
t→∞

‖Mf (St − S
(∞)
t )‖p→p = 0

on the spaces Lp(g), where g denotes the Lie algebra of G, and Mf denotes
the operator of multiplication by any bounded function which vanishes at
infinity.
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1. INTRODUCTION

The local structure of subelliptic semigroups acting on Lie groups is now well
understood but many open questions remain concerning the global behaviour.
Our aim is to analyze the asymptotic properties of the semigroup S generated
by weighted subcoercive operators H acting on a nilpotent group G. There have
been three approaches to the large-time behaviour. The first approach has been
through bounds on the semigroup kernel. This has been particularly effective for
second-order operators on groups with polynomial growth (see [10] for background
and references to earlier work or [7] for recent results). The second approach is
through an asymptotic expansion of the kernel. This method, proposed and devel-
oped by Nagel, Ricci and Stein ([9]), is restricted to nilpotent groups but applies
to operators of arbitrary order with different weights in different directions. It
identifies the leading term of the asymptotic expansion as the semigroup kernel
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K(∞) associated with the semigroup S(∞) generated by an asymptotic approxi-
mant H∞ of H which acts on a homogeneous group G∞ related to G by a scaling
limit. Subsequent terms in the expansion are given by derivatives of K(∞). The
third approach, which we analyze in the sequel, is closely related to the Nagel-
Ricci-Stein method and is again restricted to nilpotent groups. It compares the
asymptotic orbits of S and S(∞) in a manner analogous to the comparison of
the free and interacting evolutions in quantum-mechanical scattering theory. The
analogy with scattering theory is, however, only superficial as the semigroups S
and S(∞) are asymptotically close in a uniform topology. A better analogy is given
by homogenization theory of periodic systems on Rd (see, for example, [2]). In this
theory the periodic dynamics is approximated by an homogenized dynamics which
is defined by a complex non-linear averaging algorithm. The evolution semigroup
of the homogenized system can then be shown to approximate the evolution semi-
group of the periodic system, with respect to the norm on the Lp(Rd)-spaces, for
large times ([1]).

A simple example of semigroup comparison in a uniform topology is given
by the Heisenberg group G. The Lie algebra of this group has a basis a1, a2, a3

satisfying [a1, a2] = a3 with all other commutators zero. Let H = −A2
1 −A2

2 −A2
3

denote the Laplacian formed from the representatives Ai of the ai in the left
regular representation of G on L2(G). The asymptotic approximants are given
by G∞ = G and H∞ = −A2

1 − A2
2, i.e., the sublaplacian of the algebraic basis

a1, a2. Then one verifies by a straightforward calculation that the corresponding
semigroups satisfy lim

t→∞
‖St−S(∞)

t ‖2→2 = 0. Thus the evolutions corresponding to
the two distinct dynamics are asymptotically close with respect to the L2-norm,
and even with respect to the Lp-norms. (For further details see Examples 2.10
and 4.3 below.) The interest in this conclusion lies with the uniform convergence.

In this example G∞ coincides with G but in general G∞ 6= G and this
introduces an interesting dichotomy of behaviour which is a central focus of the
following analysis. If G = G∞ then the semigroups S and S(∞) can be compared
on the spaces Lp(G) but if G 6= G∞ one can still compare S and S(∞) by pulling
back to the Lp-spaces over the Lie algebras g and g∞ because these coincide as
vector spaces. One of our principal results is that the difference of the pulled back
semigroups converges to zero uniformly on Lp as t→∞ if, and only if, G = G∞.
Note that kernel bounds immediately imply that each of the semigroups converges
strongly to zero as t → ∞ and hence the difference also converges to zero. But
the uniform convergence is a much stronger statement about the comparability
of the asymptotic orbits of the two dynamical semigroups. Even if G 6= G∞ the
asymptotic orbits are uniformly close locally, but not globally. More specifically,
if the difference of the pulled back semigroups is multiplied with any bounded
measurable function which vanishes at infinity, then the product tends to zero
uniformly as t → ∞ on any Lp-space. In order to formulate our results more
precisely it is necessary to introduce some definitions and notation.

Let G be a connected, simply connected, d-dimensional nilpotent Lie group
with Lie algebra g and a1, . . . , ad′ an algebraic basis of g, i.e., a set of linearly inde-
pendent elements which together with their multi-commutators span g. Moreover,
let w1, . . . , wd′ ∈ N be weights associated with the different directions in g. The
algebraic basis with these weights is called a weighted algebraic basis. For further
details of these and subsequent definitions we refer to [4] and [5].



Asymptotics of subcoercive semigroups on nilpotent Lie groups 83

We need the following multi-index notation for commutators and products.
If N ∈ N set

J(N) =
∞⋃

n=0

{1, . . . , N}n and J+(N) =
∞⋃

n=1

{1, . . . , N}n.

Then for α = (i1, . . . , in) ∈ J(d′) set the unweighted length |α| = n, the weighted
length ‖α‖ = wi1 + · · ·+ win and, if n > 1, introduce the multi-commutator

a[α] = [ai1 , [. . . [ain−1 , ain
] . . .]]

of weighted order ‖α‖. Next for each k ∈ N let

(1.1) g(k) = span{a[α] : α ∈ J+(d′), ‖α‖ > k}

be the ideal spanned by all multi-commutators of order at least k. Since g is
nilpotent, there exists a unique r ∈ N such that g(r) 6= {0}, but g(r+1) = {0}. We
call r the weighted rank of the Lie algebra g given the weighted algebraic basis
a1, . . . , ad′ .

For k ∈ N, let ak be a vector subspace of g such that g(k) = g(k+1) ⊕ ak

and hence g =
r⊕

k=1

ak. Next, for all t > 0 introduce the linear maps γt : g → g

such that γt(a) = tka for all a ∈ ak and k ∈ N. Moreover, define the Lie bracket
[ · , · ]t : g× g → g by

[a, b]t = γ−1
t [γt(a), γt(b)].

Then the Lie bracket [ · , · ]∞ = lim
t→∞

[ · , · ]t exists and

[ak, al]∞ ⊆ ak+l

for all k, l ∈ N. The Lie algebra (g, [ · , · ]∞) is homogeneous with respect to the
group of dilations used in the construction and the graded subspaces ak correspond
to the eigenspaces of the dilations. We use the shorthand notation g∞(a) for
(g, [ · , · ]∞) and call g∞(a) an asymptotic Lie algebra. The definition of g∞(a)
clearly depends on the choice of the family a of subspaces ak, but different choices
lead to isomorphic asymptotic Lie algebras. If the particular choice of g∞(a) within
the set of asymptotic Lie algebras is not significant, we simplify the notation by
writing g∞.

Next, let b1, . . . , bd be a vector space basis for g passing through a1, . . . , ar

and with order respecting the order of the ak, i.e., if dkl
= dim al then b1, . . . , bk1 is

a basis of a1, bdk1+1, . . . , bdk1+k2
a basis of a2 etc. Assign weights v1, . . . , vd where

vi = k if bi ∈ ak. Then, by definition,

[bi, bj ]∞ = πvi+vj
([bi, bj ])

for all i, j ∈ {1, . . . , d}, where πk : g → ak is the projection onto the k-th compo-

nent of the decomposition g =
∞⊕

l=1

al. We define the modulus | · | on g by

∣∣∣∣ d∑
i=1

ξibi

∣∣∣∣2v

=
d∑

i=1

|ξi|2v/vi ,
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where v = lcm(1, . . . , r). Finally, if b =
d∑

i=1

ξibi ∈ g and α = (i1, . . . , in) ∈ J(d) set

bα = ξi1 . . . ξin
.

Let U be a continuous representation of G in a Banach space X . If a ∈ g let
dU(a) be the generator of the one-parameter group t 7→ U(exp(−ta)). Then, set
Ai = dU(ai) for i ∈ {1, . . . , d′} and use the multi-index notation Aα = Ai1 · · ·Ain

for α = (i1, . . . , in) ∈ J(d′). For each n ∈ N \ 0 set X ′
n = X ′

n(U) =
⋂

‖α‖6n

D(Aα)

with norm
‖x‖′n = ‖x‖′U,n = max

α∈J(d′)
‖α‖6n

‖Aαx‖.

Further set X∞ =
∞⋂

n=1
X ′

n. The left regular representation of G on a function space

is denoted by L, or LG, and the spaces and norms associated with the left regular
representation on Lp(G) are denoted by L′p,n and ‖ · ‖′p,n etc.

Let m ∈ N. Then a form of order m is a function C : J(d′) → C such that
C(α) = 0 for all α ∈ J(d′) with ‖α‖ > m and, moreover, there exists an α with
‖α‖ = m and C(α) 6= 0. The form is called homogeneous of order m if, in addition,
C(α) = 0 for all α with ‖α‖ < m.

The adjoint form C† is defined by C†(α) = (−1)|α|C(α∗) where α∗ is the
reverse of α, i.e., if α = (i1, . . . , in) then α∗ = (in, . . . , i1), and the bar denotes
complex conjugation. Moreover, C is called self-adjoint if C = C†. In the sequel
we write cα = C(α).

Given the representation U we consider the m-th order operator

dU(C) =
∑

α∈J(d′)

cαA
α

with domain D(dU(C)) = X ′
m. The form C is called a G-weighted subcoercive

form and the operator dU(C) a G-weighted subcoercive operator if first m ∈ 2wiN
for all i ∈ {1, . . . , d′} and secondly there exist µ > 0 and ν ∈ R such that

Re(ϕ,dLG(C)ϕ) > µ(‖ϕ‖′2,m/2)
2 − ν‖ϕ‖2

2

for all ϕ ∈ C∞
c (G), i.e., the operator dLG(C) satisfies a G̊arding inequality on

L2(G). (For many equivalent descriptions of G-weighted subcoercive forms we
refer to [5], Sections 4 and 10.) It then follows from Theorem 1.1 of [5] that the
closure dU(C) generates a holomorphic semigroup on X . Moreover, this semigroup
has a smooth, rapidly decreasing kernel.

Unfortunately, we need a slightly stronger condition on the coefficients of
the operator. Let g̃ = g(d′, r, w1, . . . , wd′) be the weighted nilpotent Lie algebra
with d′ generators ã1, . . . , ãd′ and weights w1, . . . , wd′ which is free of step r, i.e.,
it is equal to the quotient G/I where G is the free Lie algebra in d′ generators,
with the i-th generator given the weight wi, and I is the ideal spanned by the
multi-commutators of weighted order strictly larger than r. (See also [9] and [5],
Example 2.7.) Let G̃ be the connected, simply connected, Lie group with Lie
algebra g̃. Throughout the sequel we assume that C is a homogeneous m-th order
G̃-weighted subcoercive form. Then, it follows from [5], Proposition 11.3, that
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C is also a G-weighted subcoercive form. Let K be the kernel of the semigroup
S generated by the closure of the operator H = dLG(C). Then K is a smooth
rapidly decreasing function on G.

Next, we need analogous concepts associated with the asymptotic Lie algebra
g∞(= g∞(a)). Let G∞ be the connected, simply connected, Lie group with Lie
algebra g∞. Define H∞ by

H∞ =
∑

α∈J(d′)

cαdLG∞(aα)

where dLG∞(aα) = dLG∞(a1) · · ·dLG∞(an) if α = (i1, . . . , in) and ai = πwi(ai)
for all i ∈ {1, . . . , d′}. The domain of H∞ equals D(H∞) =

⋂
‖α‖6m

D(dLG∞(aα)).

Since the ai do not necessarily form an algebraic basis of g∞, e.g., some of the
ai could be zero, one has to exercise some caution. We shall show in Section 3
that the operator H∞ is a G∞-weighted subcoercive operator with respect to a
different form and weighted algebraic basis in g∞. It then follows from [5] that
the closure of H∞ generates a holomorphic semigroup S(∞) with a smooth kernel
K(∞) on G∞.

The first theorem compares the kernels K and K(∞) together with their
subelliptic derivatives. For i ∈ {1, . . . , d′} set A

(∞)

i = dLG∞(ai) = dLG∞(πwi
(ai)).

Moreover, set D =
d∑

i=1

vi.

Theorem 1.1. For all α ∈ J(d′) there exist c, τ > 0 such that∣∣(AαKt)(exp a)− (A
(∞)α

K
(∞)
t )(exp∞ a)

∣∣ 6 ct−(D+‖α‖)/mt−1/me−τ(|a|mt−1)1/(m−1)

uniformly for all t > 1 and a ∈ g.

Here exp∞ : g∞ → G∞ is the exponential map and the estimates are valid
for all possible choices of g∞. Moreover, we assume that the Haar measure on G
(respectively G∞) is normalized such that it is the image measure of the Lebesgue
measure on g = g∞ under exp (respectively exp∞). For a special class of g∞(a)
(see Section 3) Nagel-Ricci-Stein ([9]) showed that a 7→ (A

(∞)α
K

(∞)
t )(exp∞ a) is

the first term in the asymptotic expansion of a 7→ (AαKt)(exp a) in powers of
t−1/m. Theorem 1.1 establishes that the difference of these kernels is bounded by
a Gaussian times t−1/m for all large t.

If g = g∞ this immediately implies that the semigroup St converges uniformly
to S(∞).

Theorem 1.2. If for a particular choice of a one has g = g∞(a) as Lie
algebras, then the semigroup S(∞) corresponding to this choice satisfies lim

t→∞
‖St−

S
(∞)
t ‖p→p = 0 for all p ∈ [1,∞]. More specifically, there exists a c > 0 such that

‖St − S
(∞)
t ‖p→p 6 ct−1/m

uniformly for all t > 1 and p ∈ [1,∞].

We next consider the general case in which the Lie algebras g and g∞(a) are
distinct. Since g = g∞(a) as vector spaces, for all possible choices of a one can use



86 Nick Dungey, A.F.M. ter Elst, Derek W. Robinson and Adam Sikora

the exponential maps to compare S and S(∞). Define Ŝt, Ŝ
(∞)
t : Lp(g) → Lp(g)

for each t > 0 and p ∈ [1,∞] by

(Ŝtϕ)(a) =
(
St(ϕ ◦ log)

)
(exp a)

(Ŝ(∞)
t ϕ)(a) =

(
S

(∞)
t (ϕ ◦ log∞)

)
(exp∞ a)

for all ϕ ∈ Lp(g). Here log and log∞ are the inverse of exp and exp∞, respectively.

Theorem 1.3. If g 6= g∞ as Lie algebras, then there is a b > 0 such that

lim inf
t→∞

‖Ŝt − Ŝ
(∞)
t ‖p→p > b

for all p ∈ [1,∞]. Moreover, if C is self-adjoint one may choose b = 1.

It follows immediately from these results that

lim
t→∞

‖Ŝt − Ŝ
(∞)
t ‖p→p = 0

if, and only if, g = g∞(a) as Lie algebras. Nevertheless, the uniform convergence
of S to S(∞) is very nearly true. For any bounded measurable function f : g → C,
define the multiplication operator Mf on Lp(g) by

(Mfϕ)(a) = f(a)ϕ(a).

We say that f vanishes at infinity if for each ε > 0 there exists a compact set
Ω ⊂ g such that |f(a)| < ε for all a ∈ g \ Ω.

Theorem 1.4. If f : g → C is a bounded measurable function which vanishes
at infinity then

lim
t→∞

‖Mf (Ŝt − Ŝ
(∞)
t )‖p→p = 0

uniformly for all p ∈ [1,∞].

We illustrate the theorems with an example.

Example 1.5. Let g be the five dimensional nilpotent Lie algebra with basis
a1, . . . , a5 and commutation relations [a2, a3] = a4, [a2, a4] = a5 and [a1, a2] = a5.
Give all directions weight one, i.e., wi = 1 for all i ∈ {1, . . . , 5}. Then g(1) = g,
g(2) = span{a4, a5} and g(3) = span{a5}. We choose a1 = span{a1, a2, a3},
a2 = span{a4} and a3 = span{a5} and basis bi = ai for all i. Then [b1, b2]∞ =
lim

t→∞
γ−1

t [γt(b1), γt(b2)] = lim
t→∞

γ−1
t (t2b5) = 0 6= [b1, b2]. So [ · , · ]∞ 6= [ · , · ]. Ac-

cording to Theorem 1.3, one has lim inf
t→∞

‖Ŝt − Ŝ
(∞)
t ‖p→p 6= 0 for any p ∈ [1,∞],

for any choice of the operator H. On the other hand, one has lim
t→∞

‖Mf (Ŝt −

Ŝ
(∞)
t )‖p→p = 0 for any bounded measurable function f : g → C which vanishes at

infinity.

The asymptotic estimates on the semigroup S will be deduced from estimates
on the kernel K. The initial kernel estimates are derived from an asymptotic ex-
pansion of K, in terms of the kernel K(∞) of S(∞), given by Nagel, Ricci and
Stein ([9]). Their procedure is based on comparison of G and G∞ with the larger
free group G̃. A similar method was used in [6] to obtain Gaussian bounds on
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K and its derivatives in the unweighted case via transference. The Nagel-Ricci-
Stein analysis uses a particular type of asymptotic Lie algebra which has an extra
form of homogeneity. Analysis of the general situation requires examination of the
isomorphism relating the various asymptotic algebras. Combination of these tech-
niques establish Theorem 1.1. The estimates of Theorem 1.4, when g 6= g∞(a), go
beyond simple bounds on the difference of the kernels and require more detailed
analysis of the algebraic structure. The relative difficulty of the two cases is anal-
ogous to the complexity of analysis of elliptic operators with variable coefficients
in contrast to operators with constant coefficients.

In Section 2 we introduce the algebraic concepts required and recall various
essential results from [9]. In Section 3 we give the full definition of the operatorH∞
and derive the estimates on the associated semigroup kernels. Then in Section 4 we
give the detailed proofs of Theorems 1.3 and 1.4. We also discuss some similarities
with the limit t→ 0.

2. ALGEBRAIC STRUCTURE

In this section we first examine a special choice of the ak which gives an intrinsic
description of g∞(a) particularly suited to the derivation of asymptotic Gaussian
kernel bounds. The definition is given in Section 3 of Nagel, Ricci and Stein
([9]). We repeat their construction and relate these special algebras to the general
asymptotic Lie algebras. For the convenience of the reader we give new proofs
for some of their results. Subsequently, we discuss some properties of general
asymptotic Lie algebras, their relation with the special Nagel-Ricci-Stein class and
the possible equality g = g∞(a) which is significant for the asymptotic behaviour
of the subcoercive semigroups.

Set d̃ = dim g̃. Let (γ̃t)t>0 be the canonical dilations on the homogeneous
Lie algebra g̃ and for all k ∈ N set ãk = {ã ∈ g̃ : γ̃t(ã) = tkã for all t > 0} =
span{ã[α] : ‖α‖ = k}. Then, if g̃(k) are defined by (1.1) relative to g̃, one has
g̃(k) = g̃(k+1) ⊕ ãk for all k ∈ N. Let π̃k : g̃ → ãk be the projection. If Λ : g̃ → g is
the Lie algebra homomorphism such that Λ(ãi) = ai for all i ∈ {1, . . . , d′} then it
is not hard to see that

(2.1) g(k) = Λ(g̃(k))

for all k ∈ {1, . . . , r}. Let i = Λ−1(0) and define

i∞ =
r⊕

k=1

π̃k(i ∩ g̃(k)).

Since the restriction π̃k

∣∣i ∩ g̃(k) of π̃k has kernel i ∩ g̃(k+1) and image π̃k(i ∩ g̃(k)),
it follows that dim π̃k(i ∩ g̃(k)) = dim(i ∩ g̃(k)) − dim(i ∩ g̃(k+1)) for all k ∈ N.
Therefore

(2.2)
dim i∞ =

r∑
k=1

dimπk(i ∩ g̃(k)) =
r∑

k=1

dim(i ∩ g̃(k))− dim(i ∩ g̃(k+1))

= dim(i ∩ g̃(1)) = dim i.



88 Nick Dungey, A.F.M. ter Elst, Derek W. Robinson and Adam Sikora

Lemma 2.1. ([9]) The space i∞ is an ideal in g̃.

Proof. Let j, k ∈ {1, . . . , r}, w ∈ ãj and v ∈ i ∩ g̃(k). Then [w, π̃kv] ∈ i∞ by
the following argument. Obviously [w, π̃kv] ∈ ã(j+k) and [w, v] ∈ i∩g̃(j+k) since i is
an ideal in g̃. Moreover, since v− π̃kv ∈ g̃(k+1) one has [w, v]− [w, π̃kv] ∈ g̃(j+k+1).
Therefore [w, π̃kv] = π̃j+k[w, π̃kv] = π̃j+k[w, v] ∈ π̃j+k(i ∩ g̃(j+k)) ⊆ i∞.

Lemma 2.2. ([9]) If k ∈ N then Λπ̃k(i ∩ g̃(k)) ⊆ g(k+1).

Proof. Let v ∈ i ∩ g̃(k). Since Λv = 0 and v − π̃kv ∈ g̃(k+1), it follows from
(2.1) that Λπ̃kv = Λ(π̃kv − v) ∈ g(k+1).

Next, for all k ∈ {1, . . . , r} let h̃k be a vector subspace of ãk such that

ãk = h̃k ⊕ π̃k(i ∩ g̃(k))

and set h̃ =
r⊕

k=1

h̃k. Then dim h̃ = d by (2.2), since obviously

g̃ = h̃⊕ i∞.

The second statement of the next lemma states that the same decomposition is
also valid for the ideal i instead of i∞.

Lemma 2.3. ([9]) (i) The restriction Λ|h̃ : h̃ → g is a bijection.
(ii) g̃ = h̃⊕ i.

(iii) g(k) =
r⊕

l=k

Λ(h̃l) for all k ∈ {1, . . . , r}.

Proof. We first show that

(2.3) g(k) = Λ
( r⊕

l=k

h̃l

)
for all k ∈ N. This equality is trivial if k > r+1. Moreover, Λ

( r⊕
l=k

h̃l

)
⊆ Λ(g̃(k)) =

g(k) for all k ∈ N. Now let k ∈ {1, . . . , r} and suppose that g(k+1) = Λ
( r⊕

l=k+1

h̃l

)
.

Since g̃(k) = h̃k⊕ π̃k(i∩ g̃(k))⊕ g̃(k+1), it follows from Lemma 2.2 and the induction
hypothesis that

g(k) = Λ(g̃(k)) = Λ(h̃k) + Λ(π̃k(i ∩ g̃(k))) + Λ(g̃(k+1))

⊆ Λ(h̃k) + g(k+1) + g(k+1) = Λ(h̃k) + Λ
( r⊕

l=k+1

h̃l

)
= Λ

( r⊕
l=k

h̃l

)
and (2.3) follows by induction. Setting k = 1 in (2.3) gives Λ(h̃) = g. Since
dim h̃ = dim g̃− dim i∞ = dim g̃− dim i = dim g, statement (i) follows.

Since Λ is injective on h̃ and i = ker Λ, one has h̃ ∩ i = {0}. Therefore
statement (ii) follows from a dimension consideration.

Finally, the injectivity of Λ on h̃ together with (2.3) yield statement (iii).
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Now the appropriate choice of the ak is evident. Set a
(I)
k = Λ(h̃k) for each

k ∈ {1, . . . , r}. Then g(k) =
r⊕

l=k

a
(I)
l . Define γ(I)

t , [ · , · ](I)
t , [ · , · ](I)

∞ and g∞(a(I))

with respect to the family of subspaces a
(I)
k . We call g∞(a(I)) an ideal asymptotic

Lie algebra.
Define the linear map Λ∞ : g̃ → g∞(a(I)) by

Λ∞|h̃ = Λ|h̃ and Λ∞|i∞ = 0.

Next introduce the projections π(I)
k : g → a

(I)
k for all k ∈ {1, . . . , r}.

One has the following connection between Λ and Λ∞.

Lemma 2.4. If k ∈ {1, . . . , r} and ã ∈ ãk then π
(I)
k Λã = Λ∞ã.

Proof. If v ∈ h̃k then Λv ∈ Λ(h̃k) = a
(I)
k . Therefore π(I)

k Λv = Λv = Λ∞v.
Alternatively, if v ∈ π̃k(i ∩ g̃(k)) then Λv ∈ g(k+1) by Lemma 2.2. Hence π(I)

k Λv =
0 = Λ∞v. Now the lemma follows by linearity.

Proposition 2.5. ([9]) The map Λ∞ is a Lie algebra homomorphism from
g̃ onto g∞(a(I)). Hence each g∞(a(I)) is isomorphic to g̃/i∞ as Lie algebras.

Proof. Let j, k ∈ {1, . . . , r}, v ∈ ãj and w ∈ ãk. Then it follows from
Lemma 2.4 that

[Λ∞v,Λ∞w](I)
∞ = [π(I)

j Λv, π(I)
k Λw](I)

∞ = π
(I)
j+k[π(I)

j Λv, π(I)
k Λw] = π

(I)
j+k[Λv,Λw],

where the last equality follows because [π(I)
j Λv, π(I)

k Λw] − [Λv,Λw] ∈ g(j+k+1).
Since Λ is a homomorphism, it follows that

[Λ∞v,Λ∞w](I)
∞ = π

(I)
j+kΛ([v, w]) = Λ∞([v, w])

by another application of Lemma 2.4. Thus Λ∞ is a homomorphism from g̃ to
g∞(a(I)). But Λ∞(g̃) = Λ∞(h̃) = Λ(h̃) = g by Lemma 2.3 (i). So Λ∞ is onto. The
second statement is easy.

The next result establishes that there are asymptotic Lie algebras which are
not ideal. The ideal asymptotic algebras are characterized by additional homo-
geneity properties.

Lemma 2.6. Let g∞(a) be an asymptotic Lie algebra. The following condi-
tions are equivalent:

(i) g∞(a) is an ideal asymptotic Lie algebra.
(ii) ak ⊆ span{a[α] : α ∈ J(d′), ‖α‖ = k} for all k ∈ N.

Proof. First note that

Λ(ãk) = span
{
a[α] : α ∈ J(d′), ‖α‖ = k

}
for all k ∈ N. But a

(I)
k = Λ(h̃k) ⊆ Λ(ãk) for all k and hence condition (i) implies

condition (ii).
Next assume condition (ii) holds and let k ∈ N. Then ak ⊆ Λ(ãk) by as-

sumption. Hence there exists a subspace h]
k ⊆ ãk such that dim h]

k = dim ak
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and Λ(h]
k) = ak. Then the restriction Λ|h]

k is injective. So if we can prove that
h]

k∩ π̃k(i∩ g̃(k)) = {0}, then h]
k⊕ π̃k(i∩ g̃(k)) = ãk and g∞(a) is an ideal asymptotic

Lie algebra.
Let k ∈ N and a ∈ h]

k ∩ π̃k(i ∩ g̃(k)). Then Λ(a) ∈ Λ(h]
k) = ak. Moreover,

Λ(a) ∈ Λπ̃k(i ∩ g̃(k)) ⊆ g(k+1) by Lemma 2.2. Hence Λ(a) ∈ ak ∩ g(k+1) = {0}.
Since Λ|h]

k is injective, one deduces that a = 0. So h]
k ∩ π̃k(i ∩ g̃(k)) = {0}.

The general asymptotic Lie algebra g∞(a) constructed in the introduction
and the ideal asymptotic Lie algebra g∞(a(I)) are automatically isomorphic. In
particular, the linear map Φ : g∞(a(I)) → g∞(a) defined such that

Φ(a) = πk(a)

for all k ∈ N and a ∈ a
(I)
k is an explicit isomorphism. This is established in the

next lemma.
Now introduce a(I)

i = π
(I)
wi ai for all i ∈ {1, . . . , d′} and define a linear map

Ψ : g → g to be super-homogeneous if Ψ(g(k)) ⊆ g(k+1) for all k ∈ N.

Lemma 2.7. (i) The map Φ is a Lie algebra isomorphism.
(ii) The map a 7→ Φ(a)− a is super-homogeneous.
(iii) Φ(Λ∞ãi) = Φ(a(I)

i ) = ai for all i ∈ {1, . . . , d′}.

Proof. For the super-homogeneity, it suffices to show that (Φ − I)(a(I)
k ) ⊆

g(k+1) for each k ∈ N. If k ∈ N and v ∈ a
(I)
k , then Φ(v) − v = πk(v) − v ∈ g(k+1)

since v ∈ g(k). This proves statement (ii). Moreover, Φ is surjective.
Let j, k ∈ {1, . . . , r}, v ∈ a

(I)
j and w ∈ a

(I)
k . Then

[Φ(v),Φ(w)]∞ = [πjv, πkw]∞ = πj+k([πjv, πkw]) = πj+k([v, w])

where the last equality holds because [v, w]− [πjv, πkw] ∈ g(j+k+1). On the other
hand, [v, w](I)

∞ ∈ a
(I)
j+k and therefore

Φ([v, w](I)
∞ ) = πj+k([v, w](I)

∞ ) = πj+k([v, w])

using the fact that [v, w] − [v, w](I)
∞ ∈ g(j+k+1). This shows that Φ is a homo-

morphism from g∞(a(I)) to g∞(a). Since Φ is surjective, it follows that Φ is an
isomorphism.

Next we prove statement (iii). The first equality follows from Lemma 2.4.
Let i ∈ {1, . . . , d′}. Since a(I)

i ∈ a
(I)
wi and ai − a

(I)
i = ai − π

(I)
wi ai ∈ g(wi+1), one

deduces that
Φ(a(I)

i ) = πwi
(a(I)

i ) = πwi
(ai) = ai

and the second equality of statement (iii) is proved.

The ai used in the definition of the limit operator H∞ do not form an
algebraic basis as they are not necessarily independent. This problem can be
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circumvented as follows. Since ai ∈
r⋃

k=1

ak for all i ∈ {1, . . . , d′}, there exist

d′′ ∈ {1, . . . , d′} and linearly independent a(∞)
1 , . . . , a

(∞)
d′′ ∈

r⋃
k=1

ak such that

span{a(∞)
1 , . . . , a

(∞)
d′′ } = span{a1, . . . , ad′}.

For all i ∈ {1, . . . , d′′} set w(∞)
i = vk if a(∞)

i ∈ ak. Then γt(a
(∞)
i ) = tw

(∞)
i a

(∞)
i for

all t > 0.

Lemma 2.8. a
(∞)
1 , . . . , a

(∞)
d′′ is an algebraic basis for g∞(a).

Proof. Let h be the smallest Lie subalgebra of g∞(a) which contains a(∞)
1 , . . . ,

a
(∞)
d′′ . Then Φ(Λ∞ãi) = ai ∈ h for all i ∈ {1, . . . , d′} and hence g∞(a) = Φ(Λ∞g̃) ⊆

h. Therefore a(∞)
1 , . . . , a

(∞)
d′′ is a weighted algebraic basis for g∞(a) with weights

w
(∞)
1 , . . . , w

(∞)
d′′ .

Finally we make three remarks about the possible identification g∞(a) = g

as Lie algebras.

Lemma 2.9. Let a = (ak) be a family of subspaces of g such that g(k) =
g(k+1) ⊕ ak for k ∈ {1, . . . , r}. The following are equivalent:

(i) The subspaces a are a graded family of g, i.e., [aj , ak] ⊆ aj+k for all
j, k ∈ N.

(ii) g = g∞(a) as Lie algebras.

Proof. It follows by construction that a is a graded family of g∞(a) and hence
condition (ii) implies condition (i). Conversely, the grading property of a implies
[a, b]t = [a, b] for all a, b ∈ g and all t > 0. Hence [a, b]∞ = [a, b] for all a, b ∈ g and
condition (ii) is valid.

There are, however, examples for which no choice of a ensures g = g∞(a) as
Lie algebras.

Example 2.10. Let g be the three-dimensional Heisenberg algebra with
basis a1, a2, a3 satisfying [a1, a2] = a3 and all other commutators zero. Consider
the algebraic basis a1, a2, a3 with weights 1, 1, 3. Then g(1) = g and g(2) = g(3) =
span{a3}. Hence for any possible choice of a there exist λ, µ ∈ R such that

a1 = span{a1 + λa3, a2 + µa3},

a2 = {0} and a3 = span{a3}. Then [a1, a1] 6⊆ a2 so no choice of a is graded.
Thus, there is no choice of a such that g = g∞(a) as Lie algebras. Another way of
verifying this is by the observation that the g∞(a) are abelian.

Even if one can choose a such that g = g∞(a) as Lie algebras, it is not
necessarily the case that g∞(a) is an ideal asymptotic Lie algebra.
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Example 2.11. Let g be the Lie algebra of dimension five with basis b1, . . . ,
b5 satisfying [b1, b2] = b3, [b1, b3] = b4 and all other commutators zero. Consider
the algebraic basis a1 = b1, a2 = b2 and a3 = b3 + b5 with all weights equal to
one. Then g(1) = g, g(2) = span{b3, b4}, g(3) = span{b4} and g(k) = {0} for k > 3.
Choosing a1 = span{b1, b2, b5}, a2 = span{b3}, a3 = span{b4} and ak = {0} for
k > 3, one has [ak, al] ⊆ ak+l for all k, l ∈ N and hence g = g∞(a) as Lie algebras.
But g∞(a) is not an ideal asymptotic Lie algebra because a1 6⊆ span{a[α] : |α| = 1},
i.e., the criterion of Lemma 2.6 is not satisfied.

Now let {ak} satisfy the equivalent conditions of Lemma 2.6 and consider
the associated asymptotic Lie algebra g∞(a). Since a1 ⊆ span{a1, a2, a3} and
dim a1 = 3 one must have a1 = span{a1, a2, a3}. Then

[a1, a3]∞ = π2([a1, a3]) = π2(b4).

But b4 ∈ g(3) so π2(b4) = 0. Hence

[a1, a3]∞ = 0 6= b4 = [a1, a3]

and consequently g 6= g∞(a) as Lie algebras.

3. KERNEL ESTIMATES

In this section we derive the asymptotic estimates on the semigroup kernels, i.e.,
we establish Theorem 1.1. First, however, we have to give a proper definition of the
operator H∞ which implies that the semigroup S(∞) and the kernel K(∞) exist.
We use the notation of Sections 1 and 2. Let G∞, G(I)

∞ and G̃ be the connected,
simply connected, Lie groups with Lie algebras g∞(a), g∞(a(I)) and g̃. We denote
the exponential maps by exp∞, exp(I)

∞ and ẽxp, respectively, with similar notation
for the logarithms.

Introduce the unitary representation U of G̃ in the Hilbert space L2(G∞)
by U(ẽxp ã) = LG∞(exp∞ ΦΛ∞ã). Note that dU(ãi) = dLG∞(ai) for all i ∈
{1, . . . , d′} by Lemma 2.7 (iii). Therefore H∞ = dU(C). Let d′′, a(∞)

i and w
(∞)
i

be as in Section 2. Then a
(∞)
1 , . . . , a

(∞)
d′′ is a weighted algebraic basis for g∞(a)

by Lemma 2.8. Hence (L2(G∞))∞(U) = L2,∞(G∞). By the construction of the
a
(∞)
i , there exist c(∞)

β ∈ C such that

dU(C)ϕ =
∑

β∈J(d′′)
‖β‖

w(∞)6m

c
(∞)
β A(∞)βϕ

for all ϕ ∈ L2,∞(G∞), where A(∞)
i = dLG∞(a(∞)

i ) and ‖β‖w(∞) = w
(∞)
i1

+· · ·+w(∞)
in

if β = (i1, . . . , in) ∈ J(d′′). Define the m-th order form C(∞) : J(d′′) → C by
C(∞)(β) = c

(∞)
β . Then dU(C)ϕ = dLG∞(C(∞))ϕ for all ϕ ∈ L2,∞(G∞). Since

U is a unitary representation it follows from [5], Theorem 9.2.III, that there exist
µ, ν > 0 such that

Re(ϕ,dLG∞(C(∞)ϕ)) = Re(ϕ,dU(C)ϕ) > µ (‖ϕ‖′U,m/2)
2 − ν‖ϕ‖2

2
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for all ϕ ∈ L2,∞(G∞). But, by inspection, one deduces that (L2(G∞))′m/2(U) =
L′2,m/2(G∞), where the last space is with respect to the weighted algebraic basis

a
(∞)
1 , . . . , a

(∞)
d′′ . Moreover, there exists a c > 0 such that

c‖ϕ‖′LG∞ ,m/2 6 ‖ϕ‖′U,m/2

for all ϕ ∈ L′2,m/2(G∞). Hence

Re(ϕ,dLG∞(C(∞))ϕ) > µc2(‖ϕ‖′LG∞ ,m/2)
2 − ν ‖ϕ‖2

2

for all ϕ ∈ L2,∞(G∞) and C(∞) is a G∞-weighted subcoercive form. Thus it follows
from [5] that H∞ generates a holomorphic semigroup S(∞) and that S(∞) has a
smooth kernel K(∞) on G∞. Define in a similar manner the operator

H(I)
∞ =

∑
α∈J(d′)

cαdL
G

(I)
∞

(a(I)α),

the semigroup S(I,∞) and the kernel K(I,∞) on G(I)
∞ .

At this point, the asymptotic operators and the kernels are well-defined and
we start with the proof of Theorem 1.1. This is based on the splitting

(3.1)

∣∣(AαKt)(exp a)− (A
(∞)α

K
(∞)
t )(exp∞ a)

∣∣
6

∣∣(AαKt)(exp a)− (A
(I,∞)α

K
(I,∞)
t )(exp(I)

∞ a)
∣∣

+
∣∣(A(I,∞)α

K
(I,∞)
t )(exp(I)

∞ a)− (A
(∞)α

K
(∞)
t )(exp∞ a)

∣∣,
where A

(I,∞)

i = dL
G

(I)
∞

(a(I)
i ) for all i ∈ {1, . . . , d′}. The two terms are estimated

separately. The estimate on the first term establishes the theorem for an ideal
asymptotic Lie algebra. Its proof is based on a lemma which can be extracted from
[9]. The bounds on the second term are a consequence of the super-homogeneity
of Φ.

Let H̃ = dLG̃(C) and let K̃ be the kernel of the semigroup S̃ generated by the
closure of H̃. Let b̃1, . . . , b̃d be a basis for h̃ passing through h̃1, . . . , h̃r with order
respecting the order of the h̃k. Set d̃k = dim i ∩ g̃(k) for each k ∈ {1, . . . , r + 1}.
Since i = i ∩ g̃(1), there exists a basis b̂d+1, . . . , b̂d̃ for i such that b̂d̃−d̃k+1, . . . , b̂d̃
is a basis for i ∩ g̃(k) for all k ∈ {1, . . . , r}. If d̃ − d̃k + 1 6 i 6 d̃ − d̃k+1, i.e., if
b̂i ∈ (i ∩ g̃(k))\(i ∩ g̃(k+1)), define b̃i = π̃k b̂i. Then,

(3.2) b̂i − b̃i ∈ g̃(k+1).

Note that b̃i 6= 0. As a result, b̃d+1, . . . , b̃d̃ are independent and form a basis
for i∞. Hence b̃1, . . . , b̃d, . . . , b̃d̃ is a basis for g̃. Set ṽi = k if b̃i ∈ ãk. Since
dim h̃k = dim a

(I)
k = dim ak for all k, it follows from the ordering of the basis bi

and the fact that the weights of bi depend only on the dim g(k) that ṽi = vi for all
i ∈ {1, . . . , d}. Define the modulus | · | on g̃ by∣∣∣∣ d̃∑

i=1

ξib̃i

∣∣∣∣2v

=
d̃∑

i=1

|ξi|2v/ṽi .
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Moreover, set D̃ =
d̃∑

i=1

ṽi. Since H̃ is a homogeneous operator on the homogeneous

group G̃ it follows from [5], Proposition 5.5, that for all α ∈ J(d̃) there exist c, τ > 0
such that

(3.3) |(B̃αK̃t)(ẽxp ã)| 6 ct−D̃/mt−‖α‖ṽ/me−τ(|ã|mt−1)1/(m−1)

uniformly for all t > 0 and ã ∈ g̃, where B̃i = dLG̃(̃bi) and ‖α‖ṽ = ṽi1 + · · ·+ ṽin

if α = (i1, . . . , in). Set b(I)
i = Λ(̃bi) for all i ∈ {1, . . . , d}. Then b

(I)
1 , . . . , b

(I)
d is a

basis for g
(I)
∞ .

Using the bases b(I)
1 , . . . , b

(I)
d and b̃1, . . . , b̃d̃, we fix the Lebesgue measure on

the vector spaces g = g∞(a(I)) and g̃. Then the Haar measures on G, G(I)
∞ and G̃

are normalized such that the exponential maps are measure preserving. Note that
the restrictions of the maps Λ and Λ∞ to h̃ have Jacobian equal to one. Define
the linear map Ψ : g̃ → g̃ such that

Ψ(̃bi) =
{

0 if i ∈ {1, . . . , d},
b̂i − b̃i if i ∈ {d+ 1, . . . , d̃}.

Then i = {b̃+Ψ(̃b) : b̃ ∈ i∞}. Moreover, the map Ψ is super-homogeneous, by (3.2).
The basic lemma relates the kernels K̃,K and K(I,∞).

Lemma 3.1. If t > 0 then

(3.4) (AαKt)(expΛã)=
∫
i

db̃ (ÃαK̃t)(ẽxp(ã+ b̃))=
∫
i∞

db (ÃαK̃t)(ẽxp(ã+ b̃+Ψ(̃b)))

and

(3.5) (A
(I,∞)α

K
(I,∞)
t )(exp(I)

∞ Λ∞ã) =
∫
i∞

db̃ (ÃαK̃t)(ẽxp(ã+ b̃))

for all ã ∈ h̃, t > 0 and α ∈ J(d′).

Proof. The result for the kernels, without derivatives, is stated in Section 1 of
[9] but it is not explicitly proved although its proof is implicit in the discussion of
Section 6. Note that the integrals in the lemma exist by the Gaussian bounds (3.3).

We only prove (3.4), the proof of (3.5) is similar. It follows as in [6], Lem-
ma 3.2, that ∫

G

dg ϕ(g)(AαKt)(g) =
∫
G̃

dg̃ ϕ(expΛl̃ogg̃)(ÃαK̃t)(g̃)

for all ϕ ∈ Cc(G), α ∈ J(d′) and t > 0. Hence∫
h̃

dã ψ(Λã)(AαKt)(expΛã) =
∫
g̃

dã ψ(Λã)(ÃαK̃t)(ẽxp ã)

=
∫
g̃

dã ψ(Λ(ã+ Ψ(ã)))(ÃαK̃t)(ẽxp (ã+ Ψ(ã)))
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for all ψ ∈ Cc(g), t > 0 and α ∈ J(d′), since Ψ is super-homogeneous. Therefore∫
h̃

dã ψ(Λã)(AαKt)(expΛã)

=
∫
h̃

dã
∫
i∞

db̃ ψ(Λ(ã+ b̃+ Ψ(ã+ b̃)))(ÃαK̃t)(ẽxp(ã+ b̃+ Ψ(ã+ b̃)))

=
∫
h̃

dã
∫
i∞

db̃ ψ(Λã)(ÃαK̃t)(ẽxp(ã+ b̃+ Ψ(̃b)))

because b̃+ Ψ(ã+ b̃) = b̃+ Ψ(̃b) ∈ i for all ã ∈ h̃ and b̃ ∈ i∞. Now the statement
of the lemma follows easily.

For all i ∈ {1, . . . , d̃} and ϕ ∈ C1(g̃) define Diϕ ∈ C(g̃) by (Diϕ)(ã) =

d
dtϕ(ã + t̃bi)

∣∣
t=0

. Moreover, if ã =
d̃∑

i=1

ξib̃i and α = (i1, . . . , in) ∈ J(d̃) define

ãα = ξi1 · · · ξin
. (Although we also use the notation ãα for an element in the

complex universal enveloping algebra, the meaning will be clear from the context.)
Note that |ãα| 6 |ã|‖α‖ṽ .

To bound the first term in (3.1) we need one more lemma.

Lemma 3.2. For all α ∈ J(d′) there exist c, τ > 0 such that∣∣(Di((ÃαK̃t) ◦ ẽxp )
)
(ã)

∣∣ 6 ct−(D̃+‖α‖)/mt−ṽi/me−τ(|ã|mt−1)1/(m−1)

for all i ∈ {1, . . . , d̃}, t > 0 and ã ∈ g̃.

Proof. It follows from the Campbell-Baker-Hausdorff formula that there exist
cijβ ∈ R such that

(B̃iϕ)(ẽxp ã) = −
(
Di(ϕ ◦ ẽxp )

)
(ã) +

d̃∑
j=1

∑
0<‖β‖ṽ=ṽj−ṽi

cijβ ã
β
(
Dj(ϕ ◦ ẽxp )

)
(ã)

for all i ∈ {1, . . . , d̃}, ϕ ∈ C1(G̃) and ã ∈ g̃. If one temporarily orders the basis
b̃1, . . . , b̃d̃ such that ṽ1 6 · · · 6 ṽd̃, then the transition matrix from the Di to the
B̃i is triangular, with −1 entries on the diagonal. Then one can solve for the Di

and it follows that there are polynomial functions Pij : g̃ → R such that

(3.6)
(
Di(ϕ ◦ ẽxp )

)
(ã) = −(B̃iϕ)(ẽxp ã) +

d̃∑
j=1

Pij(ã)(B̃jϕ)(ẽxp ã)

for all i ∈ {1, . . . , d̃}, ϕ ∈ C1(G̃) and ã ∈ g̃. Then, by scaling, it follows that the
Pij are homogeneous of degree ṽj − ṽi.

By (3.3) there exist c, τ > 0 such that∣∣(B̃iÃ
αK̃1)(ẽxp ã)

∣∣ 6 ce−τ |ã|m/(m−1)
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for all i ∈ {1, . . . , d̃} and ã ∈ g̃. Then, by an elementary estimate, one deduces
from (3.6) that there exists a c′ > 0 such that∣∣(Di((ÃαK̃1) ◦ ẽxp )

)
(ã)

∣∣ 6 c′e−2−1τ |ã|m/(m−1)

for all i ∈ {1, . . . , d̃} and ã ∈ g̃. The statement of the lemma follows by scaling.

Now we prove Theorem 1.1 for an ideal asymptotic Lie algebra by bounding
the first term in (3.1).

Fix α ∈ J(d′). By (3.4), (3.5) and the Duhamel formula one has

(AαKt)(expΛã)−
(
A

(I,∞)α
K

(I,∞)
t

)(
exp(I)

∞ Λ∞ã
)

=
∫
i∞

db (ÃαK̃t)(ẽxp(ã+ b̃+ Ψ(̃b)))− (ÃαK̃t)(ẽxp(ã+ b̃))

=
∫
i∞

db̃

1∫
0

dλ
d̃∑

i=1

d̃∑
j=d+1

ṽj<ṽi

cij [̃b]j
(
Di((ÃαK̃t) ◦ ẽxp )

)
(ã+ b̃+ λΨ(̃b))

for all ã ∈ h̃, where the cij ∈ R are such that Ψ(̃b) =
d̃∑

i=1

d̃∑
j=d+1

cij [̃b]j b̃i for all b̃ ∈ i∞

and [̃b]j denotes the j-th coordinate of b̃ with respect to the basis b̃1, . . . , b̃d̃. Hence
the bounds of Lemma 3.2 together with the estimate

∣∣[̃b]j∣∣ 6 |̃b|ṽj give∣∣(AαKt)(expΛã)−
(
A(I,∞)αK

(I,∞)
t

)(
exp(I)

∞ Λ∞ã
)∣∣

6 ct−(D̃+‖α‖)/m
d̃∑

i=1

d̃∑
j=d+1
ṽj<ṽi

|cij |
1∫

0

dλ
∫
i∞

db̃ |̃b|ṽj t−ṽi/me−τ(|ã+b̃+λΨ(b̃)|mt−1)1/(m−1)

for all t > 1 and ã ∈ h̃.

Since the map Ψ is super-homogeneous, by (3.2), there exists an M > 1 such
that |Ψ(̃b)| 6 4−1|ã+ b̃| for all ã ∈ h̃ and b̃ ∈ i∞ with |ã+ b̃| > M . Then

|ã+ b̃|2v 6 22v|ã+ b̃+λΨ(̃b)|2v +22v|λΨ(̃b)|2v 6 22v|ã+ b̃+λΨ(̃b)|2v +2−2v|ã+ b̃|2v

and

|ã|2v + |̃b|2v = |ã+ b̃|2v 6 22v+1|ã+ b̃+ λΨ(̃b)|2v

for all λ ∈ [0, 1], ã ∈ h̃ and b̃ ∈ i∞ with |ã+b̃| > M . Then |ã|m/(m−1)+|̃b|m/(m−1) 6
16|ã+ b̃+ λΨ(̃b)|m/(m−1) if |ã+ b̃| > M . So

|ã|m/(m−1) + |̃b|m/(m−1) 6 16|ã+ b̃+ λΨ(̃b)|m/(m−1) + 2M2
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for all λ ∈ [0, 1], ã ∈ h̃ and b̃ ∈ i∞. Therefore

∣∣(AαKt)(expΛã)−
(
A

(I,∞)α
K

(I,∞)
t )(exp(I)

∞ Λ∞ã
)∣∣

6 ceτM2t−1/(m−1)
t−(D̃+‖α‖)/m

d̃∑
i=1

d̃∑
j=d+1
ṽj<ṽi

|cij |
1∫

0

dλ
∫
i∞

db̃ (|̃b|t−1/m)ṽj t−(ṽi−ṽj)/m

· e−16−1τ(|ã|mt−1)1/(m−1)
e−16−1τ(|b̃|mt−1)1/(m−1)

6 ceτM2
t−(D+‖α‖)/mt−1/me−16−1τ(|ã|mt−1)1/(m−1)

·
d̃∑

i=1

d̃∑
j=d+1
ṽj<ṽi

|cij |
( ∫

i∞

db̃ t−(D̃−D)/m(|̃b|t−1/m)ṽj e−16−1τ(|b̃|mt−1)1/(m−1)
)

for all ã ∈ h̃ and t > 1. Since the factor between the brackets is finite and
independent of t and Λ∞ã = Λã for all ã ∈ h̃, there exists a c′ > 0 such that

(3.7)

∣∣(AαKt)(exp a)− (A
(I,∞)α

K
(I,∞)
t )(exp(I)

∞ a)
∣∣

6 c′t−(D+‖α‖)/mt−1/me−16−1τ(|a|m(I)t
−1)1/(m−1)

uniformly for all a ∈ g and t > 1, where | · |(I) is the modulus on g defined by

∣∣∣∣ d∑
i=1

ξib
(I)
i

∣∣∣∣2v

(I)

=
d∑

i=1

|ξi|2v/vi .

So it remains to replace | · |(I) by | · |. The two moduli | · |(I) and | · | are equivalent
for large distances.

Lemma 3.3. There exists a C > 0 such that C−1|a|(I) 6 |a| 6 C|a|(I) for
all a ∈ g with |a| > 1.

Proof. For all i, j ∈ {1, . . . , d} there exist cij ∈ R such that b(I)
i =

∑
j

vj>vi

cijbj

for all i ∈ {1, . . . , d}. Let a =
d∑

i=1

ξib
(I)
i ∈ g and suppose that |a|(I) > 1. Then

a =
d∑

i=1

∑
j

vj>vi

ξicijbj =
d∑

j=1

( ∑
i

vi6vj

ξicij

)
bj .



98 Nick Dungey, A.F.M. ter Elst, Derek W. Robinson and Adam Sikora

Therefore

|a|2v =
d∑

j=1

∣∣∣∣ ∑
i

vi6vj

ξicij

∣∣∣∣2v/vj

6
d∑

j=1

d2v max
i

vi6vj

|cij |2v/vj |ξi|2v/vj

6
d∑

j=1

d2v max
i

vi6vj

|cij |2v/vj (1 + |ξi|2v/vi)6

( d∑
j=1

d2v max
i

vi6vj

|cij |2v/vj

)
(1 + |a|2v

(I))

62
( d∑

j=1

d2v max
i

vi6vj

|cij |2v/vj

)
|a|2v

(I).

Hence there exists a C > 0 such that |a| 6 c|a|(I) for all a ∈ g with |a| > 1. The
other estimate follows similarly.

It follows from Lemma 3.3 that there exists a C > 1 such that |a| 6 1+C|a|(I)

for all a ∈ g. Then (|a|mt−1)1/(m−1) 6 2C2(|a|m(I)t
−1)1/(m−1) + 2t−1/(m−1) 6

2C2(|a|m(I)t
−1)1/(m−1) + 2 for all a ∈ g and t > 1. Hence it follows from (3.7) that∣∣(AαKt)(exp a)−

(
A

(I,∞)α
K

(I,∞)
t

)
(exp(I)

∞ a)
∣∣

6 c′eτ t−(D+‖α‖)/mt−1/me−32−1τC−2(|a|mt−1)1/(m−1)

uniformly for all a ∈ g and t > 1. This is the required estimate for the first term
in (3.7).

The estimate of the second term in (3.1) requires the following lemma.

Lemma 3.4. If t > 0 then(
A

(I,∞)α
K

(I,∞)
t

)
(exp(I)

∞ a) =
(
A

(∞)α
K

(∞)
t

)
(exp∞ Φ(a))

for all a ∈ g and α ∈ J(d).

Proof. Since Φ is a Lie algebra isomorphism from g∞(a(I)) onto g∞(a), it
follows from Lemma 2.7 (iii) that H(I)

∞ (ϕ ◦Ψ) = (H∞ϕ) ◦Ψ for all ϕ ∈ C∞
c (G∞),

where Ψ = exp∞ ◦Φ◦log(I)
∞ is the lifted Lie group isomorphism from G

(I)
∞ onto G∞.

Then S
(I,∞)
t (ϕ ◦Ψ) = (S(∞)

t ϕ) ◦Ψ for all t > 0. Hence K(I,∞)
t (g) = K

(∞)
t (Ψ(g))

for all t > 0 and g ∈ G
(I)
∞ . This proves the lemma if |α| = 0. The lemma for

general α then follows by differentiation and Lemma 2.7 (iii).

Now we are prepared to prove Theorem 1.1.

Proof of Theorem 1.1. Fix α ∈ J(d′). Arguing as in the proof of Lemma 3.2,
it follows that there exist c, τ > 0 such that∣∣(Dj

((
A

(∞)α
K

(∞)
t

)
◦ exp∞

))
(a)

∣∣ 6 ct−(D+‖α‖)/mt−vj/me−τ(|a|mt−1)1/(m−1)

for all j ∈ {1, . . . , d}, t > 0 and a ∈ g. Since Φ − I is super-homogeneous by
Lemma 2.7 (ii) there exist cij ∈ R such that Φ(b(I)

i ) = b
(I)
i +

∑
j

vj>vi

cijbj for all
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i ∈ {1, . . . , d}. Let a =
d∑

i=1

ξib
(I)
i ∈ g. Then it follows from Lemma 3.4 and the

Duhamel formula that∣∣(A(I,∞)α
K

(I,∞)
t

)
(exp(I)

∞ a)−
(
A

(∞)α
K

(∞)
t

)
(exp∞ a)

∣∣
=

∣∣(A(∞)α
K

(∞)
t

)
(exp∞ Φ(a))−

(
A

(∞)α
K

(∞)
t

)
(exp∞ a)|

6
∑
i,j

vj>vi

1∫
0

dλ |ξi| |cij |
∣∣(Dj

((
A

(∞)α
K

(∞)
t

)
◦ exp∞)

)
(a+ λ(Φ(a)− a)

)∣∣

6 ct−(D+‖α‖)/m
∑
i,j

vj>vi

1∫
0

dλ |a|vi

(I)t
−vj/m|cij |e−τ(|a+λ(Φ(a)−a)|mt−1)1/(m−1)

for all t > 0. By Lemma 2.7 (ii) there exists an M > 1 such that |Φ(a)−a| 6 4−1|a|
for all a ∈ g with |a| > M . Then |a|m/(m−1) 6 16 |a+ λ(Φ(a)− a)|m/(m−1) +M2

for all a ∈ g and λ ∈ [0, 1]. If C is as in Lemma 3.3 then∣∣(A(I,∞)α
K

(I,∞)
t

)
(exp(I)

∞ a)−
(
A

(∞)α
K

(∞)
t

)
(exp∞ a)

∣∣
6 ceτM2

t−(D+‖α‖)/mt−1/me−16−1τ(|a|mt−1)1/(m−1) ∑
i,j

vj>vi

(1 + C|a|t−1/m)vi |cij |

6 c′t−(D+‖α‖)/mt−1/me−32−1τ(|a|mt−1)1/(m−1)

for a suitable c′ > 0, uniformly for all a ∈ g and t > 1. This bounds the second
term in (3.1) and the proof of Theorem 1.1 is complete.

As a consequence of Theorem 1.1, one has the following kernel bounds for Kt.

Corallary 3.5. For all α ∈ J(d′) there exist c, τ > 0 such that

(3.8) |(AαKt)(exp a)| 6 ct−(D+‖α‖)/me−τ(|a|mt−1)1/(m−1)

for all t > 1 and a ∈ g. Hence there exists an M > 1 such that ‖AαSt‖p→p 6
M t−‖α‖/m uniformly for all t > 0 and p ∈ [1,∞].

Proof. It follows from [5], Proposition 5.5, applied to the group G∞, that
there exist c, τ > 0 such that∣∣(A(∞)α

K
(∞)
t

)
(exp∞ a)

∣∣ 6 ct−D/mt−‖α‖/me−τ(|a|mt−1)1/(m−1)

uniformly for all t > 0 and a ∈ g∞. The first statement of the corollary then
follows for t > 1 from Theorem 1.1.

Finally, one has ‖AαSt‖p→p 6‖AαKt‖1 and the right hand side of (3.8) can be
estimated on L1(g∞). Using the dilations, one sees that

∫
g

da t−D/me−τ(|a|mt−1)1/(m−1)

is independent of t. Obviously t 7→ t‖α‖/m‖AαSt‖p→p is bounded on (0, 1] uni-
formly for p ∈ [1,∞] (see [5], Corollary 8.3.II).
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The kernel bounds have immediate implications for strong convergence of
the semigroup.

Corallary 3.6. If p ∈ (1,∞) then lim
t→∞

St = 0 strongly on Lp.

Proof. Let ϕ ∈ Cc(G). Then

‖Stϕ‖2
2 =

∫
G

dg
∫
G

dh1

∫
G

dh2 ϕ(h1)Kt(gh−1
1 )Kt(gh−1

2 )ϕ(h2)

6
∫
G

dg
∫
G

dh1

∫
G

dh2 |ϕ(h1)| |Kt(gh−1
1 )| |Kt(gh−1

2 )| |ϕ(h2)|

for all t > 0. Arguing as in the proof of Lemma 2.2 of [3], there exist c′, τ ′ > 0
such that∫
G

dg |Kt(gh−1
1 )| |Kt(gh−1

2 )|

6 c2t−2D/m

∫
g

da e−τ(| log(h1 exp(−a))|mt−1)1/(m−1)
e−τ(| log((exp a)h2)|mt−1)1/(m−1)

6 c′t−D/me−τ ′(| log(h1h−1
2 )|mt−1)1/(m−1)

uniformly for all t > 0 and h1, h2 ∈ G. Hence

‖Stϕ‖2
2 6 c′t−D/m

∫
G

dh1

∫
G

dh2 |ϕ(h1)| |ϕ(h2)|e−τ ′(| log(h1h−1
2 )|mt−1)1/(m−1)

6 c′t−D/m

∫
G

dh1

∫
G

dh2 |ϕ(h1)| |ϕ(h2)|

and lim
t→∞

‖Stϕ‖2 = 0. Next, for all p ∈ (1, 2), one has

‖Stϕ‖p 6 ‖Stϕ‖(2−p)/p
1 ‖Stϕ‖(2p−2)/p

2

and as ‖St‖1→1 is uniformly bounded, it follows that lim
t→∞

‖Stϕ‖p = 0. Similarly,

since ‖St‖∞→∞ is uniformly bounded one deduces that lim
t→∞

‖Stϕ‖p = 0 for all

p ∈ (2,∞). Finally, since the ‖St‖p→p are uniformly bounded, it follows that
lim

t→∞
St = 0 strongly on Lp for all p ∈ (1,∞).

The values p = 1 and p = ∞ are truly exceptional for the strong convergence
of S to zero. For example, if H is an unweighted sublaplacian then ‖Stϕ‖1 =
‖Kt‖1‖ϕ‖1 = ‖ϕ‖1 for each positive ϕ ∈ L1 and ‖Stϕ‖∞ = ‖ϕ‖∞ for each constant
ϕ ∈ L∞.

One can also give a new proof of Theorem 3.5 in [6] which deals with un-
weighted operators.

Define the modulus | · |′ on G by

|g|′ = sup
{
|ψ(g)− ψ(e)| : ψ ∈ C∞

b (G),
d′∑

i=1

|(Aiψ)|2 6 1, ψ real
}
,

where Aiψ denotes the left derivative in the direction ai. Moreover, for all ρ > 0
set V (ρ) = |{g ∈ G : |g|′ < ρ}|, the Haar measure (volume) of the ball of radius ρ.
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Corallary 3.7. Suppose all weights wi equal one. Then for all α ∈ J(d′)
there exist c, τ > 0 such that

(3.9)
∣∣(AαKt)(g)

∣∣ 6 cV (t)−1/mt−‖α‖/me−τ((|g|′)mt−1)1/(m−1)

for all t > 0 and g ∈ G.

Proof. The estimates (3.9) are always valid for t 6 1 for suitable constants c
and τ by [5], Theorem 1.1. Therefore we have to concentrate on bounds uniform
for all t > 1.

By the proof of Proposition IV.5.6 in [11], there exists a τ1 > 1 such that
| exp a|′ 6 τ

(m−1)/m
1 |a| for all a ∈ g such that | exp a|′ > 1. Then it follows from

Corollary 3.5 that there exist c, τ > 0 such that

(3.10) |(AαKt)(g)| 6 ct−D/mt−‖α‖/me−ττ−1
1 ((|g|′)mt−1)1/(m−1)

for all t > 1 and g ∈ G with |g|′ > 1. But (|g|′)mt−1 6 1 for all t > 1 and
g ∈ G with |g|′ 6 1. Hence, by enlarging c if necessary, one can assume that
(3.10) is valid for all t > 1 and all g ∈ G. Therefore the estimates (3.9) are valid
for all t > 1 since there is a c′ > 0 such that V (t) 6 c′tD for all t > 1 (see [11],
Theorem IV. 5.8).

4. SEMIGROUP ESTIMATES

In the previous section we showed that the kernel Kt converges to the kernel K(∞)
t

as t tends to infinity. If g = g∞(a), this immediately implies that the semigroup
S converges uniformly to the corresponding asymptotic semigroup S(∞).

Theorem 4.1. If g = g∞(a) then there exists a c > 0 such that

‖St − S
(∞)
t ‖p→p 6 ct−1/m

uniformly for all t > 1 and p ∈ [1,∞]. Hence lim
t→∞

‖St − S
(∞)
t ‖p→p = 0 for all

p ∈ [1,∞].

Proof. Since one has the estimate ‖St − S
(∞)
t ‖p→p 6 ‖Kt − K

(∞)
t ‖1, the

theorem is a direct corollary of Theorem 1.1.

The convergence of S to S(∞) on L2(G ; dg) immediately yields information
about the corresponding semigroups in each irreducible unitary representation of
G (= G∞). Let U be an irreducible unitary representation of G on a Hilbert space
H. Then

SU
t = U(Kt) =

∫
G

dg Kt(g)U(g)

is the strongly continuous semigroup with generator

HU = dU(C) =
∑

α∈J(d′)

cαdU(aα).
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Similarly SU,(∞)
t = U(K(∞)

t ) is the strongly continuous semigroup with generator

HU
∞ = dU(C(∞)) =

∑
α∈J(d′)

cαdU(aα).

Proposition 4.2. If G = G∞, then in each irreducible unitary representa-
tion (H, G, U) one has

lim
t→∞

‖SU
t − S

U,(∞)
t ‖HS = 0

where ‖ · ‖HS denotes the Hilbert-Schmidt norm on the space of Hilbert-Schmidt
operators on H.

Proof. Suppose t > 1, then

‖SU
t − S

U,(∞)
t ‖HS 6

(
‖SU

1 ‖HS + ‖SU,(∞)
1 ‖HS

)
‖SU

t−1 − S
U,(∞)
t−1 ‖

where ‖ · ‖ denotes the norm on B(H). But it follows from Theorem 1.1 that there
exists a c > 0 such that

‖SU
t−1 − S

U,(∞)
t−1 ‖ 6 ‖Kt−1 −K

(∞)
t−1 ‖1 6 c(t− 1)−1/m

uniformly for all t > 1. Therefore lim
t→∞

‖SU
t −SU,(∞)

t ‖HS = 0. In fact this estimate
establishes the bounds

‖SU
t − S

U,(∞)
t ‖HS 6 cU t

−1/m

for all t > 2.

Example 4.3. Let g be the Heisenberg Lie algebra of Example 2.10 and
choose the algebraic basis a1, a2, a3 with all weights equal to one. Then choosing

a1 = span(a1, a2) and a2 = span(a3) one has g = g∞(a). Hence if H = −
3∑

i=1

A2
i is

the Laplacian in the left regular representation H∞ = −
2∑

i=1

A2
i is the sublaplacian

and the difference between the respective semigroups converges uniformly to zero
on each of the Lp-spaces.

We next consider the situation for which g 6= g∞(a) as Lie algebras. Since
g = g∞(a) as vector spaces, one can, however, compare the semigroups Ŝt and
Ŝ

(∞)
t on Lp(g). One might expect that lim

t→∞
‖Ŝt − Ŝ

(∞)
t ‖p→p = 0 but this is too

optimistic.

Theorem 4.4. If g 6= g∞(a) as Lie algebras then there is a b > 0 such that

lim inf
t→∞

‖Ŝt − Ŝ
(∞)
t ‖p→p > b

for all p ∈ [1,∞]. Moreover, if the form C defining S is self-adjoint one may
choose b = 1.

Proof. Since g 6= g∞(a) as Lie algebras there exist j, k ∈ {1, . . . , d} such that

[bj , bk] 6= [bj , bk]∞.
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Let σ > 0. For t > 0 define ϕt ∈ L2(g) by

ϕt(a) = ‖K̂(∞)
σt ‖−1

2 K̂
(∞)
σt (a ∗∞ tδbj),

where δ = 2r2, K̂(∞)
t = K

(∞)
t ◦ exp∞ and a ∗∞ b = log∞(exp∞ a exp∞ b) for all

a, b ∈ g∞. Then ‖ϕt‖2 = 1 by right invariance of the Haar measure on G∞.
The starting point for the proof is the estimate

‖(Ŝt − Ŝ
(∞)
t )ϕt‖2

2 > ‖Ŝ(∞)
t ϕt‖2

2 − 2 Re(Ŝtϕt, Ŝ
(∞)
t ϕt)

for all t > 0.
Since

(4.1) (Ŝ(∞)
t ϕt)(a) = ‖K̂(∞)

σt ‖−1
2 K̂

(∞)
(1+σ)t(a ∗∞ tδbj)

for all t > 0 and a ∈ g, one has ‖Ŝ(∞)
t ϕt‖2

2 = (σ(1+σ)−1)D/m by scaling, uniformly
for all t > 0. So if we can show that
(4.2) lim

t→∞
(Ŝtϕt, Ŝ

(∞)
t ϕt) = 0

then
lim inf
t→∞

‖Ŝt − Ŝ
(∞)
t ‖2

2→2 > (σ(1 + σ)−1)D/m

and the first part of the theorem follows for p = 2. Moreover, one may arrange
that the lower bound equals one for p = 2. But for dual variables p, q ∈ [1,∞],
one has

‖Ŝt − Ŝ
(∞)
t ‖2→2 6 (‖Ŝt − Ŝ

(∞)
t ‖p→p)1/2(‖Ŝt − Ŝ

(∞)
t ‖q→q)1/2.

Moreover, Ŝ and Ŝ(∞) are uniformly bounded on each Lp-space, by Corollary 3.5.
Therefore the first statement of the theorem then follows for all p ∈ [1,∞]. Finally,
the self-adjointness of C implies

‖Ŝt − Ŝ
(∞)
t ‖p→p = ‖Ŝt − Ŝ

(∞)
t ‖q→q

for dual exponents p, q and therefore

1 6 lim inf
t→∞

‖Ŝt − Ŝ
(∞)
t ‖2→2 6 lim inf

t→∞
‖Ŝt − Ŝ

(∞)
t ‖p→p

for all p ∈ [1,∞]. Thus the proof of the theorem is reduced to establishing (4.2).
First for all a ∈ g one has

‖K̂(∞)
σt ‖2(Ŝtϕt)(a) =

∫
db K̂t(a ∗ (−b))K̂(∞)

σt (b ∗∞ tδbj)

=
∫

db K̂t(a ∗ (tδbj ∗∞ (−b)))K̂(∞)
σt (b)

for all t > 1, where K̂t = Kt ◦ exp and a ∗ b = log(exp a exp b) for all a, b ∈ g.
Hence by (4.1) and Corollary 3.5, there exist C, τ > 0 such that

‖K̂(∞)
σt ‖2

2 |(Ŝtϕt, Ŝ
(∞)
t ϕt)|

=
∣∣∣∣ ∫

da
∫

db K̂t(a ∗ (tδbj ∗∞ (−b)))K̂(∞)
σt (b)K̂(∞)

(1+σ)t(a ∗∞ tδbj)
∣∣∣∣

=
∣∣∣∣ ∫

da
∫

db K̂t((a ∗∞ (−tδbj)) ∗ (tδbj ∗∞ (−b)))K̂(∞)
σt (b)K̂(∞)

(1+σ)t(a)
∣∣∣∣

6
∫

da
∫

dbGt((a ∗∞ (−tδbj)) ∗ (tδbj ∗∞ (−b)))
∣∣K̂(∞)

σt (b)
∣∣ ∣∣K̂(∞)

(1+σ)t(a)
∣∣
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for all t > 1, where

Gt(a) = Ct−D/me−τ(|a|mt−1)1/(m−1)
.

Then, using the scaling law,

K̂
(∞)
st (a) = t−D/mK̂(∞)

s (γt−1/m(a))

and by a subsequent change of variables a′ = γt−1/m(a), b′ = γt−1/m(b) one finds

‖K̂(∞)
σ ‖2

2 |(Ŝtϕt, Ŝ
(∞)
t ϕt)| 6

∫
da

∫
db

∣∣K̂(∞)
σ (b)

∣∣ ∣∣K̂(∞)
1+σ(a)

∣∣
·G1((a ∗∞ (−tδ−vj/mbj)) ∗t1/m (tδ−vj/mbj ∗∞ (−b)))

for all t > 1, where a ∗t b = γ−1
t (γt(a) ∗ γt(b)). Therefore, if we can show that

lim
t→∞

|(a ∗∞ (−tmδ−vj bj)) ∗t (tmδ−vj bj ∗∞ (−b))| = ∞

for almost all (a, b) ∈ g× g, then (4.2) follows by the Lebesgue dominated conver-
gence theorem and the proof of the theorem is complete.

Define P : g× g× g → g by

P (a, b; c) = (a ∗∞ (−c)) ∗ (c ∗∞ (−b)).
Then it follows from the Campbell-Baker-Hausdorff formula that

P (a, b ; c) =
(
a− c− 1

2
[a, c]∞ + · · ·

)
∗

(
c− b+

1
2
[b, c]∞ + · · ·

)
= a− b− 1

2
[a− b, c]∞ +

1
2
[a− b, c]− 1

2
[a, b] + · · ·

= a ∗ (−b)− 1
2
[a− b, c]∞ +

1
2
[a− b, c] + · · ·

where the dots denote a sum of multi-commutators in a, b, c of order at least 3 and
the multi-commutators may be mixed in [ · , · ] and [ · , · ]∞. Since the weighted
rank of g equals r, it follows that P is a polynomial of unweighted order at most
r. Hence there exist ciαβγ ∈ R such that

P (a, b ; c) = a ∗ (−b)− 1
2
[a− b, c]∞ +

1
2
[a− b, c] +

d∑
i=1

∑
α,β,γ∈J(d)

36|α|+|β|+|γ|6r

ciαβγa
αbβcγbi

for all a, b, c ∈ g.
Next, for all t > 1 and a, b, c ∈ g, one has

(a ∗∞ (−c)) ∗t (c ∗∞ (−b)) = γ−1
t

(
γt(a ∗∞ (−c)) ∗ γt(c ∗∞ (−b))

)
= γ−1

t

(
(γt(a) ∗∞ (−γt(c))) ∗ (γt(c) ∗∞ (−γt(b)))

)
= a ∗t (−b)− 1

2
[a− b, c]∞ +

1
2
[a− b, c]t

+
d∑

i=1

∑
α,β,γ∈J(d)

36|α|+|β|+|γ|6r

ciαβγt
‖α‖+‖β‖+‖γ‖−viaαbβcγbi.
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Substitute c = tmδ−vj bj in the previous identity. Then

(4.3)

(a∗∞(−tmδ−vj bj)) ∗t (tmδ−vj bj ∗∞ (−b))

= a ∗t (−b)− 1
2
tmδ−vj

(
[a− b, bj ]∞ − [a− b, bj ]t

)
+

d∑
i=1

∑
α,β∈J(d)

p∈N0
36|α|+|β|+p6r

ciαβγp
t‖α‖+‖β‖+mpδ−pvj−viaαbβbi,

where γp = (j, . . . , j) is the multi-index with p indices equal to j. Let ciq ∈ R be
such that

[bi, bj ] =
∑

q
vq>vi+vj

ciqbq

for all i ∈ {1, . . . , d}. Then there exists an n ∈ {1, . . . , d} with vn > vj + vk such
that ckn 6= 0, since [bk, bj ] 6= [bk, bj ]∞.

For each a, b ∈ g, the right hand side of (4.3) is a Laurent polynomial in t.
Consider the coefficient of

tmδ−vj tvj+vk−vn = tmδ+vk−vn .

Since δ = 2r2, one obviously has

mδ > mδ + vk − vn > mδ − r > 2r2.

But if p = 0 and |α|+|β| 6 r, then ‖α‖+‖β‖+mpδ−pvj−vi 6 2r2. Alternatively,
if 2 6 p 6 r then ‖α‖+ ‖β‖+mpδ− pvj − vi > 4mr2 − r2 − r > 2mr2. Therefore
the only possible contribution of the last term in the right hand side of (4.3) occurs
with p = 1. Since in addition 3 6 |α| + |β| + p, this implies that in each of the
contributions one has |α|+ |β| > 2. Moreover, lim

t→∞
a∗t (−b) = a∗∞ (−b) exists, so

the term a ∗t (−b) gives no contribution to the coefficient of tmδ+vk−vn . Therefore
there exist ciαβ ∈ R such that the coefficient of tmδ+vk−vn equals∑

i,q
vi−vq=vk−vn

vq>vi+vj

1
2
(ξi − ηi)ciqbq +

d∑
i=1

∑
26|α|+|β|6r

ciαβξ
αηβbi

if a =
d∑

i=1

ξibi and b =
d∑

i=1

ηibi, where ξα = aα and ηβ = bβ . This is an element of

g with the coefficient of bn equal to

Q(a, b) =
∑

i
vi=vk

1
2
(ξi − ηi)cin +

∑
26|α|+|β|6r

cnαβξ
αηβ .

Since ckn 6= 0, one has Q(a, b) 6= 0 for almost all (a, b) ∈ g× g. Thus

lim
t→∞

|(a ∗∞ (−tmδ−vj bj)) ∗t (tmδ−vj bj ∗∞ (−b))| = ∞

for almost all (a, b) ∈ g× g and the proof is complete.
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Although Theorem 4.4 precludes the uniform convergence of S−S(∞) to zero
whenever G 6= G∞, the next result shows that this is very nearly true.

Theorem 4.5. If f : g → C is a bounded measurable function which van-
ishes at infinity and S(∞), the semigroup associated with a general asymptotic Lie
algebra then

lim
t→∞

‖Mf (Ŝt − Ŝ
(∞)
t )‖p→p = 0 = lim

t→∞
‖(Ŝt − Ŝ

(∞)
t )Mf‖p→p

uniformly for all p ∈ [1,∞].

Proof. For all a, b ∈ g define a ∗ b = log(exp a exp b) ∈ g and a ∗∞ b =
log∞(exp∞ a exp∞ b) ∈ g∞. Moreover, set K̂t =Kt ◦exp and K̂(∞)

t =K(∞)
t ◦exp∞.

Let ϕ,ψ ∈ C∞
c (g) and t > 1. Then

|(ψ, (Ŝt−Ŝ(∞)
t )ϕ)|

=
∣∣∣∣ ∫

da

∫
db ψ(a)ϕ(b)

(
K̂t(a ∗ (−b))− K̂

(∞)
t (a ∗∞ (−b))

)∣∣∣∣
6

∫
da

∫
db |ψ(a)| |ϕ(b)|

∣∣K̂t(a ∗ (−b))− K̂
(∞)
t (a ∗ (−b))

∣∣
+

∣∣∣∣ ∫
da

∫
db ψ(a)ϕ(b)

(
K̂

(∞)
t (a ∗ (−b))− K̂

(∞)
t (a ∗∞ (−b))

)∣∣∣∣
where all integrals are over g. We estimate the two terms separately.

For the first term we can use Theorem 1.1. Let c, τ > 0 as in Theo-
rem 1.1 for the α ∈ J(d′) with ‖α‖ = 0 and define Gt : g → R by Gt(a) =
t−D/me−τ(|a|mt−1)1/(m−1)

. One has∫
da

∫
db |ψ(a)| |ϕ(b)|

∣∣K̂t(a ∗ (−b))− K̂
(∞)
t (a ∗ (−b))

∣∣
6 ct−1/m

∫
da

∫
db |ψ(a)| |ϕ(b)|Gt(a ∗ (−b))

= ct−1/m(|ψ ◦ log |, (Gt ◦ log) ∗ |ϕ ◦ log |)
6 ct−1/m‖ψ ◦ log ‖Lq(G)‖Gt ◦ log ‖L1(G)‖ϕ ◦ log ‖Lp(G) = c′t−1/m‖ψ‖q‖ϕ‖p

since ‖Gt ◦ log ‖L1(G) = ‖Gt‖L1(g∞) is independent of t by scaling. Here q is the
dual exponent of p.

The second term is more elaborate. Note that it arises if g 6= g∞(a) as Lie
algebras. Hence a ∗ b 6= a ∗∞ b for some pair a, b ∈ g.

It follows from the Campbell-Baker-Hausdorff formula that there exist ciαβ ∈
R such that

P (a, b) = a ∗ b− a ∗∞ b =
d∑

i=1

∑
α,β

‖α‖v+‖β‖v<vi

ciαβa
αbβbi
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for all a, b ∈ g (see also [9]). Then the Duhamel formula gives∫
da

∫
db ψ(a)ϕ(b)

(
K̂

(∞)
t (a ∗ (−b))− K̂

(∞)
t (a ∗∞ (−b))

)
=

d∑
i=1

∑
α,β

‖α‖v+‖β‖v<vi

ciαβ

1∫
0

dλ
∫

db
∫

daψ(a)ϕ(b)aαbβ

· (DiK̂
(∞)
t )(a ∗∞ (−b) + λP (a,−b)),

where Di denotes the partial derivative in the direction bi. Next, the Campbell-
Baker-Hausdorff formula establishes the existence of constants cijαβ such that

Tλ,b(a) = a ∗∞ (−b) + λP (a,−b) = a− b+
d∑

i=1

1∑
j=0

∑
‖α‖v+‖β‖v6vi

‖α‖v<vi

cijαβa
αbβλjbi

for all a, b ∈ g and λ ∈ [0, 1]. Then for each λ ∈ [0, 1] and b ∈ g, the map Tλ,b is
a bijection from g onto g with Jacobian equal to one. Moreover, by induction it
follows that there exist c̃ijαβ ∈ R such that

T−1
λ,b (a) = a+ b+

d∑
i=1

rd∑
j=0

∑
‖α‖v+‖β‖v6vi

‖α‖v<vi

c̃ijαβa
αbβλjbi

uniformly for all a, b ∈ g and λ ∈ [0, 1]. Then by Leibniz’ rule for all α, β ∈ J+(d)
with ‖α‖v + ‖β‖v < r there exist cjαβγδ ∈ R such that

(T−1
λ,b (a))αbβ =

∑
γ,δ

‖γ‖v+‖δ‖v6‖α‖v+‖β‖v

rd+1∑
j=0

cjαβγδa
γbδλj

uniformly for all a, b ∈ g and λ ∈ [0, 1]. Arguing as in the proof of Lemma 3.2 it
follows that there exist c, τ > 0 such that

|(DiK̂
(∞)
t )(a)| 6 ct−D/mt−vi/me−τ(|a|mt−1)1/(m−1)

for all i ∈ {1, . . . , d}, t > 0 and a ∈ g. Then∣∣∣∣ ∫
da

∫
db ψ(a)ϕ(b)

(
K̂

(∞)
t (a ∗ (−b))− K̂

(∞)
t (a ∗∞ (−b))

)∣∣∣∣
=

∣∣∣∣ d∑
i=1

∑
α,β

‖α‖v+‖β‖v<vi

ciαβ

1∫
0

dλ
∫

db
∫

daψ(T−1
λ,b (a))ϕ(b)(T−1

λ,b (a))αbβ(DiK̂
(∞)
t )(a)

∣∣∣∣
6 c

d∑
i=1

∑
α,β

‖α‖v+‖β‖v<vi

∑
γ,δ

‖γ‖v+‖δ‖v6‖α‖v+‖β‖v

rd+1∑
j=0

|ciαβ | |cjαβγδ|

·
1∫

0

dλ
∫

db
∫

da |ψ(T−1
λ,b (a))| |ϕ(b)| |aγ | |bδ| |λj |t−D/mt−vi/me−τ(|a|mt−1)1/(m−1)

.
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Note that ‖γ‖v + ‖δ‖v 6 ‖α‖v + ‖β‖v < vi. Therefore an elementary estimate
gives

1∫
0

dλ
∫

db
∫

da |ψ(T−1
λ,b (a))| |ϕ(b)| |aγ | |bδ| |λj |t−D/mt−vi/me−τ(|a|mt−1)1/(m−1)

6

1∫
0

dλ
∫

db
∫

da |ψ(T−1
λ,b (a))| |ϕ(b)|t−D/mt−(vi−‖γ‖v−‖δ‖v)/m

· (|a|t−1/m)‖γ‖v (|b|t−1/m)‖δ‖ve−τ(|a|mt−1)1/(m−1)

6 c′t−1/m

1∫
0

dλ
∫

db
∫

da |ψ(T−1
λ,b (a))| |(Ntϕ)(b)| t−D/me−2−1τ(|a|mt−1)1/(m−1)

= c′t−1/m

1∫
0

dλ
∫

db
∫

da |ψ(a)| |(Ntϕ)(b)|G(λ)
t (a, b)

uniformly for all t > 1, where (Ntϕ)(b) = (1 + (|b|t−1/m)r)ϕ(b) and

G
(λ)
t (a, b) = t−D/me−2−1τ(|a∗∞(−b)+λP (a,b)|mt−1)1/(m−1)

for all λ ∈ [0, 1]. Using the transformation Tλ,b once again it follows that

c1 = sup
λ∈[0,1]

sup
b∈g

sup
t>0

∫
daG(λ)

t (a, b) <∞.

Similarly,

c2 = sup
λ∈[0,1]

sup
a∈g

sup
t>0

∫
dbG(λ)

t (a, b) <∞

and then, by interpolation,∫
db

∫
da |ψ(a)| |(Ntϕ)(b)|G(λ)

t (a, b) 6 c
1/p
1 c

1/q
2 ‖ψ‖q‖Ntϕ‖p

uniformly for all λ ∈ [0, 1] and t > 0. Since all sums have a finite number of terms,
one deduces that there exists a c > 0 such that∣∣(ψ, (Ŝt − Ŝ

(∞)
t )ϕ)

∣∣ 6 ct−1/m‖ψ‖q‖Ntϕ‖p

for all t > 1 and ϕ,ψ ∈ C∞
c (g). Hence

‖(Ŝt − Ŝ
(∞)
t )N−1

t ϕ‖p 6 ct−1/m‖ϕ‖p

for all t > 1 and ϕ ∈ Lp.
Next, let f : g → C be a bounded measurable function which vanishes at

infinity. Then, with Dt = Ŝt − Ŝ
(∞)
t , one has∥∥(Ŝt − Ŝ

(∞)
t )Mf

∥∥
p→p

6 ‖DtN
−1
t Mf‖p→p + ‖Dt(I −N−1

t )Mf‖p→p

6 ‖DtN
−1
t ‖p→p‖Mf‖p→p + ‖Dt‖p→p‖(I −N−1

t )Mf‖p→p

6 c‖f‖∞t−1/m + 2M sup
a∈g

(t−1/m|a|)r

1 + (t−1/m|a|)r
· |f(a)|
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for all t > 1, where M is as in Corollary 3.5. But f is bounded and

lim
t→∞

sup
a∈g

(t−1/m|a|)r

1 + (t−1/m|a|)r
· |f(a)| = lim

t→∞
sup
a∈g

|a|r

1 + |a|r
· |f(γt1/m(a))| = 0

since f is bounded and vanishes at infinity. Therefore ‖(Ŝt − Ŝ
(∞)
t )Mf‖p→p → 0

as t→∞ and ‖Mf (Ŝt − Ŝ
(∞)
t )‖p→p → 0 by duality.

Finally, we note that there is an analogue of the behaviour of the semigroups
as t→ 0 with the asymptotics for t→∞. For each weighted algebraic basis on a
nilpotent Lie algebra one can construct a contraction g0 of g as t → 0 and then
proceed as before to obtain H0, S

(0),K(0) etc. (see [9], [8] and [5]). For small t one
has good bounds on the semigroup kernels,∣∣(AαKt)(exp a)− (A(0)αK

(0)
t )(exp0 a)

∣∣ 6 ct−(D′+‖α‖)/mt1/me−τ(|a|mt−1)1/(m−1)

for all t ∈ (0, 1] and a ∈ g, where D′ is the local dimension and | · | the appropriate
modulus on the Lie algebra adapted to g0. Bounds of this type can be proved sim-
ilarly to the proof of Theorem 1.1 or, alternatively, from the proof of Theorem 7.2
in [5].

Nevertheless, the uniform convergence of the semigroups as t → 0 is valid
only in a special case.

Theorem 4.6. If p ∈ [1,∞] then lim
t→0

∥∥Ŝt − Ŝ
(0)
t

∥∥
∞→∞ = 0 if, and only if,

g = g0 as Lie algebras.

Proof. The proof is a repetition of the arguments in the proofs of the previous
two theorems.
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